Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c2c2d610
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2c2d610
编写于
9月 22, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into Add_pool_op
上级
0417e4e4
6117af64
变更
49
隐藏空白更改
内联
并排
Showing
49 changed file
with
279 addition
and
200 deletion
+279
-200
cmake/util.cmake
cmake/util.cmake
+1
-1
doc/faq/index_cn.rst
doc/faq/index_cn.rst
+22
-4
paddle/framework/attribute.cc
paddle/framework/attribute.cc
+23
-7
paddle/framework/attribute.h
paddle/framework/attribute.h
+3
-1
paddle/framework/backward.cc
paddle/framework/backward.cc
+2
-3
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+6
-6
paddle/framework/framework.proto
paddle/framework/framework.proto
+11
-0
paddle/framework/operator.cc
paddle/framework/operator.cc
+7
-8
paddle/framework/operator.h
paddle/framework/operator.h
+23
-30
paddle/operators/accuracy_op.cc
paddle/operators/accuracy_op.cc
+9
-4
paddle/operators/activation_op.cc
paddle/operators/activation_op.cc
+3
-2
paddle/operators/add_op.cc
paddle/operators/add_op.cc
+1
-1
paddle/operators/clip_op.cc
paddle/operators/clip_op.cc
+5
-6
paddle/operators/concat_op.cc
paddle/operators/concat_op.cc
+1
-1
paddle/operators/conv2d_op.cc
paddle/operators/conv2d_op.cc
+3
-4
paddle/operators/cos_sim_op.cc
paddle/operators/cos_sim_op.cc
+12
-10
paddle/operators/crop_op.cc
paddle/operators/crop_op.cc
+5
-6
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+6
-4
paddle/operators/dropout_op.cc
paddle/operators/dropout_op.cc
+4
-4
paddle/operators/elementwise_mul_op.cc
paddle/operators/elementwise_mul_op.cc
+8
-5
paddle/operators/fc_op.cc
paddle/operators/fc_op.cc
+3
-0
paddle/operators/fill_zeros_like_op.cc
paddle/operators/fill_zeros_like_op.cc
+10
-11
paddle/operators/fill_zeros_like_op.h
paddle/operators/fill_zeros_like_op.h
+1
-1
paddle/operators/gather_op.cc
paddle/operators/gather_op.cc
+2
-2
paddle/operators/gaussian_random_op.cc
paddle/operators/gaussian_random_op.cc
+1
-1
paddle/operators/lookup_table_op.cc
paddle/operators/lookup_table_op.cc
+10
-5
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+4
-3
paddle/operators/minus_op.cc
paddle/operators/minus_op.cc
+8
-2
paddle/operators/modified_huber_loss_op.cc
paddle/operators/modified_huber_loss_op.cc
+3
-3
paddle/operators/modified_huber_loss_op.h
paddle/operators/modified_huber_loss_op.h
+5
-7
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+11
-8
paddle/operators/pad_op.cc
paddle/operators/pad_op.cc
+7
-2
paddle/operators/prelu_op.cc
paddle/operators/prelu_op.cc
+6
-3
paddle/operators/rank_loss_op.cc
paddle/operators/rank_loss_op.cc
+3
-3
paddle/operators/rank_loss_op.h
paddle/operators/rank_loss_op.h
+3
-3
paddle/operators/reshape_op.cc
paddle/operators/reshape_op.cc
+7
-2
paddle/operators/rowwise_add_op.cc
paddle/operators/rowwise_add_op.cc
+4
-3
paddle/operators/scale_op.cc
paddle/operators/scale_op.cc
+2
-1
paddle/operators/scatter_op.cc
paddle/operators/scatter_op.cc
+3
-4
paddle/operators/sgd_op.cc
paddle/operators/sgd_op.cc
+1
-1
paddle/operators/smooth_l1_loss_op.cc
paddle/operators/smooth_l1_loss_op.cc
+4
-6
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+2
-3
paddle/operators/split_op.cc
paddle/operators/split_op.cc
+1
-1
paddle/operators/squared_l2_distance_op.cc
paddle/operators/squared_l2_distance_op.cc
+8
-6
paddle/operators/sum_op.cc
paddle/operators/sum_op.cc
+8
-4
paddle/operators/top_k_op.cc
paddle/operators/top_k_op.cc
+2
-2
paddle/operators/transpose_op.cc
paddle/operators/transpose_op.cc
+2
-3
paddle/operators/uniform_random_op.cc
paddle/operators/uniform_random_op.cc
+1
-1
python/paddle/v2/framework/tests/test_fill_zeros_like_op.py
python/paddle/v2/framework/tests/test_fill_zeros_like_op.py
+2
-2
未找到文件。
cmake/util.cmake
浏览文件 @
c2c2d610
...
...
@@ -25,7 +25,7 @@ function(target_circle_link_libraries TARGET_NAME)
endif
()
endforeach
()
if
(
"
${
CMAKE_CXX_COMPILER_ID
}
"
STREQUAL
"Clang"
OR
"
${
CMAKE_CXX_COMPILER_ID
}
"
STREQUAL
"AppleClang"
)
if
(
IOS AND
NOT IOS_ENABLE_BITCODE
)
if
(
NOT IOS_ENABLE_BITCODE
)
list
(
APPEND LIBS
"-undefined dynamic_lookup"
)
endif
()
endif
()
...
...
doc/faq/index_cn.rst
浏览文件 @
c2c2d610
...
...
@@ -158,17 +158,23 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。
7.
\*-cp27mu-linux_x86_64
.whl is not a supported wheel on this platform.
7.
paddlepaddle\*
.whl is not a supported wheel on this platform.
------------------------------------------------------------------------
出现这个问题的主要原因是,
系统编译wheel包的时候,使用的 :code:`wheel` 包是最新的,
而系统中的 :code:`pip` 包比较老。具体的解决方法是,更新 :code:`pip` 包并重新编译PaddlePaddle。
出现这个问题的主要原因是,
没有找到和当前系统匹配的paddlepaddle安装包。最新的paddlepaddle python安装包支持Linux x86_64和MacOS 10.12操作系统,并安装了python 2.7和pip 9.0.1。
更新 :code:`pip` 包的方法是\:
.. code-block:: bash
pip install --upgrade pip
如果还不行,可以执行 :code:`python -c "import pip; print(pip.pep425tags.get_supported())"` 获取当前系统支持的python包的后缀,
并对比是否和正在安装的后缀一致。
如果系统支持的是 :code:`linux_x86_64` 而安装包是 :code:`manylinux1_x86_64` ,需要升级pip版本到最新;
如果系统支持 :code:`manylinux1_x86_64` 而安装包(本地)是 :code:`linux_x86_64` ,可以重命名这个whl包为 :code:`manylinux1_x86_64` 再安装。
8. python相关的单元测试都过不了
--------------------------------
...
...
@@ -310,7 +316,7 @@ Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异
* 模型一直不收敛,发散到了一个数值特别大的地方。
* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。
主要的解决办法是减小学习
律
或者对数据进行归一化处理。
主要的解决办法是减小学习
率
或者对数据进行归一化处理。
15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2
------------------------------------------------------------------------
...
...
@@ -373,3 +379,15 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数
parameters = paddle.parameters.create(my_cost)
parameters.set('emb', load_parameter(emb_param_file, 30000, 256))
18. 集群多节点训练,日志中保存均为网络通信类错误
------------------------------
集群多节点训练,日志报错为网络通信类错误,比如 :code:`Connection reset by peer` 等。
此类报错通常是由于某一个节点的错误导致这个节点的训练进程退出,从而引发其他节点无法连接导致,可以参考下面的步骤排查:
* 从 :code:`train.log` , :code:`server.log` 找到最早报错的地方,查看是否是其他错误引发的报错(比如FPE,内存不足,磁盘空间不足等)。
* 如果发现最早的报错就是网络通信的问题,很有可能是非独占方式执行导致的端口冲突,可以联系OP,看当前MPI集群是否支持resource=full参数提交,如果支持增加此参数提交,并更换job 端口。
* 如果当前MPI集群并不支持任务独占模式,可以联系OP是否可以更换集群或升级当前集群。
\ No newline at end of file
paddle/framework/attribute.cc
浏览文件 @
c2c2d610
...
...
@@ -19,6 +19,15 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
static
ProgramDesc
*
g_program_desc
=
nullptr
;
ProgramDesc
&
GetProgramDesc
()
{
if
(
g_program_desc
==
nullptr
)
{
g_program_desc
=
new
ProgramDesc
();
}
return
*
g_program_desc
;
}
template
<
>
AttrType
AttrTypeID
<
int
>
()
{
return
INT
;
...
...
@@ -47,40 +56,44 @@ template <>
AttrType
AttrTypeID
<
std
::
vector
<
std
::
pair
<
int
,
int
>>>
()
{
return
INT_PAIRS
;
}
template
<
>
AttrType
AttrTypeID
<
BlockDesc
>
()
{
return
BLOCK
;
}
Attribute
GetAttrValue
(
const
OpDesc
::
Attr
&
attr_desc
)
{
switch
(
attr_desc
.
type
())
{
case
paddle
::
framework
::
AttrType
::
INT
:
{
case
framework
::
AttrType
::
INT
:
{
return
attr_desc
.
i
();
}
case
paddle
::
framework
::
AttrType
::
FLOAT
:
{
case
framework
::
AttrType
::
FLOAT
:
{
return
attr_desc
.
f
();
}
case
paddle
::
framework
::
AttrType
::
STRING
:
{
case
framework
::
AttrType
::
STRING
:
{
return
attr_desc
.
s
();
}
case
paddle
::
framework
::
AttrType
::
INTS
:
{
case
framework
::
AttrType
::
INTS
:
{
std
::
vector
<
int
>
val
(
attr_desc
.
ints_size
());
for
(
int
i
=
0
;
i
<
attr_desc
.
ints_size
();
++
i
)
{
val
[
i
]
=
attr_desc
.
ints
(
i
);
}
return
val
;
}
case
paddle
::
framework
::
AttrType
::
FLOATS
:
{
case
framework
::
AttrType
::
FLOATS
:
{
std
::
vector
<
float
>
val
(
attr_desc
.
floats_size
());
for
(
int
i
=
0
;
i
<
attr_desc
.
floats_size
();
++
i
)
{
val
[
i
]
=
attr_desc
.
floats
(
i
);
}
return
val
;
}
case
paddle
::
framework
::
AttrType
::
STRINGS
:
{
case
framework
::
AttrType
::
STRINGS
:
{
std
::
vector
<
std
::
string
>
val
(
attr_desc
.
strings_size
());
for
(
int
i
=
0
;
i
<
attr_desc
.
strings_size
();
++
i
)
{
val
[
i
]
=
attr_desc
.
strings
(
i
);
}
return
val
;
}
case
paddle
::
framework
::
AttrType
::
INT_PAIRS
:
{
case
framework
::
AttrType
::
INT_PAIRS
:
{
std
::
vector
<
std
::
pair
<
int
,
int
>>
val
(
attr_desc
.
int_pairs_size
());
for
(
int
i
=
0
;
i
<
attr_desc
.
int_pairs_size
();
++
i
)
{
val
[
i
].
first
=
attr_desc
.
int_pairs
(
i
).
first
();
...
...
@@ -88,6 +101,9 @@ Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
}
return
val
;
}
case
framework
::
AttrType
::
BLOCK
:
{
return
GetProgramDesc
().
mutable_blocks
(
attr_desc
.
block_idx
());
}
}
PADDLE_ENFORCE
(
false
,
"Unknown OpDesc::AttrDesc::type !"
);
return
boost
::
blank
();
...
...
paddle/framework/attribute.h
浏览文件 @
c2c2d610
...
...
@@ -29,11 +29,13 @@ namespace framework {
typedef
boost
::
variant
<
boost
::
blank
,
int
,
float
,
std
::
string
,
std
::
vector
<
int
>
,
std
::
vector
<
float
>
,
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
pair
<
int
,
int
>>>
std
::
vector
<
std
::
pair
<
int
,
int
>>
,
BlockDesc
*
>
Attribute
;
typedef
std
::
unordered_map
<
std
::
string
,
Attribute
>
AttributeMap
;
ProgramDesc
&
GetProgramDesc
();
template
<
typename
T
>
AttrType
AttrTypeID
();
...
...
paddle/framework/backward.cc
浏览文件 @
c2c2d610
...
...
@@ -166,9 +166,8 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
net
->
AppendOp
(
OpRegistry
::
CreateOp
(
"fill_zeros_like"
,
{{
"Src"
,
{
prefix
}}},
{{
"Dst"
,
{
grad_input
}}},
{}));
net
->
AppendOp
(
OpRegistry
::
CreateOp
(
"fill_zeros_like"
,
{{
"X"
,
{
prefix
}}},
{{
"Y"
,
{
grad_input
}}},
{}));
}
return
false
;
});
...
...
paddle/framework/backward_test.cc
浏览文件 @
c2c2d610
...
...
@@ -127,8 +127,8 @@ class FillZeroOpMaker : public OpProtoAndCheckerMaker {
public:
FillZeroOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"
Src
"
,
"x"
);
AddOutput
(
"
Dst
"
,
"out"
);
AddInput
(
"
X
"
,
"x"
);
AddOutput
(
"
Y
"
,
"out"
);
AddComment
(
""
);
}
};
...
...
@@ -325,10 +325,10 @@ TEST(Backward, op_part_of_output_are_not_need) {
auto
&
fill_zero
=
*
net
->
ops_
[
0
];
ASSERT_EQ
(
"fill_zeros_like"
,
fill_zero
.
Type
());
ASSERT_EQ
(
1UL
,
fill_zero
.
Inputs
(
"
Src
"
).
size
());
ASSERT_EQ
(
"Z"
,
fill_zero
.
Input
(
"
Src
"
));
ASSERT_EQ
(
1UL
,
fill_zero
.
Outputs
(
"
Dst
"
).
size
());
ASSERT_EQ
(
std
::
string
(
"Z"
)
+
f
::
kZeroVarSuffix
,
fill_zero
.
Output
(
"
Dst
"
));
ASSERT_EQ
(
1UL
,
fill_zero
.
Inputs
(
"
X
"
).
size
());
ASSERT_EQ
(
"Z"
,
fill_zero
.
Input
(
"
X
"
));
ASSERT_EQ
(
1UL
,
fill_zero
.
Outputs
(
"
Y
"
).
size
());
ASSERT_EQ
(
std
::
string
(
"Z"
)
+
f
::
kZeroVarSuffix
,
fill_zero
.
Output
(
"
Y
"
));
auto
&
d_many_out
=
*
net
->
ops_
[
1
];
ASSERT_EQ
(
"many_output_op_grad"
,
d_many_out
.
Type
());
...
...
paddle/framework/framework.proto
浏览文件 @
c2c2d610
...
...
@@ -23,6 +23,7 @@ enum AttrType {
FLOATS
=
4
;
STRINGS
=
5
;
INT_PAIRS
=
6
;
BLOCK
=
7
;
}
message
IntPair
{
...
...
@@ -44,6 +45,7 @@ message OpDesc {
repeated
float
floats
=
7
;
repeated
string
strings
=
8
;
repeated
IntPair
int_pairs
=
9
;
optional
int32
block_idx
=
10
;
};
message
Var
{
...
...
@@ -108,3 +110,12 @@ message VarDesc {
required
string
name
=
1
;
optional
LoDTensorDesc
lod_tensor
=
2
;
}
message
BlockDesc
{
required
int32
idx
=
1
;
required
int32
parent_idx
=
2
;
repeated
VarDesc
vars
=
3
;
repeated
OpDesc
ops
=
4
;
}
message
ProgramDesc
{
repeated
BlockDesc
blocks
=
1
;
}
paddle/framework/operator.cc
浏览文件 @
c2c2d610
...
...
@@ -207,23 +207,22 @@ const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
}
template
<
>
Tensor
*
Execution
Context
::
Output
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
auto
*
var
=
OutputVar
(
name
);
return
var
==
nullptr
?
nullptr
:
const_cast
<
Tensor
*>
(
GetTensorFromVar
(
var
)
);
Tensor
*
InferShape
Context
::
Output
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
auto
var
=
OutputVar
(
name
);
return
var
==
nullptr
?
nullptr
:
var
->
GetMutable
<
LoDTensor
>
(
);
}
template
<
>
std
::
vector
<
Tensor
*>
Execution
Context
::
MultiOutput
<
Tensor
>
(
std
::
vector
<
Tensor
*>
InferShape
Context
::
MultiOutput
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
auto
names
=
op
().
Outputs
(
name
);
std
::
vector
<
Tensor
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
std
::
string
&
sub_name
)
{
auto
var
=
scope
().
FindVar
(
sub_name
);
return
var
==
nullptr
?
nullptr
:
const_cast
<
Tensor
*>
(
GetTensorFromVar
(
var
));
auto
var
=
scope_
.
FindVar
(
sub_name
);
return
var
==
nullptr
?
nullptr
:
var
->
GetMutable
<
LoDTensor
>
();
});
return
res
;
}
...
...
paddle/framework/operator.h
浏览文件 @
c2c2d610
...
...
@@ -212,9 +212,9 @@ class InferShapeContext {
return
res
;
}
std
::
vector
<
const
Variable
*>
MultiOutputVar
(
const
std
::
string
&
name
)
const
{
std
::
vector
<
Variable
*>
MultiOutputVar
(
const
std
::
string
&
name
)
const
{
auto
names
=
op_
.
Outputs
(
name
);
std
::
vector
<
const
Variable
*>
res
;
std
::
vector
<
Variable
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
this
](
const
std
::
string
&
name
)
{
...
...
@@ -271,6 +271,20 @@ class InferShapeContext {
return
&
var
->
Get
<
Tensor
>
();
}
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
{
PADDLE_ENFORCE_LT
(
i
,
InputSize
(
in
));
PADDLE_ENFORCE_LT
(
j
,
OutputSize
(
out
));
auto
*
in_var
=
MultiInputVar
(
in
)[
i
];
auto
*
out_var
=
MultiOutputVar
(
out
)[
j
];
if
(
!
in_var
->
IsType
<
LoDTensor
>
())
return
;
PADDLE_ENFORCE
(
out_var
->
IsType
<
LoDTensor
>
(),
"The %d-th output of Output(%s) must be LoDTensor."
,
j
,
out
);
auto
in_tensor
=
in_var
->
Get
<
LoDTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
LoDTensor
>
();
out_tensor
->
set_lod
(
in_tensor
.
lod
());
}
private:
const
OperatorBase
&
op_
;
const
Scope
&
scope_
;
...
...
@@ -283,6 +297,13 @@ template <>
const
std
::
vector
<
const
Tensor
*>
InferShapeContext
::
MultiInput
<
Tensor
>
(
const
std
::
string
&
name
)
const
;
template
<>
Tensor
*
InferShapeContext
::
Output
<
Tensor
>
(
const
std
::
string
&
name
)
const
;
template
<>
std
::
vector
<
Tensor
*>
InferShapeContext
::
MultiOutput
<
Tensor
>
(
const
std
::
string
&
name
)
const
;
template
<
typename
T
>
struct
EigenDeviceConverter
;
...
...
@@ -315,38 +336,10 @@ class ExecutionContext : public InferShapeContext {
return
device_context_
;
}
// redefine Output function,
// use Variable::Get instead of Variable::GetMutable
template
<
typename
T
>
T
*
Output
(
const
std
::
string
&
name
)
const
{
auto
var
=
OutputVar
(
name
);
return
var
==
nullptr
?
nullptr
:
const_cast
<
T
*>
(
&
var
->
Get
<
T
>
());
}
// redefine MultiOutput function.
// use Variable::Get instead of Variable::GetMutable
template
<
typename
T
>
std
::
vector
<
T
*>
MultiOutput
(
const
std
::
string
&
name
)
const
{
auto
names
=
op
().
Outputs
(
name
);
std
::
vector
<
T
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
std
::
string
&
sub_name
)
{
return
Output
<
T
>
(
sub_name
);
});
return
res
;
}
private:
const
platform
::
DeviceContext
&
device_context_
;
};
template
<>
Tensor
*
ExecutionContext
::
Output
<
Tensor
>
(
const
std
::
string
&
name
)
const
;
template
<>
std
::
vector
<
Tensor
*>
ExecutionContext
::
MultiOutput
<
Tensor
>
(
const
std
::
string
&
name
)
const
;
class
OpKernel
{
public:
/**
...
...
paddle/operators/accuracy_op.cc
浏览文件 @
c2c2d610
...
...
@@ -39,7 +39,8 @@ class AccuracyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
inference
->
dims
()[
0
],
label
->
dims
()[
0
],
"inference size must be the same as label size"
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Accuracy"
)
->
Resize
({
1
});
ctx
.
Output
<
framework
::
Tensor
>
(
"Accuracy"
)
->
Resize
({
1
});
ctx
.
ShareLoD
(
"Inference"
,
/*->*/
"Accuracy"
);
}
};
...
...
@@ -54,11 +55,15 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
// TODO(typhoonzero): AddInput("Weight", ...
AddOutput
(
"Accuracy"
,
"The accuracy of current batch"
);
AddComment
(
R"DOC(
Accuracy. It will print accuracy rate for classification.
AddComment
(
R"DOC(
Accuracy. It will print accuracy rate for classification.
The accuracy is:
.. math::
accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples})DOC"
);
accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples})
Both the input `Inference` and `Label` can carry the LoD (Level of Details)
information, or not. But the output only shares the LoD with input `Inference`.
)DOC"
);
}
};
...
...
paddle/operators/activation_op.cc
浏览文件 @
c2c2d610
...
...
@@ -23,8 +23,9 @@ class ActivationOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Y"
)
->
Resize
(
ctx
.
Output
<
framework
::
Tensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
dims
());
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Y"
);
}
};
...
...
@@ -34,7 +35,7 @@ class ActivationOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
))
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
)
->
dims
());
}
};
...
...
paddle/operators/add_op.cc
浏览文件 @
c2c2d610
...
...
@@ -33,7 +33,7 @@ class AddOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
(),
"Two input of Add Op's dimension must be same."
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
paddle/operators/clip_op.cc
浏览文件 @
c2c2d610
...
...
@@ -17,8 +17,6 @@
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
class
ClipOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -29,11 +27,12 @@ class ClipOp : public framework::OperatorWithKernel {
"Input(X) of ClipOp should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out"
),
"Output(Out) of ClipOp should not be null."
);
auto
x_dims
=
ctx
.
Input
<
LoD
Tensor
>
(
"X"
)
->
dims
();
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
max
=
Attr
<
float
>
(
"max"
);
auto
min
=
Attr
<
float
>
(
"min"
);
PADDLE_ENFORCE_LT
(
min
,
max
,
"max should be greater than min."
);
ctx
.
Output
<
LoDTensor
>
(
"Out"
)
->
Resize
(
x_dims
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
x_dims
);
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -66,8 +65,8 @@ class ClipOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
.
Input
<
LoD
Tensor
>
(
"X"
)
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
x_grad
!=
nullptr
)
{
x_grad
->
Resize
(
x_dims
);
}
...
...
paddle/operators/concat_op.cc
浏览文件 @
c2c2d610
...
...
@@ -29,7 +29,7 @@ class ConcatOp : public framework::OperatorWithKernel {
"Output(Out) of ConcatOp should not be null."
);
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
size_t
axis
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"axis"
));
size_t
n
=
ins
.
size
();
...
...
paddle/operators/conv2d_op.cc
浏览文件 @
c2c2d610
...
...
@@ -37,7 +37,7 @@ class Conv2DOp : public framework::OperatorWithKernel {
auto
in
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
out
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Output"
);
auto
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Output"
);
std
::
vector
<
int
>
strides
=
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
int
groups
=
Attr
<
int
>
(
"groups"
);
...
...
@@ -111,10 +111,9 @@ class Conv2DOpGrad : public framework::OperatorWithKernel {
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
in
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
d_in
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
d_in
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
d_filter
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
if
(
d_in
)
d_in
->
Resize
(
in
->
dims
());
if
(
d_filter
)
d_filter
->
Resize
(
filter
->
dims
());
}
...
...
paddle/operators/cos_sim_op.cc
浏览文件 @
c2c2d610
...
...
@@ -54,9 +54,10 @@ class CosSimOp : public framework::OperatorWithKernel {
" just 1 (which will be broadcasted to match Input(X))."
);
// resize tensor
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
LoDTensor
>
(
"XNorm"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
LoDTensor
>
(
"YNorm"
)
->
Resize
({
y_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
Tensor
>
(
"XNorm"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
Tensor
>
(
"YNorm"
)
->
Resize
({
y_dims
[
0
],
1
});
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -81,10 +82,13 @@ Cosine Similarity Operator.
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).
Input(X) and Input(Y)
must have the same shape, except that the 1st dimension
of
Input(Y) could be just 1 (different from Input(X)
), which will be
broadcasted to match the shape of
Input(X)
before computing their cosine
The input `X` and `Y`
must have the same shape, except that the 1st dimension
of
input `Y` could be just 1 (different from input `X`
), which will be
broadcasted to match the shape of
input `X`
before computing their cosine
similarity.
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
)DOC"
);
}
};
...
...
@@ -139,10 +143,8 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
"Shape of Input(Out@Grad) must be [X.Dim(0), 1]."
);
// resize tensor
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
if
(
y_grad
)
y_grad
->
Resize
(
y_dims
);
}
...
...
paddle/operators/crop_op.cc
浏览文件 @
c2c2d610
...
...
@@ -19,7 +19,6 @@ namespace paddle {
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
LoDTensor
;
class
CropOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
@@ -31,9 +30,9 @@ class CropOp : public framework::OperatorWithKernel {
"Input(X) of CropOp should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out"
),
"Output(Out) of CropOp should not be null."
);
auto
x_dim
=
ctx
.
Input
<
LoD
Tensor
>
(
"X"
)
->
dims
();
auto
*
y
=
ctx
.
Input
<
LoD
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
LoD
Tensor
>
(
"Out"
);
auto
x_dim
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
if
(
y
==
nullptr
)
{
auto
shape
=
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
PADDLE_ENFORCE_EQ
(
...
...
@@ -121,8 +120,8 @@ class CropOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
.
Input
<
LoD
Tensor
>
(
"X"
)
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
x_grad
!=
nullptr
)
{
x_grad
->
Resize
(
x_dims
);
}
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
c2c2d610
...
...
@@ -17,8 +17,6 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
class
CrossEntropyOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -51,7 +49,8 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
"Input(Label) must be 1."
);
}
ctx
.
Output
<
LoDTensor
>
(
"Y"
)
->
Resize
({
x
->
dims
()[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
({
x
->
dims
()[
0
],
1
});
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Y"
);
}
};
...
...
@@ -95,7 +94,7 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
"Input(Label) must be 1."
);
}
auto
dx
=
ctx
.
Output
<
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
Resize
(
x
->
dims
());
}
};
...
...
@@ -133,6 +132,9 @@ computation.
As a special case of 2), when each row of Input(Label) has only one
non-zero element (equals 1), soft-label cross-entropy degenerates to a
one-hot cross-entropy with one-hot label representation.
Both the input `X` and `Label` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/dropout_op.cc
浏览文件 @
c2c2d610
...
...
@@ -18,7 +18,6 @@ namespace paddle {
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
LoDTensor
;
class
DropoutOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
@@ -34,10 +33,11 @@ class DropoutOp : public framework::OperatorWithKernel {
ctx
.
Attr
<
int
>
(
"is_training"
)
==
1
);
auto
dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
ctx
.
Output
<
LoD
Tensor
>
(
"Out"
)
->
Resize
(
dims
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
dims
);
if
(
ctx
.
Attr
<
int
>
(
"is_training"
)
==
1
)
{
ctx
.
Output
<
LoD
Tensor
>
(
"Mask"
)
->
Resize
(
dims
);
ctx
.
Output
<
Tensor
>
(
"Mask"
)
->
Resize
(
dims
);
}
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -96,7 +96,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
x_dims
,
mask_dims
,
"Dimensions of Input(X) and Mask must be the same."
);
auto
*
x_grad
=
ctx
.
Output
<
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
x_grad
->
Resize
(
x_dims
);
}
};
...
...
paddle/operators/elementwise_mul_op.cc
浏览文件 @
c2c2d610
...
...
@@ -37,7 +37,8 @@ class ElementWiseMulOp : public framework::OperatorWithKernel {
auto
y_dim
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
PADDLE_ENFORCE_GE
(
x_dim
.
size
(),
y_dim
.
size
(),
"Rank of first input must >= rank of second input."
)
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
x_dim
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
x_dim
);
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -63,11 +64,15 @@ Limited elementwise multiple operator.The equation is: Out = X ⊙ Y.
2. Y's shape is a subset of X.
Y will be broadcasted to match the shape of X and axis should be dimension index Y in X.
example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input X.
)DOC"
);
}
};
...
...
@@ -86,10 +91,8 @@ class ElementWiseMulOpGrad : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
y_dims
.
size
(),
"Rank of first input must >= rank of second input."
)
...
...
paddle/operators/fc_op.cc
浏览文件 @
c2c2d610
...
...
@@ -186,6 +186,9 @@ W_i is a 2-D matrix of size (K x N), where N means the number of neurons
in the fully connected layer. B is a 1-D vector of size N.
Thus, the output Out is a 2-D matrix of size (M x N).
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
All the inputs can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with first input (`X[0]`).
)DOC"
);
}
};
...
...
paddle/operators/fill_zeros_like_op.cc
浏览文件 @
c2c2d610
...
...
@@ -23,15 +23,14 @@ class FillZerosLikeOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Src"
),
"Input(Src) of FillZerosLikeOp should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Dst"
),
"Output(Dst) of FillZerosLikeOp should not be null."
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Dst"
)
->
Resize
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Src"
)
->
dims
());
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) of FillZerosLikeOp should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Y"
),
"Output(Y) of FillZerosLikeOp should not be null."
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
dims
());
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Y"
);
}
};
...
...
@@ -40,8 +39,8 @@ class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker {
FillZerosLikeOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"
Src
"
,
"The input of fill-zeros-like op."
);
AddOutput
(
"
Dst
"
,
"The varibale will be filled up with zeros."
);
AddInput
(
"
X
"
,
"The input of fill-zeros-like op."
);
AddOutput
(
"
Y
"
,
"The varibale will be filled up with zeros."
);
AddComment
(
R"DOC(
Fill up a vriable with zeros.
...
...
paddle/operators/fill_zeros_like_op.h
浏览文件 @
c2c2d610
...
...
@@ -23,7 +23,7 @@ template <typename Place, typename T>
class
FillZerosLikeKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
output
=
context
.
Output
<
framework
::
Tensor
>
(
"
Dst
"
);
auto
*
output
=
context
.
Output
<
framework
::
Tensor
>
(
"
Y
"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
output
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
...
...
paddle/operators/gather_op.cc
浏览文件 @
c2c2d610
...
...
@@ -35,7 +35,7 @@ class GatherOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GE
(
batch_size
,
0
,
"Batch size must be >0"
);
framework
::
DDim
output_dims
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
output_dims
[
0
]
=
batch_size
;
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
output_dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
output_dims
);
}
};
...
...
@@ -45,7 +45,7 @@ class GatherGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
X_grad
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
X_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
X_grad
->
Resize
(
X
->
dims
());
...
...
paddle/operators/gaussian_random_op.cc
浏览文件 @
c2c2d610
...
...
@@ -48,7 +48,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
ctx
.
OutputVar
(
"Out"
),
"Output(Out) of GaussianRandomOp should not be null."
);
auto
*
tensor
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
dims
=
Attr
<
std
::
vector
<
int
>>
(
"dims"
);
std
::
vector
<
int64_t
>
temp
;
temp
.
reserve
(
dims
.
size
());
...
...
paddle/operators/lookup_table_op.cc
浏览文件 @
c2c2d610
...
...
@@ -32,9 +32,10 @@ class LookupTableOp : public framework::OperatorWithKernel {
auto
table_t
=
ctx
.
Input
<
Tensor
>
(
"W"
);
auto
ids_t
=
ctx
.
Input
<
Tensor
>
(
"Ids"
);
auto
output_t
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
output_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
output_t
->
Resize
({
ids_t
->
dims
()[
0
],
table_t
->
dims
()[
1
]});
ctx
.
ShareLoD
(
"Ids"
,
/*->*/
"Out"
);
}
};
...
...
@@ -50,9 +51,13 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
"An input with type int32 or int64"
"contains the ids to be looked up in W."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type with W."
);
AddComment
(
"This operator is used to perform lookups on the parameter W,"
"then concatenated into a dense tensor."
);
AddComment
(
R"DOC(
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.
The input `Ids` can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD with input `Ids`.
)DOC"
);
}
};
...
...
@@ -64,7 +69,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
void
InferShape
(
const
framework
::
InferShapeContext
&
context
)
const
override
{
auto
table
=
context
.
Input
<
Tensor
>
(
"W"
);
auto
d_table
=
context
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"W"
));
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"W"
));
d_table
->
Resize
(
table
->
dims
());
}
};
...
...
paddle/operators/mean_op.cc
浏览文件 @
c2c2d610
...
...
@@ -27,7 +27,7 @@ class MeanOp : public framework::OperatorWithKernel {
"Input(X) of MeanOp should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out"
),
"Output(Out) of MeanOp should not be null."
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
({
1
});
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
({
1
});
}
};
...
...
@@ -37,7 +37,8 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
).
NotInGradient
();
AddComment
(
"Mean Operator"
);
AddComment
(
R"DOC( Mean Operator
)DOC"
);
}
};
...
...
@@ -47,7 +48,7 @@ class MeanGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
))
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
paddle/operators/minus_op.cc
浏览文件 @
c2c2d610
...
...
@@ -40,7 +40,8 @@ class MinusOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
left_tensor
->
numel
(),
right_tensor
->
numel
(),
"Minus operator must take two tensor with same num of elements"
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
left_tensor
->
dims
());
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
left_tensor
->
dims
());
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -54,7 +55,12 @@ class MinusOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(Minus Operator
Equation: Out = X - Y
Equation:
Out = X - Y
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/modified_huber_loss_op.cc
浏览文件 @
c2c2d610
...
...
@@ -34,8 +34,8 @@ class ModifiedHuberLossOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"The tensor rank of X must be 2."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
1
,
"The 2nd dimension of X must be 1."
);
context
.
Output
<
framework
::
LoD
Tensor
>
(
"IntermediateVal"
)
->
Resize
(
x
->
dims
());
context
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
({
x
->
dims
()[
0
],
1
});
context
.
Output
<
framework
::
Tensor
>
(
"IntermediateVal"
)
->
Resize
(
x
->
dims
());
context
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
({
x
->
dims
()[
0
],
1
});
}
};
...
...
@@ -81,7 +81,7 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
auto
*
intermediate_val
=
context
.
Input
<
Tensor
>
(
"IntermediateVal"
);
auto
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
context
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
PADDLE_ENFORCE_NOT_NULL
(
x
,
"X must be initialized."
);
PADDLE_ENFORCE_NOT_NULL
(
y
,
"Y must be initialized."
);
...
...
paddle/operators/modified_huber_loss_op.h
浏览文件 @
c2c2d610
...
...
@@ -52,8 +52,8 @@ class ModifiedHuberLossKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out0
=
context
.
Output
<
framework
::
LoD
Tensor
>
(
"IntermediateVal"
);
auto
*
out1
=
context
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
out0
=
context
.
Output
<
framework
::
Tensor
>
(
"IntermediateVal"
);
auto
*
out1
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out1
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -77,11 +77,9 @@ class ModifiedHuberLossGradCPUKernel : public framework::OpKernel {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
in1
=
context
.
Input
<
framework
::
LoDTensor
>
(
"IntermediateVal"
);
auto
*
in2
=
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out0
=
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
in1
=
context
.
Input
<
framework
::
Tensor
>
(
"IntermediateVal"
);
auto
*
in2
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out0
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
out0
)
{
const
T
*
y_ptr
=
in0
->
data
<
T
>
();
...
...
paddle/operators/mul_op.cc
浏览文件 @
c2c2d610
...
...
@@ -18,7 +18,6 @@ namespace paddle {
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
LoDTensor
;
class
MulOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
@@ -53,8 +52,9 @@ class MulOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
x_mat_dims
[
1
],
y_mat_dims
[
0
],
"First matrix's width must be equal with second matrix's height."
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
{
x_mat_dims
[
0
],
y_mat_dims
[
1
]});
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -83,9 +83,14 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
1
)
.
EqualGreaterThan
(
1
);
AddComment
(
R"DOC(
Two Element Mul Operator
.
Mul operator is used to perform matrix multiplication for input X and Y
.
The equation is: Out = X * Y
The equation is:
Out = X * Y
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
)DOC"
);
}
};
...
...
@@ -103,10 +108,8 @@ class MulOpGrad : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
x_mat_dims
=
framework
::
flatten_to_2d
(
x_dims
,
Attr
<
int
>
(
"x_num_col_dims"
));
...
...
paddle/operators/pad_op.cc
浏览文件 @
c2c2d610
...
...
@@ -39,8 +39,13 @@ class PadOp : public framework::OperatorWithKernel {
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
out_dims
[
i
]
=
x_dim
[
i
]
+
paddings
[
i
*
2
]
+
paddings
[
i
*
2
+
1
];
}
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
framework
::
make_ddim
(
out_dims
));
if
(
out_dims
[
0
]
==
x_dim
[
0
])
{
// Only pass LoD when the first dimension is equal between
// output and input.
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
};
...
...
@@ -101,7 +106,7 @@ class PadOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
*
x_g
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
x_g
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
x_g
!=
nullptr
)
{
x_g
->
Resize
(
x_dims
);
}
...
...
paddle/operators/prelu_op.cc
浏览文件 @
c2c2d610
...
...
@@ -36,8 +36,9 @@ class PReluOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out"
),
"Output(Out) should not be null"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
Resize
(
in
->
dims
());
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -55,6 +56,8 @@ The equation is:
f(x) = alpha * x , for x < 0
f(x) = x , for x >= 0
The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD with input `X`.
)DOC"
);
}
};
...
...
@@ -69,11 +72,11 @@ class PReluGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
*
dx
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
dalpha
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"Alpha"
));
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Alpha"
));
auto
*
alpha
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Alpha"
);
dx
->
Resize
(
x
->
dims
());
...
...
paddle/operators/rank_loss_op.cc
浏览文件 @
c2c2d610
...
...
@@ -40,7 +40,7 @@ class RankLossOp : public framework::OperatorWithKernel {
"All inputs must have the same size"
);
PADDLE_ENFORCE
((
label_dims
.
size
()
==
2
)
&&
(
label_dims
[
1
]
==
1
),
"All inputs must be row vector with size batch_size x 1."
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
label_dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
label_dims
);
}
};
...
...
@@ -102,9 +102,9 @@ class RankLossGradOp : public framework::OperatorWithKernel {
"Input(Out@GRAD) shouldn't be null."
);
auto
dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Left"
)
->
dims
();
auto
*
left_grad
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"Left"
));
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Left"
));
auto
*
right_grad
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"Right"
));
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Right"
));
if
(
left_grad
)
{
left_grad
->
Resize
(
dims
);
}
...
...
paddle/operators/rank_loss_op.h
浏览文件 @
c2c2d610
...
...
@@ -24,7 +24,7 @@ template <typename Place, typename T>
class
RankLossKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out_t
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
out_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
left_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Left"
);
auto
*
right_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Right"
);
...
...
@@ -46,9 +46,9 @@ class RankLossGradKernel : public framework::OpKernel {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_left_t
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"Left"
));
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Left"
));
auto
*
d_right_t
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"Right"
));
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Right"
));
auto
*
d_out_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
...
...
paddle/operators/reshape_op.cc
浏览文件 @
c2c2d610
...
...
@@ -50,7 +50,12 @@ class ReshapeOp : public framework::OperatorWithKernel {
std
::
transform
(
shape
.
begin
(),
shape
.
end
(),
shape_int64
.
begin
(),
[](
int
a
)
{
return
static_cast
<
int64_t
>
(
a
);
});
auto
out_dims
=
framework
::
make_ddim
(
shape_int64
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
out_dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
out_dims
);
if
(
shape
[
0
]
==
in
->
dims
()[
0
])
{
// Only pass LoD when the first dimension is equal between
// output and input.
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
};
...
...
@@ -94,7 +99,7 @@ class ReshapeGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
auto
dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
dims
();
auto
*
d_in
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_in
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
d_in
->
Resize
(
dims
);
}
};
...
...
paddle/operators/rowwise_add_op.cc
浏览文件 @
c2c2d610
...
...
@@ -44,7 +44,8 @@ class RowwiseAddOp : public framework::OperatorWithKernel {
framework
::
slice_ddim
(
x_dims
,
num_col_dims
,
x_dims
.
size
()),
b_dims
,
"The width of two operands must be same"
);
PADDLE_ENFORCE_EQ
(
ctx
.
OutputSize
(
"Out"
),
1
,
"The output size must be 1"
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
x_dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
x_dims
);
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -83,8 +84,8 @@ class RowwiseAddGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
num_col_dims
,
x_dims
.
size
()),
b_dims
,
"The width of two operands must be same"
);
auto
*
dx
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
db
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"b"
));
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
db
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"b"
));
if
(
dx
)
dx
->
Resize
(
x_dims
);
if
(
db
)
db
->
Resize
(
b_dims
);
}
...
...
paddle/operators/scale_op.cc
浏览文件 @
c2c2d610
...
...
@@ -33,8 +33,9 @@ class ScaleOp : public framework::OperatorWithKernel {
"Output(Out) of ScaleOp should not be null."
);
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
Resize
(
in
->
dims
());
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
paddle/operators/scatter_op.cc
浏览文件 @
c2c2d610
...
...
@@ -44,7 +44,7 @@ class ScatterOp : public framework::OperatorWithKernel {
framework
::
DDim
data_dim
(
ctx
.
Input
<
Tensor
>
(
"Updates"
)
->
dims
());
for
(
int
i
=
1
;
i
<
data_dim
.
size
();
++
i
)
PADDLE_ENFORCE_EQ
(
data_dim
[
i
],
ctx
.
Input
<
Tensor
>
(
"Updates"
)
->
dims
()[
i
]);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Ref"
)
->
dims
());
}
};
...
...
@@ -56,10 +56,9 @@ class ScatterGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
*
dUpdates
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"Updates"
));
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Updates"
));
auto
*
Updates
=
ctx
.
Input
<
Tensor
>
(
"Updates"
);
auto
*
dRef
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Ref"
));
auto
*
dRef
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Ref"
));
auto
*
Ref
=
ctx
.
Input
<
Tensor
>
(
"Ref"
);
dRef
->
Resize
(
Ref
->
dims
());
...
...
paddle/operators/sgd_op.cc
浏览文件 @
c2c2d610
...
...
@@ -33,7 +33,7 @@ class SGDOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"param"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
"grad"
)
->
dims
(),
"Two input of SGD Op's dimension must be same."
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"param_out"
)
ctx
.
Output
<
framework
::
Tensor
>
(
"param_out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"param"
)
->
dims
());
}
};
...
...
paddle/operators/smooth_l1_loss_op.cc
浏览文件 @
c2c2d610
...
...
@@ -44,8 +44,8 @@ class SmoothL1LossOp : public framework::OperatorWithKernel {
"The shape of OutsideWeight must be same as X."
);
}
auto
*
diff
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Diff"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
diff
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Diff"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
diff
->
Resize
(
x
->
dims
());
// loss is a two-rank tensor
out
->
Resize
({
x
->
dims
()[
0
],
1
});
...
...
@@ -103,10 +103,8 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
auto
in_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_GE
(
out_dims
.
size
(),
2
,
"The tensor rank of Input(Out@Grad) should be 2."
);
...
...
paddle/operators/softmax_op.cc
浏览文件 @
c2c2d610
...
...
@@ -30,8 +30,7 @@ class SoftmaxOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
()
==
2UL
,
"The input of softmax op must be a matrix."
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
ctx
.
Output
<
framework
::
Tensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
@@ -77,7 +76,7 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
))
->
dims
(),
"Input(Y) and its gradients should have a same shape."
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
))
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
paddle/operators/split_op.cc
浏览文件 @
c2c2d610
...
...
@@ -27,7 +27,7 @@ class SplitOp : public framework::OperatorWithKernel {
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
// infershape
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Out"
);
size_t
axis
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"axis"
));
size_t
num
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num"
));
std
::
vector
<
int
>
sections
=
...
...
paddle/operators/squared_l2_distance_op.cc
浏览文件 @
c2c2d610
...
...
@@ -54,9 +54,10 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel {
"First dimension of target must be equal to input "
"or to 1."
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"sub_result"
)
ctx
.
Output
<
framework
::
Tensor
>
(
"sub_result"
)
->
Resize
({
x_dims
[
0
],
x
->
numel
()
/
x_dims
[
0
]});
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -79,6 +80,9 @@ class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker {
input or to 1. If the first dimension of target is 1, SquaredL2DistanceOp
will broadcast target's first dimension to input's first dimension.
You can decide whether calculate the gradient of input and target.
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input X.
)DOC"
);
}
};
...
...
@@ -100,10 +104,8 @@ class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
out_dims
[
1
],
1
,
"Second dimension of output gradient "
"must be 1."
);
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
if
(
y_grad
)
y_grad
->
Resize
(
y_dims
);
}
...
...
paddle/operators/sum_op.cc
浏览文件 @
c2c2d610
...
...
@@ -28,7 +28,7 @@ class SumOp : public framework::OperatorWithKernel {
"Output(Out) of SumOp should not be null."
);
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
int
N
=
ins
.
size
();
auto
in_dim
=
ins
[
0
]
->
dims
();
...
...
@@ -39,6 +39,7 @@ class SumOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
in_dim
==
dim
,
"Input tensors must have same shape"
);
}
out
->
Resize
(
in_dim
);
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -49,8 +50,11 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"the input tensors of sum operator."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"the output tensor of sum operator."
);
AddComment
(
R"DOC(
Sum the input tensors.
)DOC"
);
Sum the input tensors.
All the inputs can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with the first input.
)DOC"
);
}
};
...
...
@@ -61,7 +65,7 @@ class SumGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
outputs
=
ctx
.
MultiOutput
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
for
(
auto
output
:
outputs
)
{
output
->
Resize
(
dims
);
...
...
paddle/operators/top_k_op.cc
浏览文件 @
c2c2d610
...
...
@@ -40,8 +40,8 @@ class TopkOp : public framework::OperatorWithKernel {
framework
::
DDim
dims
=
input
->
dims
();
dims
[
dims
.
size
()
-
1
]
=
k
;
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
dims
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Indices"
)
->
Resize
(
dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Indices"
)
->
Resize
(
dims
);
}
};
...
...
paddle/operators/transpose_op.cc
浏览文件 @
c2c2d610
...
...
@@ -51,7 +51,7 @@ class TransposeOp : public framework::OperatorWithKernel {
for
(
size_t
i
=
0
;
i
<
axis_size
;
i
++
)
{
out_dims
[
i
]
=
x_dims
[
axis
[
i
]];
}
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
out_dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
out_dims
);
}
};
...
...
@@ -99,8 +99,7 @@ class TransposeOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
}
...
...
paddle/operators/uniform_random_op.cc
浏览文件 @
c2c2d610
...
...
@@ -54,7 +54,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
Attr
<
float
>
(
"min"
)
<
Attr
<
float
>
(
"max"
),
"uniform_random's min must less then max"
);
auto
*
tensor
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
dims
=
Attr
<
std
::
vector
<
int
>>
(
"dims"
);
std
::
vector
<
int64_t
>
temp
;
temp
.
reserve
(
dims
.
size
());
...
...
python/paddle/v2/framework/tests/test_fill_zeros_like_op.py
浏览文件 @
c2c2d610
...
...
@@ -6,8 +6,8 @@ from op_test import OpTest
class
TestFillZerosLikeOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"fill_zeros_like"
self
.
inputs
=
{
'
Src
'
:
np
.
random
.
random
((
219
,
232
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'
Dst'
:
np
.
zeros_like
(
self
.
inputs
[
"Src
"
])}
self
.
inputs
=
{
'
X
'
:
np
.
random
.
random
((
219
,
232
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'
Y'
:
np
.
zeros_like
(
self
.
inputs
[
"X
"
])}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录