Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c45cee03
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c45cee03
编写于
8月 27, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine infershape and forward
上级
c7c25067
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
54 addition
and
122 deletion
+54
-122
paddle/fluid/operators/fusion_seq_concat_fc_op.cc
paddle/fluid/operators/fusion_seq_concat_fc_op.cc
+54
-122
未找到文件。
paddle/fluid/operators/fusion_seq_concat_fc_op.cc
浏览文件 @
c45cee03
...
...
@@ -23,91 +23,36 @@ namespace paddle {
namespace
operators
{
void
FusionSeqConcatFCOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
)
,
"Input(X) of FusionSeqConcatFC should not be null
."
);
PADDLE_ENFORCE
_GT
(
ctx
->
Inputs
(
"X"
).
size
(),
1UL
,
"Inputs(X) of FusionSeqConcatFCOp should larger than 1
."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"FCWeight"
),
"Input(FCWeight) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"FCOut"
),
"Output(FCOut) of FusionSeqConcatFC should not be null."
);
// need check fc height = all inputs width sum
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
M
=
x_dims
[
1
];
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
auto
w_dims
=
ctx
->
GetInputDim
(
"LSTMWeight"
);
const
int
D
=
w_dims
[
1
]
/
4
;
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"Input(LSTMWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
w_dims
[
0
],
D
+
M
,
"LSTMWeight dims should be (%d + %d) * %d."
,
D
+
M
,
4
*
D
);
auto
b_dims
=
ctx
->
GetInputDim
(
"LSTMBias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"Input(LSTMBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
4
*
D
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
"Input(C0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
"C0 dims should be N x %d."
,
D
);
if
(
ctx
->
HasInput
(
"H0"
))
{
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
}
auto
atten_w_dims
=
ctx
->
GetInputDim
(
"AttentionWeight"
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
.
size
(),
2
,
"Input(AttentionWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
0
],
M
+
D
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
1
],
1
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
if
(
ctx
->
HasInput
(
"AttentionBias"
))
{
auto
atten_b_dims
=
ctx
->
GetInputDim
(
"AttentionBias"
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
.
size
(),
2
,
"Input(AttentionBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
0
],
1
,
"AttentionBias shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
1
],
1
,
"AttentionBias shapes must be 1 * 1."
);
auto
ins_dims
=
ctx
->
GetInputsDim
(
"X"
);
auto
w_dims
=
ctx
->
GetInputDim
(
"FCWeight"
);
// (M0+M1+M2+..) x D
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2UL
,
"Input(FCWeight)'s rank must be 2."
);
const
int
D
=
w_dims
[
1
];
int
sum
=
ins_dims
[
0
][
1
];
for
(
size_t
i
=
1
;
i
<
ins_dims
.
size
();
++
i
)
{
sum
+=
ins_dims
[
i
][
1
];
}
if
(
ctx
->
HasInput
(
"AttentionScalar"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalar"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalar
)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
sum
,
w_dims
[
0
],
"FC height should be sum of all inputs width."
);
if
(
ctx
->
HasInput
(
"FCBias"
))
{
auto
b_dims
=
ctx
->
GetInputDim
(
"FCBias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"Input(FCBias
)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"FCBias shapes must be 1 * %d."
,
D
);
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
D
,
"FCBias shapes must be 1 * %d."
,
D
);
}
if
(
ctx
->
HasInput
(
"AttentionScalarBias"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalarBias"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionScalar"
),
"AttentionScalar should not be null when have AttentionScalarBias."
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalarBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
D
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"AttentionedX"
,
{
x_dims
[
0
],
1
});
ctx
->
SetOutputDim
(
"LSTMX"
,
{
1
,
M
});
ctx
->
SetOutputDim
(
"LSTMOUT"
,
{
1
,
4
*
D
});
// AttentionFCOut should be reshape as (maxseqlen,1) in runtime
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Cell"
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
ctx
->
SetOutputDim
(
"Out"
,
{
ins_dims
[
0
][
0
],
D
});
// fcout should be reshape when run since can not get lod in infershape
// explicit share the ref lod
ctx
->
ShareLoD
(
"X"
,
"Out"
,
0
);
}
framework
::
OpKernelType
FusionSeqConcatFCOp
::
GetExpectedKernelType
(
...
...
@@ -154,46 +99,46 @@ The concat axis should be 1.
)DOC"
);
}
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template
<
typename
T
>
inline
void
bias_relu
(
const
int
n
,
const
T
*
x
,
const
T
*
bias
,
T
*
y
)
{
if
(
bias
)
{
math
::
vec_add_bias
<
T
,
platform
::
jit
::
avx
>
(
n
,
*
bias
,
x
,
y
);
math
::
vec_relu
<
T
,
platform
::
jit
::
avx
>
(
n
,
y
,
y
);
}
else
{
math
::
vec_relu
<
T
,
platform
::
jit
::
avx
>
(
n
,
x
,
y
);
}
}
template
<
typename
T
>
inline
void
vec_softmax
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
T
scalar
=
x
[
0
];
// max
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
scalar
=
scalar
<
x
[
i
]
?
x
[
i
]
:
scalar
;
}
math
::
vec_add_bias
<
T
,
platform
::
jit
::
avx
>
(
n
,
-
scalar
,
x
,
y
);
// sub
math
::
vec_exp
<
T
>
(
n
,
y
,
y
);
// exp
// sum
scalar
=
T
(
0
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
scalar
+=
y
[
i
];
}
math
::
vec_scal
<
T
>
(
n
,
static_cast
<
T
>
(
1
)
/
scalar
,
y
);
// scale
}
template
<
typename
T
>
class
FusionSeqConcatFCKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
ins
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
ins
=
ctx
.
Multi
Input
<
LoDTensor
>
(
"X"
);
auto
*
w
=
ctx
.
Input
<
Tensor
>
(
"FCWeight"
);
auto
*
b
=
ctx
.
Input
<
Tensor
>
(
"FCBias"
);
auto
*
out
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
auto
*
fc_out
=
ctx
.
Output
<
Tensor
>
(
"FCOUT"
);
auto
*
ref_in
=
ins
[
0
];
auto
ref_lod
=
ref_in
->
lod
();
auto
in1_lod
=
ins
[
1
]
->
lod
();
auto
ref_dims
=
ref_in
->
dims
();
// T x M0
auto
in1_dims
=
ins
[
1
]
->
dims
();
// N x M1
auto
w_dims
=
w
->
dims
();
const
int
N
=
ref_lod
[
0
].
size
()
-
1
;
const
int
total_T
=
ref_dims
[
0
];
const
int
M0
=
ref_dims
[
1
];
const
int
M1
=
in1_dims
[
1
];
const
int
D
=
w_dims
[
1
];
// some check and fcout should be reshape here
// since infershape can not get lod info
PADDLE_ENFORCE_EQ
(
ref_lod
.
size
(),
1UL
,
"Only support input lod size is 1."
);
PADDLE_ENFORCE_EQ
(
in1_lod
.
size
(),
1UL
,
"Only support input lod size is 1."
);
PADDLE_ENFORCE_EQ
(
in1_lod
[
0
].
size
()
-
1
,
N
,
"Batch size of all inputs should be equal."
);
PADDLE_ENFORCE_EQ
(
in1_lod
[
0
][
N
],
N
,
"Seq_length of other inputs should be 1."
);
PADDLE_ENFORCE_EQ
(
in1_dims
[
0
],
N
,
"input height should be batch size."
);
for
(
size_t
i
=
2
;
i
<
ins
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
ins
[
i
]
->
dims
()[
0
],
N
,
"All other inputs height should be equal"
);
PADDLE_ENFORCE_EQ
(
ins
[
i
]
->
lod
(),
in1_lod
,
"All other inputs should have same lod"
);
}
fc_out
->
Resize
({
N
,
D
});
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
fc_act
;
auto
&
fc_act_str
=
ctx
.
Attr
<
std
::
string
>
(
"fc_activation"
);
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
...
...
@@ -204,19 +149,7 @@ class FusionSeqConcatFCKernel : public framework::OpKernel<T> {
fc_act
=
act_functor
(
fc_act_str
);
}
PADDLE_ENFORCE_GT
(
ins
.
size
(),
1
,
"Input(X)'s size must larger than 1."
);
auto
*
ref_in
=
ins
[
0
];
auto
ref_in_lod
=
ref_in
->
lod
();
const
int
N
=
ref_in_lod
[
0
].
size
()
-
1
;
auto
ref_in_dims
=
ref_in
->
dims
();
// T x M0
auto
w_dims
=
w
->
dims
();
// (M0+M1+M2+..) x D
const
int
total_T
=
ref_in_dims
[
0
];
const
int
M0
=
ref_in_dims
[
1
];
const
int
M1
=
ins
[
1
]
->
dims
()[
1
];
const
int
D
=
w_dims
[
1
];
const
T
*
ref_in_data
=
ref_in
->
data
<
T
>
();
// size should be check at infershape
const
T
*
ref_in_data
=
ref_in
->
data
<
T
>
();
const
T
*
in1_data
=
ins
[
1
]
->
data
<
T
>
();
const
T
*
w_data
=
w
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -226,11 +159,10 @@ class FusionSeqConcatFCKernel : public framework::OpKernel<T> {
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D
,
M0
,
ref_in_data
,
w_data
,
out_data
,
b
?
b
->
data
<
T
>
()
:
NULL
);
w_data
=
w_data
+
M0
*
D
;
// first one use write on
blas
.
MatMul
(
N
,
D
,
M1
,
in1_data
,
w_data
,
fc_out_data
);
w_data
=
w_data
+
M1
*
D
;
for
(
in
t
i
=
2
;
i
<
ins
.
size
();
++
i
)
{
for
(
size_
t
i
=
2
;
i
<
ins
.
size
();
++
i
)
{
// add on
const
T
*
in_data
=
ins
[
i
]
->
data
<
T
>
();
const
int
K
=
ins
[
i
]
->
dims
()[
1
];
...
...
@@ -240,7 +172,7 @@ class FusionSeqConcatFCKernel : public framework::OpKernel<T> {
}
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
int
seq_len
=
ref_
in_lod
[
0
][
i
+
1
]
-
ref_in
_lod
[
0
][
i
];
int
seq_len
=
ref_
lod
[
0
][
i
+
1
]
-
ref
_lod
[
0
][
i
];
T
*
src
=
fc_out_data
+
i
*
D
;
for
(
int
step
=
0
;
step
<
seq_len
;
++
step
)
{
blas
.
VADD
(
D
,
out_data
,
src
,
out_data
);
...
...
@@ -248,7 +180,7 @@ class FusionSeqConcatFCKernel : public framework::OpKernel<T> {
}
}
fc_act
(
out_dims
[
0
]
*
out_dims
[
1
]
,
out_data
,
out_data
);
fc_act
(
total_T
*
D
,
out_data
,
out_data
);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录