提交 c319be7a 编写于 作者: L Luo Tao

fix URLError when removing duplicated tutorials

上级 17b3de9d
......@@ -21,7 +21,7 @@ wmt14数据的提供文件在 `python/paddle/v2/dataset/wmt14.py <https://github
循环神经网络在每个时间步骤顺序地处理序列。下面列出了 LSTM 的架构的示例。
.. image:: ../../../tutorials/sentiment_analysis/bi_lstm.jpg
.. image:: src/bi_lstm.jpg
:align: center
一般来说,循环网络从 :math:`t=1` 到 :math:`t=T` 或者反向地从 :math:`t=T` 到 :math:`t=1` 执行以下操作。
......@@ -96,7 +96,7 @@ Sequence to Sequence Model with Attention
我们将使用 sequence to sequence model with attention
作为例子演示如何配置复杂的循环神经网络模型。该模型的说明如下图所示。
.. image:: ../../../tutorials/text_generation/encoder-decoder-attention-model.png
.. image:: src/encoder-decoder-attention-model.png
:align: center
在这个模型中,源序列 :math:`S = \{s_1, \dots, s_T\}`
......
......@@ -19,7 +19,7 @@ Simple Gated Recurrent Neural Network
Recurrent neural network process a sequence at each time step sequentially. An example of the architecture of LSTM is listed below.
.. image:: ../../../tutorials/sentiment_analysis/src/bi_lstm.jpg
.. image:: src/bi_lstm.jpg
:align: center
Generally speaking, a recurrent network perform the following operations from :math:`t=1` to :math:`t=T`, or reversely from :math:`t=T` to :math:`t=1`.
......@@ -78,7 +78,7 @@ Sequence to Sequence Model with Attention
-----------------------------------------
We will use the sequence to sequence model with attention as an example to demonstrate how you can configure complex recurrent neural network models. An illustration of the sequence to sequence model with attention is shown in the following figure.
.. image:: ../../../tutorials/text_generation/encoder-decoder-attention-model.png
.. image:: src/encoder-decoder-attention-model.png
:align: center
In this model, the source sequence :math:`S = \{s_1, \dots, s_T\}` is encoded with a bidirectional gated recurrent neural networks. The hidden states of the bidirectional gated recurrent neural network :math:`H_S = \{H_1, \dots, H_T\}` is called *encoder vector* The decoder is a gated recurrent neural network. When decoding each token :math:`y_t`, the gated recurrent neural network generates a set of weights :math:`W_S^t = \{W_1^t, \dots, W_T^t\}`, which are used to compute a weighted sum of the encoder vector. The weighted sum of the encoder vector is utilized to condition the generation of the token :math:`y_t`.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册