Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c64cd6fe
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c64cd6fe
编写于
11月 07, 2016
作者:
W
wenboyang
提交者:
Yu Yang
11月 06, 2016
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Use diff to compare config unittest (
#363
)
Fix
#342
上级
93e4d0cc
变更
26
隐藏空白更改
内联
并排
Showing
26 changed file
with
4371 addition
and
25 deletion
+4371
-25
python/paddle/trainer_config_helpers/tests/configs/check.md5
python/paddle/trainer_config_helpers/tests/configs/check.md5
+0
-23
python/paddle/trainer_config_helpers/tests/configs/generate_protostr.sh
...trainer_config_helpers/tests/configs/generate_protostr.sh
+3
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
...config_helpers/tests/configs/protostr/img_layers.protostr
+176
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/last_first_seq.protostr
...ig_helpers/tests/configs/protostr/last_first_seq.protostr
+69
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/layer_activations.protostr
...helpers/tests/configs/protostr/layer_activations.protostr
+423
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/math_ops.protostr
...r_config_helpers/tests/configs/protostr/math_ops.protostr
+235
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr
...onfig_helpers/tests/configs/protostr/projections.protostr
+315
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/shared_fc.protostr
..._config_helpers/tests/configs/protostr/shared_fc.protostr
+125
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/shared_lstm.protostr
...onfig_helpers/tests/configs/protostr/shared_lstm.protostr
+393
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/simple_rnn_layers.protostr
...helpers/tests/configs/protostr/simple_rnn_layers.protostr
+418
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr
...helpers/tests/configs/protostr/test_bi_grumemory.protostr
+152
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
..._helpers/tests/configs/protostr/test_cost_layers.protostr
+289
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers_with_weight.protostr
...ts/configs/protostr/test_cost_layers_with_weight.protostr
+111
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_expand_layer.protostr
...helpers/tests/configs/protostr/test_expand_layer.protostr
+56
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_fc.protostr
...er_config_helpers/tests/configs/protostr/test_fc.protostr
+98
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_grumemory_layer.protostr
...pers/tests/configs/protostr/test_grumemory_layer.protostr
+51
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_hsigmoid.protostr
...fig_helpers/tests/configs/protostr/test_hsigmoid.protostr
+62
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_lstmemory_layer.protostr
...pers/tests/configs/protostr/test_lstmemory_layer.protostr
+53
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr
...onfig_helpers/tests/configs/protostr/test_maxout.protostr
+209
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_ntm_layers.protostr
...g_helpers/tests/configs/protostr/test_ntm_layers.protostr
+225
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_print_layer.protostr
..._helpers/tests/configs/protostr/test_print_layer.protostr
+26
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_rnn_group.protostr
...ig_helpers/tests/configs/protostr/test_rnn_group.protostr
+650
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_sequence_pooling.protostr
...ers/tests/configs/protostr/test_sequence_pooling.protostr
+111
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/unused_layers.protostr
...fig_helpers/tests/configs/protostr/unused_layers.protostr
+27
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr
...onfig_helpers/tests/configs/protostr/util_layers.protostr
+81
-0
python/paddle/trainer_config_helpers/tests/configs/run_tests.sh
.../paddle/trainer_config_helpers/tests/configs/run_tests.sh
+13
-1
未找到文件。
python/paddle/trainer_config_helpers/tests/configs/check.md5
已删除
100644 → 0
浏览文件 @
93e4d0cc
86c0815275a9d5eb902e23c6a592f58a img_layers.protostr
a5d9259ff1fd7ca23d0ef090052cb1f2 last_first_seq.protostr
9c038249ec8ff719753a746cdb04c026 layer_activations.protostr
5913f87b39cee3b2701fa158270aca26 projections.protostr
7334ba0a4544f0623231330fc51d390d shared_fc.protostr
8b8b6bb128a7dfcc937be86145f53e2f shared_lstm.protostr
6b39e34beea8dfb782bee9bd3dea9eb5 simple_rnn_layers.protostr
4e78f0ded79f6fefb58ca0c104b57c79 test_bi_grumemory.protostr
0fc1409600f1a3301da994ab9d28b0bf test_cost_layers.protostr
6cd5f28a3416344f20120698470e0a4c test_cost_layers_with_weight.protostr
144bc6d3a509de74115fa623741797ed test_expand_layer.protostr
2378518bdb71e8c6e888b1842923df58 test_fc.protostr
8bb44e1e5072d0c261572307e7672bda test_grumemory_layer.protostr
1f3510672dce7a9ed25317fc58579ac7 test_hsigmoid.protostr
d350bd91a0dc13e854b1364c3d9339c6 test_lstmemory_layer.protostr
5433ed33d4e7414eaf658f2a55946186 test_maxout.protostr
251a948ba41c1071afcd3d9cf9c233f7 test_ntm_layers.protostr
e6ff04e70aea27c7b06d808cc49c9497 test_print_layer.protostr
2a75dd33b640c49a8821c2da6e574577 test_rnn_group.protostr
67d6fde3afb54f389d0ce4ff14726fe1 test_sequence_pooling.protostr
f586a548ef4350ba1ed47a81859a64cb unused_layers.protostr
8122477f4f65244580cec09edc590041 util_layers.protostr
dcd76bebb5f9c755f481c26192917818 math_ops.protostr
python/paddle/trainer_config_helpers/tests/configs/generate_protostr.sh
浏览文件 @
c64cd6fe
...
...
@@ -4,6 +4,8 @@ set -e
cd
`
dirname
$0
`
export
PYTHONPATH
=
$PWD
/../../../../
protostr
=
$PWD
/protostr
configs
=(
test_fc layer_activations projections test_print_layer
test_sequence_pooling test_lstmemory_layer test_grumemory_layer
last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
...
...
@@ -15,5 +17,5 @@ test_maxout test_bi_grumemory math_ops)
for
conf
in
${
configs
[*]
}
do
echo
"Generating "
$conf
python
-m
paddle.utils.dump_config
$conf
.py
>
$
conf
.protostr
python
-m
paddle.utils.dump_config
$conf
.py
>
$
protostr
/
$conf
.protostr.unitest
done
python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "image"
type: "data"
size: 65536
active_type: ""
}
layers {
name: "__conv_0__"
type: "exconv"
size: 3297856
active_type: ""
inputs {
input_layer_name: "image"
input_parameter_name: "___conv_0__.w0"
conv_conf {
filter_size: 32
channels: 1
stride: 1
padding: 1
groups: 1
filter_channels: 1
output_x: 227
img_size: 256
caffe_mode: true
filter_size_y: 32
padding_y: 1
stride_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 64
shared_biases: true
}
layers {
name: "__batch_norm_0__"
type: "batch_norm"
size: 3297856
active_type: "relu"
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w0"
image_conf {
channels: 64
img_size: 227
}
}
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w1"
}
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w2"
}
bias_parameter_name: "___batch_norm_0__.wbias"
moving_average_fraction: 0.9
}
layers {
name: "__crmnorm_0__"
type: "norm"
size: 3297856
active_type: ""
inputs {
input_layer_name: "__batch_norm_0__"
norm_conf {
norm_type: "cmrnorm-projection"
channels: 64
size: 32
scale: 0.0004
pow: 0.75
output_x: 227
img_size: 227
blocked: false
}
}
}
layers {
name: "__pool_0__"
type: "pool"
size: 2458624
active_type: ""
inputs {
input_layer_name: "__conv_0__"
pool_conf {
pool_type: "max-projection"
channels: 64
size_x: 32
stride: 1
output_x: 196
img_size: 227
padding: 0
size_y: 32
stride_y: 1
output_y: 196
img_size_y: 227
padding_y: 0
}
}
}
parameters {
name: "___conv_0__.w0"
size: 65536
initial_mean: 0.0
initial_std: 0.0441941738242
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_0__.wbias"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 64
dims: 1
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___batch_norm_0__.w0"
size: 64
initial_mean: 1.0
initial_std: 0.0
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___batch_norm_0__.w1"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.w2"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.wbias"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
}
input_layer_names: "image"
output_layer_names: "__pool_0__"
output_layer_names: "__crmnorm_0__"
sub_models {
name: "root"
layer_names: "image"
layer_names: "__conv_0__"
layer_names: "__batch_norm_0__"
layer_names: "__crmnorm_0__"
layer_names: "__pool_0__"
input_layer_names: "image"
output_layer_names: "__pool_0__"
output_layer_names: "__crmnorm_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/last_first_seq.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 30
active_type: ""
}
layers {
name: "__first_seq_0__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
select_first: true
trans_type: "seq"
}
layers {
name: "__first_seq_1__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
select_first: true
trans_type: "non-seq"
}
layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
trans_type: "seq"
}
layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
trans_type: "non-seq"
}
input_layer_names: "data"
output_layer_names: "__first_seq_0__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_0__"
output_layer_names: "__last_seq_1__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__first_seq_0__"
layer_names: "__first_seq_1__"
layer_names: "__last_seq_0__"
layer_names: "__last_seq_1__"
input_layer_names: "data"
output_layer_names: "__first_seq_0__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_0__"
output_layer_names: "__last_seq_1__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/layer_activations.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "input"
type: "data"
size: 100
active_type: ""
}
layers {
name: "layer_0"
type: "fc"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_0.w0"
}
bias_parameter_name: "_layer_0.wbias"
}
layers {
name: "layer_1"
type: "fc"
size: 100
active_type: "sigmoid"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_1.w0"
}
bias_parameter_name: "_layer_1.wbias"
}
layers {
name: "layer_2"
type: "fc"
size: 100
active_type: "softmax"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_2.w0"
}
bias_parameter_name: "_layer_2.wbias"
}
layers {
name: "layer_3"
type: "fc"
size: 100
active_type: ""
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_3.w0"
}
bias_parameter_name: "_layer_3.wbias"
}
layers {
name: "layer_4"
type: "fc"
size: 100
active_type: ""
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_4.w0"
}
bias_parameter_name: "_layer_4.wbias"
}
layers {
name: "layer_5"
type: "fc"
size: 100
active_type: "exponential"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_5.w0"
}
bias_parameter_name: "_layer_5.wbias"
}
layers {
name: "layer_6"
type: "fc"
size: 100
active_type: "relu"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_6.w0"
}
bias_parameter_name: "_layer_6.wbias"
}
layers {
name: "layer_7"
type: "fc"
size: 100
active_type: "brelu"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_7.w0"
}
bias_parameter_name: "_layer_7.wbias"
}
layers {
name: "layer_8"
type: "fc"
size: 100
active_type: "softrelu"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_8.w0"
}
bias_parameter_name: "_layer_8.wbias"
}
layers {
name: "layer_9"
type: "fc"
size: 100
active_type: "stanh"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_9.w0"
}
bias_parameter_name: "_layer_9.wbias"
}
layers {
name: "layer_10"
type: "fc"
size: 100
active_type: "abs"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_10.w0"
}
bias_parameter_name: "_layer_10.wbias"
}
layers {
name: "layer_11"
type: "fc"
size: 100
active_type: "square"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_11.w0"
}
bias_parameter_name: "_layer_11.wbias"
}
parameters {
name: "_layer_0.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_0.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_1.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_1.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_2.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_2.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_3.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_3.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_4.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_4.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_5.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_5.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_6.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_6.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_7.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_7.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_8.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_8.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_9.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_9.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_10.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_10.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_11.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_11.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
input_layer_names: "input"
output_layer_names: "layer_0"
output_layer_names: "layer_1"
output_layer_names: "layer_2"
output_layer_names: "layer_3"
output_layer_names: "layer_4"
output_layer_names: "layer_5"
output_layer_names: "layer_6"
output_layer_names: "layer_7"
output_layer_names: "layer_8"
output_layer_names: "layer_9"
output_layer_names: "layer_10"
output_layer_names: "layer_11"
sub_models {
name: "root"
layer_names: "input"
layer_names: "layer_0"
layer_names: "layer_1"
layer_names: "layer_2"
layer_names: "layer_3"
layer_names: "layer_4"
layer_names: "layer_5"
layer_names: "layer_6"
layer_names: "layer_7"
layer_names: "layer_8"
layer_names: "layer_9"
layer_names: "layer_10"
layer_names: "layer_11"
input_layer_names: "input"
output_layer_names: "layer_0"
output_layer_names: "layer_1"
output_layer_names: "layer_2"
output_layer_names: "layer_3"
output_layer_names: "layer_4"
output_layer_names: "layer_5"
output_layer_names: "layer_6"
output_layer_names: "layer_7"
output_layer_names: "layer_8"
output_layer_names: "layer_9"
output_layer_names: "layer_10"
output_layer_names: "layer_11"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/math_ops.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__exp_0__"
type: "mixed"
size: 100
active_type: "exponential"
inputs {
input_layer_name: "data"
proj_conf {
type: "identity"
name: "___exp_0__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__log_0__"
type: "mixed"
size: 100
active_type: "log"
inputs {
input_layer_name: "__exp_0__"
proj_conf {
type: "identity"
name: "___log_0__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__abs_0__"
type: "mixed"
size: 100
active_type: "abs"
inputs {
input_layer_name: "__log_0__"
proj_conf {
type: "identity"
name: "___abs_0__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__sigmoid_0__"
type: "mixed"
size: 100
active_type: "sigmoid"
inputs {
input_layer_name: "__abs_0__"
proj_conf {
type: "identity"
name: "___sigmoid_0__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__square_0__"
type: "mixed"
size: 100
active_type: "square"
inputs {
input_layer_name: "__sigmoid_0__"
proj_conf {
type: "identity"
name: "___square_0__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__square_1__"
type: "mixed"
size: 100
active_type: "square"
inputs {
input_layer_name: "__square_0__"
proj_conf {
type: "identity"
name: "___square_1__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__slope_intercept_layer_0__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "__square_1__"
}
slope: 1.0
intercept: 1
}
layers {
name: "__slope_intercept_layer_1__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "__slope_intercept_layer_0__"
}
slope: 1.0
intercept: 1
}
layers {
name: "__mixed_0__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__square_1__"
proj_conf {
type: "identity"
name: "___mixed_0__.w0"
input_size: 100
output_size: 100
}
}
inputs {
input_layer_name: "__slope_intercept_layer_1__"
proj_conf {
type: "identity"
name: "___mixed_0__.w1"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__slope_intercept_layer_2__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "__square_1__"
}
slope: -1.0
intercept: 0.0
}
layers {
name: "__mixed_1__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_0__"
proj_conf {
type: "identity"
name: "___mixed_1__.w0"
input_size: 100
output_size: 100
}
}
inputs {
input_layer_name: "__slope_intercept_layer_2__"
proj_conf {
type: "identity"
name: "___mixed_1__.w1"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__slope_intercept_layer_3__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_1__"
}
slope: 1.0
intercept: 2
}
layers {
name: "__slope_intercept_layer_4__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "__slope_intercept_layer_3__"
}
slope: -1.0
intercept: 0.0
}
layers {
name: "__slope_intercept_layer_5__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "__slope_intercept_layer_4__"
}
slope: 1.0
intercept: 2
}
input_layer_names: "data"
output_layer_names: "__slope_intercept_layer_5__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__exp_0__"
layer_names: "__log_0__"
layer_names: "__abs_0__"
layer_names: "__sigmoid_0__"
layer_names: "__square_0__"
layer_names: "__square_1__"
layer_names: "__slope_intercept_layer_0__"
layer_names: "__slope_intercept_layer_1__"
layer_names: "__mixed_0__"
layer_names: "__slope_intercept_layer_2__"
layer_names: "__mixed_1__"
layer_names: "__slope_intercept_layer_3__"
layer_names: "__slope_intercept_layer_4__"
layer_names: "__slope_intercept_layer_5__"
input_layer_names: "data"
output_layer_names: "__slope_intercept_layer_5__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "test"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__embedding_0__"
type: "mixed"
size: 256
active_type: ""
inputs {
input_layer_name: "test"
input_parameter_name: "___embedding_0__.w0"
proj_conf {
type: "table"
name: "___embedding_0__.w0"
input_size: 100
output_size: 256
}
}
}
layers {
name: "__mixed_0__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__embedding_0__"
input_parameter_name: "___mixed_0__.w0"
proj_conf {
type: "fc"
name: "___mixed_0__.w0"
input_size: 256
output_size: 100
}
}
}
layers {
name: "__mixed_1__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_0__"
input_parameter_name: "___mixed_1__.w0"
proj_conf {
type: "table"
name: "___mixed_1__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__mixed_2__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_1__"
proj_conf {
type: "identity"
name: "___mixed_2__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__mixed_3__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_2__"
input_parameter_name: "___mixed_3__.w0"
proj_conf {
type: "dot_mul"
name: "___mixed_3__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__mixed_4__"
type: "mixed"
size: 300
active_type: ""
inputs {
input_layer_name: "__mixed_3__"
input_parameter_name: "___mixed_4__.w0"
proj_conf {
type: "context"
name: "___mixed_4__.w0"
input_size: 100
output_size: 300
context_start: -1
context_length: 3
trainable_padding: true
}
}
}
layers {
name: "__mixed_5__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_2__"
}
inputs {
input_layer_name: "__mixed_3__"
}
operator_confs {
type: "dot_mul"
input_indices: 0
input_indices: 1
input_sizes: 100
input_sizes: 100
output_size: 100
dotmul_scale: 1
}
}
layers {
name: "img"
type: "data"
size: 1024
active_type: ""
}
layers {
name: "filter"
type: "data"
size: 576
active_type: ""
}
layers {
name: "__mixed_6__"
type: "mixed"
size: 57600
active_type: ""
inputs {
input_layer_name: "img"
}
inputs {
input_layer_name: "filter"
}
operator_confs {
type: "conv"
input_indices: 0
input_indices: 1
input_sizes: 1024
input_sizes: 576
output_size: 57600
conv_conf {
filter_size: 3
channels: 1
stride: 1
padding: 0
groups: 1
filter_channels: 1
output_x: 30
img_size: 32
caffe_mode: true
filter_size_y: 3
padding_y: 0
stride_y: 1
}
num_filters: 64
}
}
layers {
name: "__mixed_7__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_4__"
input_parameter_name: "___mixed_7__.w0"
proj_conf {
type: "fc"
name: "___mixed_7__.w0"
input_size: 300
output_size: 100
}
}
inputs {
input_layer_name: "__mixed_5__"
input_parameter_name: "___mixed_7__.w1"
proj_conf {
type: "trans_fc"
name: "___mixed_7__.w1"
input_size: 100
output_size: 100
}
}
inputs {
input_layer_name: "__mixed_6__"
input_parameter_name: "___mixed_7__.w2"
proj_conf {
type: "fc"
name: "___mixed_7__.w2"
input_size: 57600
output_size: 100
}
}
drop_rate: 0.5
}
parameters {
name: "___embedding_0__.w0"
size: 25600
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 256
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_0__.w0"
size: 25600
initial_mean: 0.0
initial_std: 0.0625
dims: 256
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_1__.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_3__.w0"
size: 100
initial_mean: 0.0
initial_std: 1.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_4__.w0"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 2
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___mixed_7__.w0"
size: 30000
initial_mean: 0.0
initial_std: 0.057735026919
dims: 300
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_7__.w1"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_7__.w2"
size: 5760000
initial_mean: 0.0
initial_std: 0.00416666666667
dims: 57600
dims: 100
initial_strategy: 0
initial_smart: true
}
input_layer_names: "test"
input_layer_names: "img"
input_layer_names: "filter"
output_layer_names: "__mixed_7__"
sub_models {
name: "root"
layer_names: "test"
layer_names: "__embedding_0__"
layer_names: "__mixed_0__"
layer_names: "__mixed_1__"
layer_names: "__mixed_2__"
layer_names: "__mixed_3__"
layer_names: "__mixed_4__"
layer_names: "__mixed_5__"
layer_names: "img"
layer_names: "filter"
layer_names: "__mixed_6__"
layer_names: "__mixed_7__"
input_layer_names: "test"
input_layer_names: "img"
input_layer_names: "filter"
output_layer_names: "__mixed_7__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/shared_fc.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "feature_a"
type: "data"
size: 200
active_type: ""
}
layers {
name: "feature_b"
type: "data"
size: 200
active_type: ""
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 200
active_type: "tanh"
inputs {
input_layer_name: "feature_a"
input_parameter_name: "fc_param"
}
bias_parameter_name: "bias_param"
}
layers {
name: "__fc_layer_1__"
type: "fc"
size: 200
active_type: "tanh"
inputs {
input_layer_name: "feature_b"
input_parameter_name: "fc_param"
}
bias_parameter_name: "bias_param"
}
layers {
name: "__fc_layer_2__"
type: "fc"
size: 10
active_type: "softmax"
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "softmax_param"
}
inputs {
input_layer_name: "__fc_layer_1__"
input_parameter_name: "softmax_param"
}
}
layers {
name: "label"
type: "data"
size: 10
active_type: ""
}
layers {
name: "__cost_0__"
type: "multi-class-cross-entropy"
size: 1
active_type: ""
inputs {
input_layer_name: "__fc_layer_2__"
}
inputs {
input_layer_name: "label"
}
coeff: 1.0
}
parameters {
name: "fc_param"
size: 40000
initial_mean: 0.0
initial_std: 1.0
dims: 200
dims: 200
initial_strategy: 1
initial_smart: false
}
parameters {
name: "bias_param"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "softmax_param"
size: 2000
initial_mean: 0.0
initial_std: 1.0
dims: 200
dims: 10
initial_strategy: 1
initial_smart: false
}
input_layer_names: "feature_a"
input_layer_names: "feature_b"
input_layer_names: "label"
output_layer_names: "__cost_0__"
evaluators {
name: "classification_error_evaluator"
type: "classification_error"
input_layers: "__fc_layer_2__"
input_layers: "label"
}
sub_models {
name: "root"
layer_names: "feature_a"
layer_names: "feature_b"
layer_names: "__fc_layer_0__"
layer_names: "__fc_layer_1__"
layer_names: "__fc_layer_2__"
layer_names: "label"
layer_names: "__cost_0__"
input_layer_names: "feature_a"
input_layer_names: "feature_b"
input_layer_names: "label"
output_layer_names: "__cost_0__"
evaluator_names: "classification_error_evaluator"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/shared_lstm.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "recurrent_nn"
layers {
name: "data_a"
type: "data"
size: 100
active_type: ""
}
layers {
name: "data_b"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__mixed_0__"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "data_a"
input_parameter_name: "mixed_param"
proj_conf {
type: "fc"
name: "___mixed_0__.w0"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__mixed_1__"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "data_b"
input_parameter_name: "mixed_param"
proj_conf {
type: "fc"
name: "___mixed_1__.w0"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__lstm_group_0___recurrent_group"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "__mixed_0__@__lstm_group_0___recurrent_group"
type: "scatter_agent"
size: 400
active_type: ""
}
layers {
name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "__mixed_0__@__lstm_group_0___recurrent_group"
proj_conf {
type: "identity"
name: "___lstm_group_0___input_recurrent.w0"
input_size: 400
output_size: 400
}
}
inputs {
input_layer_name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
input_parameter_name: "lstm_param"
proj_conf {
type: "fc"
name: "___lstm_group_0___input_recurrent.w1"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
type: "lstm_step"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
}
inputs {
input_layer_name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
}
bias_parameter_name: "lstm_bias"
active_gate_type: "sigmoid"
active_state_type: "sigmoid"
}
layers {
name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
type: "get_output"
size: 100
active_type: ""
inputs {
input_layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
input_layer_argument: "state"
}
}
layers {
name: "__lstm_group_0__"
type: "gather_agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_1___recurrent_group"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "__mixed_1__@__lstm_group_1___recurrent_group"
type: "scatter_agent"
size: 400
active_type: ""
}
layers {
name: "__lstm_group_1__+delay1@__lstm_group_1___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_1___state+delay1@__lstm_group_1___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_1___input_recurrent@__lstm_group_1___recurrent_group"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "__mixed_1__@__lstm_group_1___recurrent_group"
proj_conf {
type: "identity"
name: "___lstm_group_1___input_recurrent.w0"
input_size: 400
output_size: 400
}
}
inputs {
input_layer_name: "__lstm_group_1__+delay1@__lstm_group_1___recurrent_group"
input_parameter_name: "lstm_param"
proj_conf {
type: "fc"
name: "___lstm_group_1___input_recurrent.w1"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__lstm_group_1__@__lstm_group_1___recurrent_group"
type: "lstm_step"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__lstm_group_1___input_recurrent@__lstm_group_1___recurrent_group"
}
inputs {
input_layer_name: "__lstm_group_1___state+delay1@__lstm_group_1___recurrent_group"
}
bias_parameter_name: "lstm_bias"
active_gate_type: "sigmoid"
active_state_type: "sigmoid"
}
layers {
name: "__lstm_group_1___state@__lstm_group_1___recurrent_group"
type: "get_output"
size: 100
active_type: ""
inputs {
input_layer_name: "__lstm_group_1__@__lstm_group_1___recurrent_group"
input_layer_argument: "state"
}
}
layers {
name: "__lstm_group_1__"
type: "gather_agent"
size: 100
active_type: ""
}
layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 100
active_type: "linear"
inputs {
input_layer_name: "__lstm_group_0__"
}
trans_type: "non-seq"
}
layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 100
active_type: "linear"
inputs {
input_layer_name: "__lstm_group_1__"
}
trans_type: "non-seq"
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 10
active_type: "softmax"
inputs {
input_layer_name: "__last_seq_0__"
input_parameter_name: "softmax_param"
}
inputs {
input_layer_name: "__last_seq_1__"
input_parameter_name: "softmax_param"
}
}
layers {
name: "label"
type: "data"
size: 10
active_type: ""
}
layers {
name: "__cost_0__"
type: "multi-class-cross-entropy"
size: 1
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
}
inputs {
input_layer_name: "label"
}
coeff: 1.0
}
parameters {
name: "mixed_param"
size: 40000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 400
initial_strategy: 0
initial_smart: true
}
parameters {
name: "lstm_param"
size: 40000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 400
initial_strategy: 0
initial_smart: true
}
parameters {
name: "lstm_bias"
size: 300
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 300
initial_strategy: 0
initial_smart: false
}
parameters {
name: "softmax_param"
size: 1000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 10
initial_strategy: 0
initial_smart: true
}
input_layer_names: "data_a"
input_layer_names: "data_b"
input_layer_names: "label"
output_layer_names: "__cost_0__"
evaluators {
name: "classification_error_evaluator"
type: "classification_error"
input_layers: "__fc_layer_0__"
input_layers: "label"
}
sub_models {
name: "root"
layer_names: "data_a"
layer_names: "data_b"
layer_names: "__mixed_0__"
layer_names: "__mixed_1__"
layer_names: "__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__"
layer_names: "__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1__"
layer_names: "__last_seq_0__"
layer_names: "__last_seq_1__"
layer_names: "__fc_layer_0__"
layer_names: "label"
layer_names: "__cost_0__"
input_layer_names: "data_a"
input_layer_names: "data_b"
input_layer_names: "label"
output_layer_names: "__cost_0__"
evaluator_names: "classification_error_evaluator"
is_recurrent_layer_group: false
}
sub_models {
name: "__lstm_group_0___recurrent_group"
layer_names: "__mixed_0__@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
is_sequence: false
}
memories {
layer_name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
is_sequence: false
}
in_links {
layer_name: "__mixed_0__"
link_name: "__mixed_0__@__lstm_group_0___recurrent_group"
has_subseq: false
}
out_links {
layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0__"
has_subseq: false
}
target_inlinkid: -1
}
sub_models {
name: "__lstm_group_1___recurrent_group"
layer_names: "__mixed_1__@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1__+delay1@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1___state+delay1@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1___input_recurrent@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1__@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1___state@__lstm_group_1___recurrent_group"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "__lstm_group_1__@__lstm_group_1___recurrent_group"
link_name: "__lstm_group_1__+delay1@__lstm_group_1___recurrent_group"
is_sequence: false
}
memories {
layer_name: "__lstm_group_1___state@__lstm_group_1___recurrent_group"
link_name: "__lstm_group_1___state+delay1@__lstm_group_1___recurrent_group"
is_sequence: false
}
in_links {
layer_name: "__mixed_1__"
link_name: "__mixed_1__@__lstm_group_1___recurrent_group"
has_subseq: false
}
out_links {
layer_name: "__lstm_group_1__@__lstm_group_1___recurrent_group"
link_name: "__lstm_group_1__"
has_subseq: false
}
target_inlinkid: -1
}
python/paddle/trainer_config_helpers/tests/configs/protostr/simple_rnn_layers.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 200
active_type: ""
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "data"
input_parameter_name: "___fc_layer_0__.w0"
}
bias_parameter_name: "___fc_layer_0__.wbias"
}
layers {
name: "__recurrent_layer_0__"
type: "recurrent"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___recurrent_layer_0__.w0"
}
bias_parameter_name: "___recurrent_layer_0__.wbias"
reversed: false
}
layers {
name: "__recurrent_layer_1__"
type: "recurrent"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___recurrent_layer_1__.w0"
}
bias_parameter_name: "___recurrent_layer_1__.wbias"
reversed: true
}
layers {
name: "__fc_layer_1__"
type: "fc"
size: 800
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___fc_layer_1__.w0"
}
}
layers {
name: "__lstmemory_0__"
type: "lstmemory"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_1__"
input_parameter_name: "___lstmemory_0__.w0"
}
bias_parameter_name: "___lstmemory_0__.wbias"
reversed: false
active_gate_type: "sigmoid"
active_state_type: "tanh"
}
layers {
name: "__fc_layer_2__"
type: "fc"
size: 800
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___fc_layer_2__.w0"
}
}
layers {
name: "__lstmemory_1__"
type: "lstmemory"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_2__"
input_parameter_name: "___lstmemory_1__.w0"
}
bias_parameter_name: "___lstmemory_1__.wbias"
reversed: true
active_gate_type: "sigmoid"
active_state_type: "tanh"
}
layers {
name: "__fc_layer_3__"
type: "fc"
size: 600
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___fc_layer_3__.w0"
}
}
layers {
name: "__gru_0__"
type: "gated_recurrent"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_3__"
input_parameter_name: "___gru_0__.w0"
}
bias_parameter_name: "___gru_0__.wbias"
reversed: false
active_gate_type: "sigmoid"
}
layers {
name: "__fc_layer_4__"
type: "fc"
size: 600
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___fc_layer_4__.w0"
}
}
layers {
name: "__gru_1__"
type: "gated_recurrent"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_4__"
input_parameter_name: "___gru_1__.w0"
}
bias_parameter_name: "___gru_1__.wbias"
reversed: true
active_gate_type: "sigmoid"
}
layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__recurrent_layer_0__"
}
trans_type: "non-seq"
}
layers {
name: "__first_seq_0__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__recurrent_layer_1__"
}
select_first: true
trans_type: "non-seq"
}
layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__lstmemory_0__"
}
trans_type: "non-seq"
}
layers {
name: "__first_seq_1__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__lstmemory_1__"
}
select_first: true
trans_type: "non-seq"
}
layers {
name: "__last_seq_2__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__gru_0__"
}
trans_type: "non-seq"
}
layers {
name: "__first_seq_2__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__gru_1__"
}
select_first: true
trans_type: "non-seq"
}
parameters {
name: "___fc_layer_0__.w0"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___fc_layer_0__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___recurrent_layer_0__.w0"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___recurrent_layer_0__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___recurrent_layer_1__.w0"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___recurrent_layer_1__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_1__.w0"
size: 160000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 800
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_0__.w0"
size: 160000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 200
dims: 4
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_0__.wbias"
size: 1400
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1400
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_2__.w0"
size: 160000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 800
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_1__.w0"
size: 160000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 200
dims: 4
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_1__.wbias"
size: 1400
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1400
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_3__.w0"
size: 120000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 600
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_0__.w0"
size: 120000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 600
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_0__.wbias"
size: 600
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 600
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_4__.w0"
size: 120000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 600
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_1__.w0"
size: 120000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 600
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_1__.wbias"
size: 600
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 600
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
output_layer_names: "__last_seq_0__"
output_layer_names: "__first_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__first_seq_2__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__fc_layer_0__"
layer_names: "__recurrent_layer_0__"
layer_names: "__recurrent_layer_1__"
layer_names: "__fc_layer_1__"
layer_names: "__lstmemory_0__"
layer_names: "__fc_layer_2__"
layer_names: "__lstmemory_1__"
layer_names: "__fc_layer_3__"
layer_names: "__gru_0__"
layer_names: "__fc_layer_4__"
layer_names: "__gru_1__"
layer_names: "__last_seq_0__"
layer_names: "__first_seq_0__"
layer_names: "__last_seq_1__"
layer_names: "__first_seq_1__"
layer_names: "__last_seq_2__"
layer_names: "__first_seq_2__"
input_layer_names: "data"
output_layer_names: "__last_seq_0__"
output_layer_names: "__first_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__first_seq_2__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 120
active_type: ""
}
layers {
name: "__bidirectional_gru_0___fw_transform"
type: "mixed"
size: 120
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___bidirectional_gru_0___fw_transform.w0"
proj_conf {
type: "fc"
name: "___bidirectional_gru_0___fw_transform.w0"
input_size: 120
output_size: 120
}
}
}
layers {
name: "__bidirectional_gru_0___fw"
type: "gated_recurrent"
size: 40
active_type: "tanh"
inputs {
input_layer_name: "__bidirectional_gru_0___fw_transform"
input_parameter_name: "___bidirectional_gru_0___fw.w0"
}
bias_parameter_name: "___bidirectional_gru_0___fw.wbias"
reversed: false
active_gate_type: "sigmoid"
}
layers {
name: "__bidirectional_gru_0___bw_transform"
type: "mixed"
size: 120
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___bidirectional_gru_0___bw_transform.w0"
proj_conf {
type: "fc"
name: "___bidirectional_gru_0___bw_transform.w0"
input_size: 120
output_size: 120
}
}
}
layers {
name: "__bidirectional_gru_0___bw"
type: "gated_recurrent"
size: 40
active_type: "tanh"
inputs {
input_layer_name: "__bidirectional_gru_0___bw_transform"
input_parameter_name: "___bidirectional_gru_0___bw.w0"
}
bias_parameter_name: "___bidirectional_gru_0___bw.wbias"
reversed: true
active_gate_type: "sigmoid"
}
layers {
name: "__bidirectional_gru_0__"
type: "concat"
size: 80
active_type: ""
inputs {
input_layer_name: "__bidirectional_gru_0___fw"
}
inputs {
input_layer_name: "__bidirectional_gru_0___bw"
}
}
parameters {
name: "___bidirectional_gru_0___fw_transform.w0"
size: 14400
initial_mean: 0.0
initial_std: 0.0912870929175
dims: 120
dims: 120
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___bidirectional_gru_0___fw.w0"
size: 4800
initial_mean: 0.0
initial_std: 0.158113883008
dims: 40
dims: 120
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___bidirectional_gru_0___fw.wbias"
size: 120
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 120
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___bidirectional_gru_0___bw_transform.w0"
size: 14400
initial_mean: 0.0
initial_std: 0.0912870929175
dims: 120
dims: 120
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___bidirectional_gru_0___bw.w0"
size: 4800
initial_mean: 0.0
initial_std: 0.158113883008
dims: 40
dims: 120
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___bidirectional_gru_0___bw.wbias"
size: 120
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 120
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
output_layer_names: "__bidirectional_gru_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__bidirectional_gru_0___fw_transform"
layer_names: "__bidirectional_gru_0___fw"
layer_names: "__bidirectional_gru_0___bw_transform"
layer_names: "__bidirectional_gru_0___bw"
layer_names: "__bidirectional_gru_0__"
input_layer_names: "data"
output_layer_names: "__bidirectional_gru_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "input"
type: "data"
size: 200
active_type: ""
}
layers {
name: "labels"
type: "data"
size: 5000
active_type: ""
}
layers {
name: "probs"
type: "data"
size: 10
active_type: ""
}
layers {
name: "xe-label"
type: "data"
size: 10
active_type: ""
}
layers {
name: "__ctc_layer_0__"
type: "ctc"
size: 5001
active_type: ""
inputs {
input_layer_name: "input"
}
inputs {
input_layer_name: "labels"
}
norm_by_times: false
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 4
active_type: "tanh"
inputs {
input_layer_name: "input"
input_parameter_name: "___fc_layer_0__.w0"
}
bias_parameter_name: "___fc_layer_0__.wbias"
}
layers {
name: "crf_label"
type: "data"
size: 4
active_type: ""
}
layers {
name: "__crf_layer_0__"
type: "crf"
size: 4
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___crf_layer_0__.w0"
}
inputs {
input_layer_name: "crf_label"
}
coeff: 1.0
}
layers {
name: "left"
type: "data"
size: 1
active_type: ""
}
layers {
name: "right"
type: "data"
size: 1
active_type: ""
}
layers {
name: "label"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__rank_cost_0__"
type: "rank-cost"
size: 1
active_type: ""
inputs {
input_layer_name: "left"
}
inputs {
input_layer_name: "right"
}
inputs {
input_layer_name: "label"
}
coeff: 1.0
}
layers {
name: "list_feature"
type: "data"
size: 100
active_type: ""
}
layers {
name: "list_scores"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__lambda_cost_0__"
type: "lambda_cost"
size: 1
active_type: ""
inputs {
input_layer_name: "list_feature"
}
inputs {
input_layer_name: "list_scores"
}
NDCG_num: 5
max_sort_size: -1
}
layers {
name: "__cross_entropy_0__"
type: "multi-class-cross-entropy"
size: 1
active_type: ""
inputs {
input_layer_name: "probs"
}
inputs {
input_layer_name: "xe-label"
}
coeff: 1.0
}
layers {
name: "__cross_entropy_with_selfnorm_0__"
type: "multi_class_cross_entropy_with_selfnorm"
active_type: ""
inputs {
input_layer_name: "probs"
}
inputs {
input_layer_name: "xe-label"
}
softmax_selfnorm_alpha: 0.1
coeff: 1.0
}
layers {
name: "huber_probs"
type: "data"
size: 1
active_type: ""
}
layers {
name: "huber_label"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__huber_cost_0__"
type: "huber"
size: 1
active_type: ""
inputs {
input_layer_name: "huber_probs"
}
inputs {
input_layer_name: "huber_label"
}
coeff: 1.0
}
layers {
name: "__multi_binary_label_cross_entropy_0__"
type: "multi_binary_label_cross_entropy"
size: 1
active_type: ""
inputs {
input_layer_name: "probs"
}
inputs {
input_layer_name: "xe-label"
}
coeff: 1.0
}
parameters {
name: "___fc_layer_0__.w0"
size: 800
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 4
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___fc_layer_0__.wbias"
size: 4
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 4
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___crf_layer_0__.w0"
size: 24
initial_mean: 0.0
initial_std: 0.5
dims: 4
dims: 6
initial_strategy: 0
initial_smart: true
}
input_layer_names: "input"
input_layer_names: "labels"
input_layer_names: "crf_label"
input_layer_names: "left"
input_layer_names: "right"
input_layer_names: "label"
input_layer_names: "list_feature"
input_layer_names: "list_scores"
input_layer_names: "probs"
input_layer_names: "xe-label"
input_layer_names: "huber_probs"
input_layer_names: "huber_label"
output_layer_names: "__ctc_layer_0__"
output_layer_names: "__crf_layer_0__"
output_layer_names: "__rank_cost_0__"
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
sub_models {
name: "root"
layer_names: "input"
layer_names: "labels"
layer_names: "probs"
layer_names: "xe-label"
layer_names: "__ctc_layer_0__"
layer_names: "__fc_layer_0__"
layer_names: "crf_label"
layer_names: "__crf_layer_0__"
layer_names: "left"
layer_names: "right"
layer_names: "label"
layer_names: "__rank_cost_0__"
layer_names: "list_feature"
layer_names: "list_scores"
layer_names: "__lambda_cost_0__"
layer_names: "__cross_entropy_0__"
layer_names: "__cross_entropy_with_selfnorm_0__"
layer_names: "huber_probs"
layer_names: "huber_label"
layer_names: "__huber_cost_0__"
layer_names: "__multi_binary_label_cross_entropy_0__"
input_layer_names: "input"
input_layer_names: "labels"
input_layer_names: "crf_label"
input_layer_names: "left"
input_layer_names: "right"
input_layer_names: "label"
input_layer_names: "list_feature"
input_layer_names: "list_scores"
input_layer_names: "probs"
input_layer_names: "xe-label"
input_layer_names: "huber_probs"
input_layer_names: "huber_label"
output_layer_names: "__ctc_layer_0__"
output_layer_names: "__crf_layer_0__"
output_layer_names: "__rank_cost_0__"
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers_with_weight.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "input"
type: "data"
size: 300
active_type: ""
}
layers {
name: "label"
type: "data"
size: 1
active_type: ""
}
layers {
name: "weight"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 10
active_type: "softmax"
inputs {
input_layer_name: "input"
input_parameter_name: "___fc_layer_0__.w0"
}
bias_parameter_name: "___fc_layer_0__.wbias"
}
layers {
name: "__cost_0__"
type: "multi-class-cross-entropy"
size: 1
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
}
inputs {
input_layer_name: "label"
}
inputs {
input_layer_name: "weight"
}
coeff: 1.0
}
layers {
name: "__regression_cost_0__"
type: "square_error"
size: 1
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
}
inputs {
input_layer_name: "label"
}
inputs {
input_layer_name: "weight"
}
coeff: 1.0
}
parameters {
name: "___fc_layer_0__.w0"
size: 3000
initial_mean: 0.0
initial_std: 0.057735026919
dims: 300
dims: 10
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___fc_layer_0__.wbias"
size: 10
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 10
initial_strategy: 0
initial_smart: false
}
input_layer_names: "input"
input_layer_names: "label"
input_layer_names: "weight"
output_layer_names: "__cost_0__"
output_layer_names: "__regression_cost_0__"
evaluators {
name: "classification_error_evaluator"
type: "classification_error"
input_layers: "__fc_layer_0__"
input_layers: "label"
input_layers: "weight"
}
sub_models {
name: "root"
layer_names: "input"
layer_names: "label"
layer_names: "weight"
layer_names: "__fc_layer_0__"
layer_names: "__cost_0__"
layer_names: "__regression_cost_0__"
input_layer_names: "input"
input_layer_names: "label"
input_layer_names: "weight"
output_layer_names: "__cost_0__"
output_layer_names: "__regression_cost_0__"
evaluator_names: "classification_error_evaluator"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_expand_layer.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 30
active_type: ""
}
layers {
name: "data_seq"
type: "data"
size: 30
active_type: ""
}
layers {
name: "__expand_layer_0__"
type: "expand"
size: 30
active_type: ""
inputs {
input_layer_name: "data"
}
inputs {
input_layer_name: "data_seq"
}
trans_type: "seq"
}
layers {
name: "__expand_layer_1__"
type: "expand"
size: 30
active_type: ""
inputs {
input_layer_name: "data"
}
inputs {
input_layer_name: "data_seq"
}
trans_type: "non-seq"
}
input_layer_names: "data"
input_layer_names: "data_seq"
output_layer_names: "__expand_layer_0__"
output_layer_names: "__expand_layer_1__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "data_seq"
layer_names: "__expand_layer_0__"
layer_names: "__expand_layer_1__"
input_layer_names: "data"
input_layer_names: "data_seq"
output_layer_names: "__expand_layer_0__"
output_layer_names: "__expand_layer_1__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_fc.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__trans_layer_0__"
type: "trans"
size: 100
active_type: ""
inputs {
input_layer_name: "data"
}
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__trans_layer_0__"
input_parameter_name: "___fc_layer_0__.w0"
}
}
layers {
name: "mask"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__selective_fc_layer_0__"
type: "selective_fc"
size: 100
active_type: "sigmoid"
inputs {
input_layer_name: "data"
input_parameter_name: "___selective_fc_layer_0__.w0"
}
inputs {
input_layer_name: "mask"
}
bias_parameter_name: "___selective_fc_layer_0__.wbias"
selective_fc_pass_generation: false
has_selected_colums: true
selective_fc_full_mul_ratio: 0.02
}
parameters {
name: "___fc_layer_0__.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___selective_fc_layer_0__.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
is_sparse: false
}
parameters {
name: "___selective_fc_layer_0__.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
input_layer_names: "mask"
output_layer_names: "__fc_layer_0__"
output_layer_names: "__selective_fc_layer_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__trans_layer_0__"
layer_names: "__fc_layer_0__"
layer_names: "mask"
layer_names: "__selective_fc_layer_0__"
input_layer_names: "data"
input_layer_names: "mask"
output_layer_names: "__fc_layer_0__"
output_layer_names: "__selective_fc_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_grumemory_layer.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 120
active_type: ""
}
layers {
name: "__gru_0__"
type: "gated_recurrent"
size: 40
active_type: "sigmoid"
inputs {
input_layer_name: "data"
input_parameter_name: "___gru_0__.w0"
}
bias_parameter_name: "___gru_0__.wbias"
reversed: true
active_gate_type: "tanh"
}
parameters {
name: "___gru_0__.w0"
size: 4800
initial_mean: 0.0
initial_std: 0.158113883008
dims: 40
dims: 120
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_0__.wbias"
size: 120
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 120
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
output_layer_names: "__gru_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__gru_0__"
input_layer_names: "data"
output_layer_names: "__gru_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_hsigmoid.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 100
active_type: ""
}
layers {
name: "label"
type: "data"
size: 10
active_type: ""
}
layers {
name: "__hsigmoid_0__"
type: "hsigmoid"
size: 1
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___hsigmoid_0__.w0"
}
inputs {
input_layer_name: "label"
}
bias_parameter_name: "___hsigmoid_0__.wbias"
num_classes: 10
}
parameters {
name: "___hsigmoid_0__.w0"
size: 900
initial_mean: 0.0
initial_std: 0.333333333333
dims: 9
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___hsigmoid_0__.wbias"
size: 9
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 9
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
input_layer_names: "label"
output_layer_names: "__hsigmoid_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "label"
layer_names: "__hsigmoid_0__"
input_layer_names: "data"
input_layer_names: "label"
output_layer_names: "__hsigmoid_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_lstmemory_layer.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 128
active_type: ""
}
layers {
name: "__lstmemory_0__"
type: "lstmemory"
size: 32
active_type: "tanh"
inputs {
input_layer_name: "data"
input_parameter_name: "___lstmemory_0__.w0"
}
bias_parameter_name: "___lstmemory_0__.wbias"
reversed: true
active_gate_type: "tanh"
active_state_type: "tanh"
}
parameters {
name: "___lstmemory_0__.w0"
size: 4096
initial_mean: 0.0
initial_std: 0.176776695297
dims: 32
dims: 32
dims: 4
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_0__.wbias"
size: 224
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 224
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
output_layer_names: "__lstmemory_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__lstmemory_0__"
input_layer_names: "data"
output_layer_names: "__lstmemory_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "data"
type: "data"
size: 2304
active_type: ""
}
layers {
name: "__conv_0__"
type: "exconv"
size: 36864
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___conv_0__.w0"
conv_conf {
filter_size: 3
channels: 1
stride: 1
padding: 1
groups: 1
filter_channels: 1
output_x: 48
img_size: 48
caffe_mode: true
filter_size_y: 3
padding_y: 1
stride_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 16
shared_biases: true
}
layers {
name: "__maxout_layer_0__"
type: "maxout"
size: 18432
active_type: ""
inputs {
input_layer_name: "__conv_0__"
maxout_conf {
channels: 16
groups: 2
img_size_x: 0
img_size_y: 0
}
}
}
layers {
name: "__pool_0__"
type: "pool"
size: 4608
active_type: ""
inputs {
input_layer_name: "__maxout_layer_0__"
pool_conf {
pool_type: "max-projection"
channels: 8
size_x: 2
stride: 2
output_x: 24
img_size: 48
padding: 0
size_y: 2
stride_y: 2
output_y: 24
img_size_y: 48
padding_y: 0
}
}
}
layers {
name: "__conv_1__"
type: "exconv"
size: 18432
active_type: ""
inputs {
input_layer_name: "__pool_0__"
input_parameter_name: "___conv_1__.w0"
conv_conf {
filter_size: 3
channels: 32
stride: 1
padding: 1
groups: 1
filter_channels: 32
output_x: 12
img_size: 12
caffe_mode: true
filter_size_y: 3
padding_y: 1
stride_y: 1
}
}
bias_parameter_name: "___conv_1__.wbias"
num_filters: 128
shared_biases: true
}
layers {
name: "__maxout_layer_1__"
type: "maxout"
size: 9216
active_type: ""
inputs {
input_layer_name: "__conv_0__"
maxout_conf {
channels: 128
groups: 4
img_size_x: 0
img_size_y: 0
}
}
}
layers {
name: "__block_expand_layer_0__"
type: "blockexpand"
size: 192
active_type: ""
inputs {
input_layer_name: "__maxout_layer_0__"
block_expand_conf {
channels: 32
stride_x: 1
stride_y: 1
padding_x: 0
padding_y: 0
block_x: 1
block_y: 6
output_x: 0
output_y: 0
img_size_x: 0
img_size_y: 0
}
}
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 384
active_type: "tanh"
inputs {
input_layer_name: "__block_expand_layer_0__"
input_parameter_name: "___fc_layer_0__.w0"
}
}
parameters {
name: "___conv_0__.w0"
size: 144
initial_mean: 0.0
initial_std: 0.471404520791
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_0__.wbias"
size: 16
initial_mean: 0.0
initial_std: 0.0
dims: 16
dims: 1
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_1__.w0"
size: 36864
initial_mean: 0.0
initial_std: 0.0833333333333
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_1__.wbias"
size: 128
initial_mean: 0.0
initial_std: 0.0
dims: 128
dims: 1
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_0__.w0"
size: 73728
initial_mean: 0.0
initial_std: 0.0721687836487
dims: 192
dims: 384
initial_strategy: 0
initial_smart: true
}
input_layer_names: "data"
output_layer_names: "__fc_layer_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__conv_0__"
layer_names: "__maxout_layer_0__"
layer_names: "__pool_0__"
layer_names: "__conv_1__"
layer_names: "__maxout_layer_1__"
layer_names: "__block_expand_layer_0__"
layer_names: "__fc_layer_0__"
input_layer_names: "data"
output_layer_names: "__fc_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_ntm_layers.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "w"
type: "data"
size: 1
active_type: ""
}
layers {
name: "a"
type: "data"
size: 100
active_type: ""
}
layers {
name: "b"
type: "data"
size: 100
active_type: ""
}
layers {
name: "c"
type: "data"
size: 200
active_type: ""
}
layers {
name: "d"
type: "data"
size: 31
active_type: ""
}
layers {
name: "__interpolation_layer_0__"
type: "interpolation"
size: 100
active_type: ""
inputs {
input_layer_name: "w"
}
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "b"
}
}
layers {
name: "__power_layer_0__"
type: "power"
size: 100
active_type: ""
inputs {
input_layer_name: "w"
}
inputs {
input_layer_name: "a"
}
}
layers {
name: "__scaling_layer_0__"
type: "scaling"
size: 100
active_type: ""
inputs {
input_layer_name: "w"
}
inputs {
input_layer_name: "a"
}
}
layers {
name: "__cos_sim_0__"
type: "cos"
size: 1
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "b"
}
cos_scale: 5
}
layers {
name: "__cos_sim_1__"
type: "cos_vm"
size: 2
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "c"
}
cos_scale: 5
}
layers {
name: "__sum_to_one_norm_layer_0__"
type: "sum_to_one_norm"
size: 100
active_type: ""
inputs {
input_layer_name: "a"
}
}
layers {
name: "__conv_shift_layer_0__"
type: "conv_shift"
size: 100
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "d"
}
}
layers {
name: "__tensor_layer_0__"
type: "tensor"
size: 1000
active_type: ""
inputs {
input_layer_name: "a"
input_parameter_name: "___tensor_layer_0__.w0"
}
inputs {
input_layer_name: "b"
}
bias_parameter_name: "___tensor_layer_0__.wbias"
}
layers {
name: "__slope_intercept_layer_0__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "a"
}
slope: 0.7
intercept: 0.9
}
layers {
name: "__linear_comb_layer_0__"
type: "convex_comb"
size: 2
active_type: ""
inputs {
input_layer_name: "b"
}
inputs {
input_layer_name: "c"
}
}
parameters {
name: "___tensor_layer_0__.w0"
size: 10000000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 100
dims: 1000
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___tensor_layer_0__.wbias"
size: 1000
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1000
initial_strategy: 0
initial_smart: false
}
input_layer_names: "w"
input_layer_names: "a"
input_layer_names: "b"
input_layer_names: "c"
input_layer_names: "d"
output_layer_names: "__interpolation_layer_0__"
output_layer_names: "__power_layer_0__"
output_layer_names: "__scaling_layer_0__"
output_layer_names: "__cos_sim_0__"
output_layer_names: "__cos_sim_1__"
output_layer_names: "__sum_to_one_norm_layer_0__"
output_layer_names: "__conv_shift_layer_0__"
output_layer_names: "__tensor_layer_0__"
output_layer_names: "__slope_intercept_layer_0__"
output_layer_names: "__linear_comb_layer_0__"
sub_models {
name: "root"
layer_names: "w"
layer_names: "a"
layer_names: "b"
layer_names: "c"
layer_names: "d"
layer_names: "__interpolation_layer_0__"
layer_names: "__power_layer_0__"
layer_names: "__scaling_layer_0__"
layer_names: "__cos_sim_0__"
layer_names: "__cos_sim_1__"
layer_names: "__sum_to_one_norm_layer_0__"
layer_names: "__conv_shift_layer_0__"
layer_names: "__tensor_layer_0__"
layer_names: "__slope_intercept_layer_0__"
layer_names: "__linear_comb_layer_0__"
input_layer_names: "w"
input_layer_names: "a"
input_layer_names: "b"
input_layer_names: "c"
input_layer_names: "d"
output_layer_names: "__interpolation_layer_0__"
output_layer_names: "__power_layer_0__"
output_layer_names: "__scaling_layer_0__"
output_layer_names: "__cos_sim_0__"
output_layer_names: "__cos_sim_1__"
output_layer_names: "__sum_to_one_norm_layer_0__"
output_layer_names: "__conv_shift_layer_0__"
output_layer_names: "__tensor_layer_0__"
output_layer_names: "__slope_intercept_layer_0__"
output_layer_names: "__linear_comb_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_print_layer.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "input"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__print_0__"
type: "print"
active_type: ""
inputs {
input_layer_name: "input"
}
}
input_layer_names: "input"
output_layer_names: "input"
sub_models {
name: "root"
layer_names: "input"
layer_names: "__print_0__"
input_layer_names: "input"
output_layer_names: "input"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_rnn_group.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "recurrent_nn"
layers {
name: "seq_input"
type: "data"
size: 100
active_type: ""
}
layers {
name: "sub_seq_input"
type: "data"
size: 100
active_type: ""
}
layers {
name: "label"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__mixed_0__"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "seq_input"
input_parameter_name: "___mixed_0__.w0"
proj_conf {
type: "fc"
name: "___mixed_0__.w0"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__mixed_1__"
type: "mixed"
size: 300
active_type: ""
inputs {
input_layer_name: "seq_input"
input_parameter_name: "___mixed_1__.w0"
proj_conf {
type: "fc"
name: "___mixed_1__.w0"
input_size: 100
output_size: 300
}
}
}
layers {
name: "__recurrent_group_0__"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "seq_input@__recurrent_group_0__"
type: "scatter_agent"
size: 100
active_type: ""
}
layers {
name: "rnn_forward+delay1@__recurrent_group_0__"
type: "agent"
size: 200
active_type: ""
}
layers {
name: "rnn_forward@__recurrent_group_0__"
type: "fc"
size: 200
active_type: "tanh"
inputs {
input_layer_name: "seq_input@__recurrent_group_0__"
input_parameter_name: "_rnn_forward@__recurrent_group_0__.w0"
}
inputs {
input_layer_name: "rnn_forward+delay1@__recurrent_group_0__"
input_parameter_name: "_rnn_forward@__recurrent_group_0__.w1"
}
bias_parameter_name: "_rnn_forward@__recurrent_group_0__.wbias"
}
layers {
name: "rnn_forward"
type: "gather_agent"
size: 200
active_type: ""
}
layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "rnn_forward"
}
trans_type: "non-seq"
}
layers {
name: "__recurrent_group_1__"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "seq_input@__recurrent_group_1__"
type: "scatter_agent"
size: 100
active_type: ""
}
layers {
name: "rnn_back+delay1@__recurrent_group_1__"
type: "agent"
size: 200
active_type: ""
}
layers {
name: "rnn_back@__recurrent_group_1__"
type: "fc"
size: 200
active_type: "tanh"
inputs {
input_layer_name: "seq_input@__recurrent_group_1__"
input_parameter_name: "_rnn_back@__recurrent_group_1__.w0"
}
inputs {
input_layer_name: "rnn_back+delay1@__recurrent_group_1__"
input_parameter_name: "_rnn_back@__recurrent_group_1__.w1"
}
bias_parameter_name: "_rnn_back@__recurrent_group_1__.wbias"
}
layers {
name: "rnn_back"
type: "gather_agent"
size: 200
active_type: ""
}
layers {
name: "__first_seq_0__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "rnn_back"
}
select_first: true
trans_type: "non-seq"
}
layers {
name: "__recurrent_group_2__"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "sub_seq_input@__recurrent_group_2__"
type: "sequence_scatter_agent"
size: 100
active_type: ""
}
layers {
name: "rnn_subseq_forward+delay1@__recurrent_group_2__"
type: "agent"
size: 200
active_type: ""
}
layers {
name: "rnn_subseq_forward@__recurrent_group_2__"
type: "fc"
size: 200
active_type: "tanh"
inputs {
input_layer_name: "sub_seq_input@__recurrent_group_2__"
input_parameter_name: "_rnn_subseq_forward@__recurrent_group_2__.w0"
}
inputs {
input_layer_name: "rnn_subseq_forward+delay1@__recurrent_group_2__"
input_parameter_name: "_rnn_subseq_forward@__recurrent_group_2__.w1"
}
bias_parameter_name: "_rnn_subseq_forward@__recurrent_group_2__.wbias"
}
layers {
name: "rnn_subseq_forward"
type: "sequence_gather_agent"
size: 200
active_type: ""
}
layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "rnn_subseq_forward"
}
trans_type: "non-seq"
}
layers {
name: "__lstm_group_0___recurrent_group"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "__mixed_0__@__lstm_group_0___recurrent_group"
type: "scatter_agent"
size: 400
active_type: ""
}
layers {
name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "__mixed_0__@__lstm_group_0___recurrent_group"
proj_conf {
type: "identity"
name: "___lstm_group_0___input_recurrent.w0"
input_size: 400
output_size: 400
}
}
inputs {
input_layer_name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
input_parameter_name: "___lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group.w1"
proj_conf {
type: "fc"
name: "___lstm_group_0___input_recurrent.w1"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
type: "lstm_step"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
}
inputs {
input_layer_name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
}
bias_parameter_name: "___lstm_group_0__@__lstm_group_0___recurrent_group.wbias"
active_gate_type: "sigmoid"
active_state_type: "sigmoid"
}
layers {
name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
type: "get_output"
size: 100
active_type: ""
inputs {
input_layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
input_layer_argument: "state"
}
}
layers {
name: "__lstm_group_0__"
type: "gather_agent"
size: 100
active_type: ""
}
layers {
name: "__last_seq_2__"
type: "seqlastins"
size: 100
active_type: "linear"
inputs {
input_layer_name: "__lstm_group_0__"
}
trans_type: "non-seq"
}
layers {
name: "__gru_group_0___recurrent_group"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "__mixed_1__@__gru_group_0___recurrent_group"
type: "scatter_agent"
size: 300
active_type: ""
}
layers {
name: "__gru_group_0__+delay1@__gru_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__gru_group_0__@__gru_group_0___recurrent_group"
type: "gru_step"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__mixed_1__@__gru_group_0___recurrent_group"
input_parameter_name: "___gru_group_0__@__gru_group_0___recurrent_group.w0"
}
inputs {
input_layer_name: "__gru_group_0__+delay1@__gru_group_0___recurrent_group"
}
bias_parameter_name: "___gru_group_0__@__gru_group_0___recurrent_group.wbias"
active_gate_type: "sigmoid"
}
layers {
name: "__gru_group_0__"
type: "gather_agent"
size: 100
active_type: ""
}
layers {
name: "__last_seq_3__"
type: "seqlastins"
size: 100
active_type: "linear"
inputs {
input_layer_name: "__gru_group_0__"
}
trans_type: "non-seq"
}
parameters {
name: "___mixed_0__.w0"
size: 40000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 400
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_1__.w0"
size: 30000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 300
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_forward@__recurrent_group_0__.w0"
size: 20000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_forward@__recurrent_group_0__.w1"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_forward@__recurrent_group_0__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_rnn_back@__recurrent_group_1__.w0"
size: 20000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_back@__recurrent_group_1__.w1"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_back@__recurrent_group_1__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_rnn_subseq_forward@__recurrent_group_2__.w0"
size: 20000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_subseq_forward@__recurrent_group_2__.w1"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_subseq_forward@__recurrent_group_2__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group.w1"
size: 40000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 400
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstm_group_0__@__lstm_group_0___recurrent_group.wbias"
size: 300
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 300
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___gru_group_0__@__gru_group_0___recurrent_group.w0"
size: 30000
initial_mean: 0.0
initial_std: 0.01
dims: 100
dims: 300
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___gru_group_0__@__gru_group_0___recurrent_group.wbias"
size: 300
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 300
initial_strategy: 0
initial_smart: false
}
input_layer_names: "seq_input"
input_layer_names: "sub_seq_input"
output_layer_names: "__last_seq_0__"
output_layer_names: "__first_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__last_seq_3__"
sub_models {
name: "root"
layer_names: "seq_input"
layer_names: "sub_seq_input"
layer_names: "label"
layer_names: "__mixed_0__"
layer_names: "__mixed_1__"
layer_names: "__recurrent_group_0__"
layer_names: "rnn_forward"
layer_names: "__last_seq_0__"
layer_names: "__recurrent_group_1__"
layer_names: "rnn_back"
layer_names: "__first_seq_0__"
layer_names: "__recurrent_group_2__"
layer_names: "rnn_subseq_forward"
layer_names: "__last_seq_1__"
layer_names: "__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__"
layer_names: "__last_seq_2__"
layer_names: "__gru_group_0___recurrent_group"
layer_names: "__gru_group_0__"
layer_names: "__last_seq_3__"
input_layer_names: "seq_input"
input_layer_names: "sub_seq_input"
output_layer_names: "__last_seq_0__"
output_layer_names: "__first_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__last_seq_3__"
is_recurrent_layer_group: false
}
sub_models {
name: "__recurrent_group_0__"
layer_names: "seq_input@__recurrent_group_0__"
layer_names: "rnn_forward+delay1@__recurrent_group_0__"
layer_names: "rnn_forward@__recurrent_group_0__"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "rnn_forward@__recurrent_group_0__"
link_name: "rnn_forward+delay1@__recurrent_group_0__"
is_sequence: false
}
in_links {
layer_name: "seq_input"
link_name: "seq_input@__recurrent_group_0__"
has_subseq: false
}
out_links {
layer_name: "rnn_forward@__recurrent_group_0__"
link_name: "rnn_forward"
has_subseq: false
}
target_inlinkid: -1
}
sub_models {
name: "__recurrent_group_1__"
layer_names: "seq_input@__recurrent_group_1__"
layer_names: "rnn_back+delay1@__recurrent_group_1__"
layer_names: "rnn_back@__recurrent_group_1__"
is_recurrent_layer_group: true
reversed: true
memories {
layer_name: "rnn_back@__recurrent_group_1__"
link_name: "rnn_back+delay1@__recurrent_group_1__"
is_sequence: false
}
in_links {
layer_name: "seq_input"
link_name: "seq_input@__recurrent_group_1__"
has_subseq: false
}
out_links {
layer_name: "rnn_back@__recurrent_group_1__"
link_name: "rnn_back"
has_subseq: false
}
target_inlinkid: -1
}
sub_models {
name: "__recurrent_group_2__"
layer_names: "sub_seq_input@__recurrent_group_2__"
layer_names: "rnn_subseq_forward+delay1@__recurrent_group_2__"
layer_names: "rnn_subseq_forward@__recurrent_group_2__"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "rnn_subseq_forward@__recurrent_group_2__"
link_name: "rnn_subseq_forward+delay1@__recurrent_group_2__"
is_sequence: false
}
in_links {
layer_name: "sub_seq_input"
link_name: "sub_seq_input@__recurrent_group_2__"
has_subseq: true
}
out_links {
layer_name: "rnn_subseq_forward@__recurrent_group_2__"
link_name: "rnn_subseq_forward"
has_subseq: true
}
target_inlinkid: -1
}
sub_models {
name: "__lstm_group_0___recurrent_group"
layer_names: "__mixed_0__@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
is_sequence: false
}
memories {
layer_name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
is_sequence: false
}
in_links {
layer_name: "__mixed_0__"
link_name: "__mixed_0__@__lstm_group_0___recurrent_group"
has_subseq: false
}
out_links {
layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0__"
has_subseq: false
}
target_inlinkid: -1
}
sub_models {
name: "__gru_group_0___recurrent_group"
layer_names: "__mixed_1__@__gru_group_0___recurrent_group"
layer_names: "__gru_group_0__+delay1@__gru_group_0___recurrent_group"
layer_names: "__gru_group_0__@__gru_group_0___recurrent_group"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "__gru_group_0__@__gru_group_0___recurrent_group"
link_name: "__gru_group_0__+delay1@__gru_group_0___recurrent_group"
is_sequence: false
}
in_links {
layer_name: "__mixed_1__"
link_name: "__mixed_1__@__gru_group_0___recurrent_group"
has_subseq: false
}
out_links {
layer_name: "__gru_group_0__@__gru_group_0___recurrent_group"
link_name: "__gru_group_0__"
has_subseq: false
}
target_inlinkid: -1
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_sequence_pooling.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "dat_in"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__seq_pooling_0__"
type: "max"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
trans_type: "seq"
}
layers {
name: "__seq_pooling_1__"
type: "max"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
trans_type: "non-seq"
}
layers {
name: "__seq_pooling_2__"
type: "average"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
average_strategy: "average"
trans_type: "seq"
}
layers {
name: "__seq_pooling_3__"
type: "average"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
average_strategy: "average"
trans_type: "non-seq"
}
layers {
name: "__seq_pooling_4__"
type: "average"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
average_strategy: "sum"
trans_type: "seq"
}
layers {
name: "__seq_pooling_5__"
type: "average"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
average_strategy: "sum"
trans_type: "non-seq"
}
layers {
name: "__seq_pooling_6__"
type: "max"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
output_max_index: true
trans_type: "non-seq"
}
input_layer_names: "dat_in"
output_layer_names: "__seq_pooling_0__"
output_layer_names: "__seq_pooling_1__"
output_layer_names: "__seq_pooling_2__"
output_layer_names: "__seq_pooling_3__"
output_layer_names: "__seq_pooling_4__"
output_layer_names: "__seq_pooling_5__"
output_layer_names: "__seq_pooling_6__"
sub_models {
name: "root"
layer_names: "dat_in"
layer_names: "__seq_pooling_0__"
layer_names: "__seq_pooling_1__"
layer_names: "__seq_pooling_2__"
layer_names: "__seq_pooling_3__"
layer_names: "__seq_pooling_4__"
layer_names: "__seq_pooling_5__"
layer_names: "__seq_pooling_6__"
input_layer_names: "dat_in"
output_layer_names: "__seq_pooling_0__"
output_layer_names: "__seq_pooling_1__"
output_layer_names: "__seq_pooling_2__"
output_layer_names: "__seq_pooling_3__"
output_layer_names: "__seq_pooling_4__"
output_layer_names: "__seq_pooling_5__"
output_layer_names: "__seq_pooling_6__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/unused_layers.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "probs"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__sampling_id_layer_0__"
type: "sampling_id"
size: 100
active_type: ""
inputs {
input_layer_name: "probs"
}
}
input_layer_names: "probs"
output_layer_names: "__sampling_id_layer_0__"
sub_models {
name: "root"
layer_names: "probs"
layer_names: "__sampling_id_layer_0__"
input_layer_names: "probs"
output_layer_names: "__sampling_id_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr
0 → 100644
浏览文件 @
c64cd6fe
type: "nn"
layers {
name: "a"
type: "data"
size: 10
active_type: ""
}
layers {
name: "b"
type: "data"
size: 10
active_type: ""
}
layers {
name: "__addto_0__"
type: "addto"
size: 10
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "b"
}
}
layers {
name: "__concat_0__"
type: "concat"
size: 20
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "b"
}
}
layers {
name: "__concat_1__"
type: "concat2"
size: 20
active_type: ""
inputs {
input_layer_name: "a"
proj_conf {
type: "identity"
name: "___concat_1__.w0"
input_size: 10
output_size: 10
}
}
inputs {
input_layer_name: "b"
proj_conf {
type: "identity"
name: "___concat_1__.w1"
input_size: 10
output_size: 10
}
}
}
input_layer_names: "a"
input_layer_names: "b"
output_layer_names: "__addto_0__"
output_layer_names: "__concat_0__"
output_layer_names: "__concat_1__"
sub_models {
name: "root"
layer_names: "a"
layer_names: "b"
layer_names: "__addto_0__"
layer_names: "__concat_0__"
layer_names: "__concat_1__"
input_layer_names: "a"
input_layer_names: "b"
output_layer_names: "__addto_0__"
output_layer_names: "__concat_0__"
output_layer_names: "__concat_1__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/run_tests.sh
浏览文件 @
c64cd6fe
#!/bin/bash
cd
`
dirname
$0
`
set
-e
protostr
=
`
dirname
$0
`
/protostr
files
=
`
ls
$protostr
|
grep
-v
"unitest"
`
./generate_protostr.sh
md5sum
-c
check.md5
for
file
in
$files
do
base_protostr
=
$protostr
/
$file
new_protostr
=
$protostr
/
$file
.unitest
diff
$base_protostr
$new_protostr
done
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录