Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c1a69e3e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c1a69e3e
编写于
3月 01, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine doc. test=develop
上级
65d375a0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
53 addition
and
41 deletion
+53
-41
paddle/fluid/operators/spectral_norm_op.cc
paddle/fluid/operators/spectral_norm_op.cc
+29
-21
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+24
-20
未找到文件。
paddle/fluid/operators/spectral_norm_op.cc
浏览文件 @
c1a69e3e
...
@@ -78,7 +78,7 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -78,7 +78,7 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"Weight"
,
AddInput
(
"Weight"
,
"The input weight tensor of spectral_norm operator, "
"The input weight tensor of spectral_norm operator, "
"This can be a 2-D, 3-D, 4-D, 5-D tensor which is the"
"This can be a 2-D, 3-D, 4-D, 5-D tensor which is the
"
"weights of fc, conv1d, conv2d, conv3d layer."
);
"weights of fc, conv1d, conv2d, conv3d layer."
);
AddInput
(
"U"
,
AddInput
(
"U"
,
"The weight_u tensor of spectral_norm operator, "
"The weight_u tensor of spectral_norm operator, "
...
@@ -90,29 +90,29 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -90,29 +90,29 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
"be in shape [C, 1]."
);
"be in shape [C, 1]."
);
AddInput
(
"V"
,
AddInput
(
"V"
,
"The weight_v tensor of spectral_norm operator, "
"The weight_v tensor of spectral_norm operator, "
"This can be a 1-D tensor in shape [W, 1],"
"This can be a 1-D tensor in shape [W, 1],
"
"W is the 2nd dimentions of Weight after reshape"
"W is the 2nd dimentions of Weight after reshape
"
"corresponding by Attr(dim). As for Attr(dim) = 1"
"corresponding by Attr(dim). As for Attr(dim) = 1
"
"in conv2d layer with weight shape [M, C, K1, K2]"
"in conv2d layer with weight shape [M, C, K1, K2]
"
"Weight will be reshape to [C, M*K1*K2], V will"
"Weight will be reshape to [C, M*K1*K2], V will
"
"be in shape [M*K1*K2, 1]."
);
"be in shape [M*K1*K2, 1]."
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"The output weight tensor of spectral_norm operator, "
"The output weight tensor of spectral_norm operator, "
"This tensor is in same shape with Input(Weight)."
);
"This tensor is in same shape with Input(Weight)."
);
AddAttr
<
int
>
(
"dim"
,
AddAttr
<
int
>
(
"dim"
,
"dimension corresponding to number of outputs,"
"dimension corresponding to number of outputs,
"
"it should be set as 0 if Input(Weight) is the"
"it should be set as 0 if Input(Weight) is the
"
"weight of fc layer, and should be set as 1 if"
"weight of fc layer, and should be set as 1 if
"
"Input(Weight) is the weight of conv layer,"
"Input(Weight) is the weight of conv layer,
"
"default
is
0."
)
"default 0."
)
.
SetDefault
(
0
);
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"power_iters"
,
AddAttr
<
int
>
(
"power_iters"
,
"number of power iterations to calculate"
"number of power iterations to calculate
"
"spectral norm, default
is
1."
)
"spectral norm, default 1."
)
.
SetDefault
(
1
);
.
SetDefault
(
1
);
AddAttr
<
float
>
(
"eps"
,
AddAttr
<
float
>
(
"eps"
,
"epsilob for numerical stability in"
"epsilob for numerical stability in
"
"calculating norms"
)
"calculating norms"
)
.
SetDefault
(
1e-12
);
.
SetDefault
(
1e-12
);
...
@@ -126,20 +126,28 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -126,20 +126,28 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
with spectral normalize value.
with spectral normalize value.
For spectral normalization calculations, we rescaling weight
For spectral normalization calculations, we rescaling weight
tensor with
\sigma, while \sigma{\mathbf{W}}
is
tensor with
:math:`\sigma`, while :math:`\sigma{\mathbf{W}}`
is
\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}
$$\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \\frac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}$$
We calculate
\sigma{\mathbf{W}}
through power iterations as
We calculate
:math:`\sigma{\mathbf{W}}`
through power iterations as
$$
\mathbf{v} = \mathbf{W}^{T} \mathbf{u}
\mathbf{v} = \mathbf{W}^{T} \mathbf{u}
\mathbf{v} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}
$$
$$
\mathbf{v} = \\frac{\mathbf{v}}{\|\mathbf{v}\|_2}
$$
$$
\mathbf{u} = \mathbf{W}^{T} \mathbf{v}
\mathbf{u} = \mathbf{W}^{T} \mathbf{v}
\mathbf{u} = \frac{\mathbf{u}}{\|\mathbf{u}\|_2}
$$
$$
\mathbf{u} = \\frac{\mathbf{u}}{\|\mathbf{u}\|_2}
$$
And
\sigma
should be
And
:math:`\sigma`
should be
\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
$$\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}$$
For details of spectral normalization, please refer to paper:
For details of spectral normalization, please refer to paper:
`Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
`Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
c1a69e3e
...
@@ -3356,34 +3356,38 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
...
@@ -3356,34 +3356,38 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
Parameters. Calculations are showed as followings.
Parameters. Calculations are showed as followings.
.. code-block:: text
Step 1:
Generate vector U in shape of [H], and V in shape of [W].
While H is the :attr:`dim` th dimension of the input weights,
and W is the product result of remain dimensions.
Step 1:
Step 2:
Generate vector u in shape of [h], and v in shape of [w].
:attr:`power_iters` shoule be a positive interger, do following
While h is the attr:`dim`th dimension of the input weights,
calculations with U and V for :attr:`power_iters` rounds.
and w is the product result of remain dimensions.
Step 2:
.. math::
While attr:`power_iters` is a positive interger, do following
iteration calculations with u and v for attr:`power_iters`
\mathbf{v} :=
\\
frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
round.
\mathbf{v} = \mathbf{W}^{T} \mathbf{u}
\mathbf{u} :=
\\
frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
\mathbf{v} =
\f
rac{\mathbf{v}}{\|\mathbf{v}\|_2}
\mathbf{u} = \mathbf{W}^{T} \mathbf{v}
Step 3:
\mathbf{u} =
\f
rac{\mathbf{u}}{\|\mathbf{u}\|_2}
Calculate :math:`\sigma(\mathbf{W})` and scale weight values.
Step 3:
.. math::
Calculate \sigma{W} and scale weight values.
\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
\sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
\mathbf{W} :=
\f
rac{\mathbf{W}}{\sigma{\mathbf{W}}}
\mathbf{W} =
\\
frac{\mathbf{W}}{\sigma(\mathbf{W})}
Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
Args:
Args:
weight(${weight_type}): ${weight_comment}
weight(${weight_type}): ${weight_comment}
dim(${dim_type}): ${dim_comment}
dim(int): ${dim_comment}
eps(${eps_type}): ${eps_comment}
power_iters(int): ${power_iters_comment}
eps(float): ${eps_comment}
name (str): The name of this layer. It is optional.
name (str): The name of this layer. It is optional.
Returns:
Returns:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录