Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c0bc8186
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c0bc8186
编写于
1月 08, 2019
作者:
X
xuezhong
提交者:
GitHub
1月 08, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15188 from velconia/add_pyramid_dnn_support
Add no lock optimization pass
上级
d09d6ead
7b7d0d0c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
499 addition
and
2 deletion
+499
-2
cmake/FindJeMalloc.cmake
cmake/FindJeMalloc.cmake
+7
-0
cmake/generic.cmake
cmake/generic.cmake
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+1
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/lock_free_optimize_pass.cc
paddle/fluid/framework/ir/lock_free_optimize_pass.cc
+358
-0
paddle/fluid/framework/ir/lock_free_optimize_pass.h
paddle/fluid/framework/ir/lock_free_optimize_pass.h
+130
-0
未找到文件。
cmake/FindJeMalloc.cmake
浏览文件 @
c0bc8186
...
...
@@ -19,3 +19,10 @@ find_package_handle_standard_args(jemalloc DEFAULT_MSG JEMALLOC_LIBRARIES JEMALL
mark_as_advanced
(
JEMALLOC_LIBRARIES
JEMALLOC_INCLUDE_DIR
)
if
(
JEMALLOC_FOUND
)
add_library
(
jemalloc::jemalloc UNKNOWN IMPORTED
)
set_target_properties
(
jemalloc::jemalloc PROPERTIES
IMPORTED_LOCATION
${
JEMALLOC_LIBRARIES
}
INTERFACE_INCLUDE_DIRECTORIES
"
${
JEMALLOC_INCLUDE_DIR
}
"
)
endif
()
cmake/generic.cmake
浏览文件 @
c0bc8186
...
...
@@ -117,7 +117,7 @@ function(common_link TARGET_NAME)
endif
()
if
(
WITH_JEMALLOC
)
target_link_libraries
(
${
TARGET_NAME
}
${
JEMALLOC_LIBRARIES
}
)
target_link_libraries
(
${
TARGET_NAME
}
jemalloc::jemalloc
)
endif
()
endfunction
()
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
c0bc8186
...
...
@@ -94,4 +94,4 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass multi_batch_merge_pass
memory_optimize_pass
)
memory_optimize_pass
lock_free_optimize_pass
)
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
c0bc8186
...
...
@@ -232,3 +232,4 @@ USE_PASS(analysis_var_pass);
USE_PASS
(
sequential_execution_pass
);
USE_PASS
(
all_reduce_deps_pass
);
USE_PASS
(
modify_op_lock_and_record_event_pass
);
USE_PASS
(
lock_free_optimize_pass
);
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
c0bc8186
...
...
@@ -31,6 +31,7 @@ cc_library(fuse_pass_base SRCS fuse_pass_base.cc DEPS pass)
pass_library
(
graph_to_program_pass base
)
pass_library
(
graph_viz_pass base
)
pass_library
(
lock_free_optimize_pass base
)
pass_library
(
fc_fuse_pass inference
)
pass_library
(
attention_lstm_fuse_pass inference
)
pass_library
(
infer_clean_graph_pass inference
)
...
...
paddle/fluid/framework/ir/lock_free_optimize_pass.cc
0 → 100644
浏览文件 @
c0bc8186
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/lock_free_optimize_pass.h"
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
const
char
kSumGradOpName
[]
=
"sum"
;
// TODO(minqiyang): only support sgd at current time, please add
// other optimizers later.
const
char
kOptimizerType
[]
=
"sgd"
;
std
::
unique_ptr
<
ir
::
Graph
>
LockFreeOptimizePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
PADDLE_ENFORCE
(
graph
.
get
());
// We could collect all weights' name from SGD, where
// W1 <- SGD(W0, Grad0)
std
::
unordered_set
<
std
::
string
>
weight_var_set
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
IsOpNamed
(
node
,
kOptimizerType
))
{
auto
&
param_out_vars
=
node
->
Op
()
->
Output
(
"ParamOut"
);
PADDLE_ENFORCE
(
param_out_vars
.
size
()
==
1u
);
weight_var_set
.
insert
(
param_out_vars
[
0
]);
}
}
// find all grad's merge op via weight name, where
// Grad0 <- SUM(Grad1, Grad2, Grad3 ...)
std
::
unordered_set
<
ir
::
Node
*>
grad_sum_op_set
;
for
(
ir
::
Node
*
node
:
graph
->
Nodes
())
{
if
(
IsOpNamed
(
node
,
kSumGradOpName
))
{
for
(
ir
::
Node
*
output
:
node
->
outputs
)
{
// strip the last grad suffix @GRAD
std
::
string
var_name
=
output
->
Name
();
const
std
::
string
suffix
(
kGradVarSuffix
);
if
(
var_name
!=
suffix
&&
var_name
.
size
()
>
suffix
.
size
()
&&
var_name
.
substr
(
var_name
.
size
()
-
suffix
.
size
())
==
suffix
)
{
// if so then strip them off
var_name
=
var_name
.
substr
(
0
,
var_name
.
size
()
-
suffix
.
size
());
if
(
weight_var_set
.
find
(
var_name
)
!=
weight_var_set
.
end
())
{
grad_sum_op_set
.
insert
(
node
);
break
;
}
}
}
}
}
// get the forward op and backward op pairs, where
// out <- forward(X, W)
// Grad1 <- backward(out, X')
// Grad0 <- SUM(Grad1, Grad2, Grad3 ...)
// W0 <- SGD(W1, Grad0)
for
(
ir
::
Node
*
node
:
grad_sum_op_set
)
{
for
(
ir
::
Node
*
merged_grad_var
:
node
->
outputs
)
{
// find the optimizers connected with sum op
if
(
IsVarNameEndsWith
(
merged_grad_var
,
kGradVarSuffix
)
&&
merged_grad_var
->
outputs
.
size
()
==
1u
)
{
ir
::
Node
*
opt_node
=
merged_grad_var
->
outputs
[
0
];
VLOG
(
3
)
<<
"Found opt node "
<<
opt_node
->
Name
();
// find the backward op connected with sum op
for
(
ir
::
Node
*
unmerged_grad_var
:
node
->
inputs
)
{
if
(
IsVarNameContains
(
unmerged_grad_var
,
kGradVarSuffix
)
&&
unmerged_grad_var
->
inputs
.
size
()
==
1u
)
{
ir
::
Node
*
backward_op
=
unmerged_grad_var
->
inputs
[
0
];
VLOG
(
3
)
<<
"Found backward_op "
<<
backward_op
->
Name
();
// find the forward op related to the backward op
ir
::
Node
*
forward_op
=
FindForwardOpViaBackwardOp
(
graph
.
get
(),
backward_op
);
VLOG
(
3
)
<<
"Found forward_op "
<<
forward_op
->
Name
();
PADDLE_ENFORCE
(
forward_op
);
Node
*
new_optimizer_node
=
CreateNewSGDNode
(
graph
.
get
(),
forward_op
,
backward_op
,
node
,
opt_node
);
PADDLE_ENFORCE
(
new_optimizer_node
);
}
}
}
}
}
// Remove the sum_op and its' outputs and connected Optimizers
for
(
Node
*
sum_op
:
grad_sum_op_set
)
{
for
(
Node
*
sum_op_output
:
sum_op
->
outputs
)
{
for
(
Node
*
optimize_op
:
sum_op_output
->
outputs
)
{
if
(
optimize_op
->
NodeType
()
==
Node
::
Type
::
kOperation
&&
optimize_op
->
Name
()
==
kOptimizerType
)
{
VLOG
(
3
)
<<
"remove optimize_op: "
<<
optimize_op
->
Name
()
<<
"_"
<<
optimize_op
->
id
();
graph
->
RemoveNode
(
optimize_op
);
}
}
VLOG
(
3
)
<<
"remove sum_op_output: "
<<
sum_op_output
->
Name
()
<<
"_"
<<
sum_op_output
->
id
();
graph
->
RemoveNode
(
sum_op_output
);
}
VLOG
(
3
)
<<
"remove sum_op: "
<<
sum_op
->
Name
()
<<
"_"
<<
sum_op
->
id
();
graph
->
RemoveNode
(
sum_op
);
}
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
Node
*
output_node
:
node
->
outputs
)
{
if
(
output_node
->
Name
()
==
"sgd"
)
{
VLOG
(
3
)
<<
"Node link to SGD: "
<<
node
->
Name
()
<<
"_"
<<
node
->
id
()
<<
" --> "
<<
output_node
->
Name
()
<<
"_"
<<
output_node
->
id
();
for
(
Node
*
input_node
:
node
->
inputs
)
{
VLOG
(
3
)
<<
"SGD Input link: "
<<
input_node
->
Name
()
<<
"_"
<<
input_node
->
id
()
<<
" --> "
<<
node
->
Name
()
<<
"_"
<<
node
->
id
();
}
}
}
}
return
graph
;
}
ir
::
Node
*
LockFreeOptimizePass
::
CreateNewSGDNode
(
ir
::
Graph
*
graph
,
ir
::
Node
*
forward_node
,
ir
::
Node
*
backward_node
,
ir
::
Node
*
grad_sum_node
,
ir
::
Node
*
optimize_node
)
const
{
PADDLE_ENFORCE
(
graph
);
PADDLE_ENFORCE
(
forward_node
);
PADDLE_ENFORCE
(
backward_node
);
PADDLE_ENFORCE
(
grad_sum_node
);
PADDLE_ENFORCE
(
optimize_node
);
// find the grad var node between the grad sum node and backward_node
std
::
vector
<
ir
::
Node
*>
grad_vars
=
FindConnectedNode
(
backward_node
,
grad_sum_node
);
ir
::
Node
*
grad_node
=
nullptr
;
for
(
ir
::
Node
*
node
:
grad_vars
)
{
if
(
!
ir
::
IsControlDepVar
(
*
node
))
{
grad_node
=
node
;
}
}
PADDLE_ENFORCE
(
grad_node
);
// create a new SGD node
OpDesc
*
old_desc
=
optimize_node
->
Op
();
// keep with the same block between new optimizer and the old one
OpDesc
new_desc
(
*
old_desc
,
old_desc
->
Block
());
new_desc
.
SetInput
(
"Param"
,
old_desc
->
Input
(
"Param"
));
new_desc
.
SetInput
(
"LearningRate"
,
old_desc
->
Input
(
"LearningRate"
));
new_desc
.
SetInput
(
"Grad"
,
std
::
vector
<
std
::
string
>
({
grad_node
->
Name
()}));
new_desc
.
SetOutput
(
"ParamOut"
,
old_desc
->
Output
(
"ParamOut"
));
std
::
vector
<
std
::
string
>
op_role_vars
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
new_desc
.
GetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
()));
// replace the second op role var, because the grad name was
// changed in new optimizer
op_role_vars
.
pop_back
();
op_role_vars
.
push_back
(
grad_node
->
Name
());
new_desc
.
SetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
(),
op_role_vars
);
new_desc
.
SetType
(
kOptimizerType
);
// set backward op's op role var, this will be used to
// set device_id in multi_device_pass
backward_node
->
Op
()
->
SetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
(),
op_role_vars
);
// backward_node->Op()->SetAttr(
// framework::OpProtoAndCheckerMaker::OpRoleVarAttrName(), {});
// keep with the same output nodes between new optimizer and the
// old one
Node
*
sgd_node
=
graph
->
CreateOpNode
(
&
new_desc
);
// change all outputs of the optimize_node to the new one
ReplaceAllDownstreamNode
(
optimize_node
,
sgd_node
);
// find connected node between forward node and optimize node
// and replace the optimize node to new sgd node
std
::
vector
<
ir
::
Node
*>
forward_opt_connected_nodes
=
FindConnectedNode
(
forward_node
,
optimize_node
);
for
(
ir
::
Node
*
node
:
forward_opt_connected_nodes
)
{
ReplaceUpstreamNode
(
node
,
optimize_node
,
sgd_node
);
}
// find connected node between backward node and optimize node
// and replace the optimize node to new sgd node
std
::
vector
<
ir
::
Node
*>
backward_opt_connected_nodes
=
FindConnectedNode
(
backward_node
,
optimize_node
);
for
(
ir
::
Node
*
node
:
backward_opt_connected_nodes
)
{
ReplaceUpstreamNode
(
node
,
optimize_node
,
sgd_node
);
}
// SGD must have only one param and LR in
PADDLE_ENFORCE
(
old_desc
->
Input
(
"LearningRate"
).
size
()
==
1u
);
PADDLE_ENFORCE
(
old_desc
->
Input
(
"Param"
).
size
()
==
1u
);
// LR and weight nodes should be copied
for
(
Node
*
upstream_node
:
optimize_node
->
inputs
)
{
if
(
upstream_node
->
Name
()
==
old_desc
->
Input
(
"LearningRate"
)[
0
]
||
upstream_node
->
Name
()
==
old_desc
->
Input
(
"Param"
)[
0
])
{
ReplaceUpstreamNode
(
upstream_node
,
optimize_node
,
sgd_node
);
}
}
VLOG
(
3
)
<<
"Create new opt node"
<<
sgd_node
->
Name
()
<<
"_"
<<
sgd_node
->
id
();
return
sgd_node
;
}
std
::
vector
<
ir
::
Node
*>
LockFreeOptimizePass
::
FindConnectedNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
downstream_node
)
const
{
std
::
vector
<
ir
::
Node
*>
result
;
for
(
ir
::
Node
*
out_node
:
upstream_node
->
outputs
)
{
for
(
ir
::
Node
*
in_node
:
downstream_node
->
inputs
)
{
if
(
in_node
==
out_node
)
{
result
.
push_back
(
in_node
);
}
}
}
return
result
;
}
void
LockFreeOptimizePass
::
ReplaceUpstreamNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
{
PADDLE_ENFORCE
(
upstream_node
);
PADDLE_ENFORCE
(
old_optimizer_node
);
PADDLE_ENFORCE
(
new_optimizer_node
);
// Remove the old_optimizer_node from upstream_node's outputs vector
auto
&
output_node_vec
=
upstream_node
->
outputs
;
for
(
auto
output_node_iter
=
output_node_vec
.
begin
();
output_node_iter
!=
output_node_vec
.
end
();)
{
if
(
*
output_node_iter
==
old_optimizer_node
)
{
output_node_vec
.
erase
(
output_node_iter
);
break
;
}
else
{
++
output_node_iter
;
}
}
// Add the new_optimizer_node to upstream_node's outputs vector
output_node_vec
.
emplace_back
(
new_optimizer_node
);
new_optimizer_node
->
inputs
.
emplace_back
(
upstream_node
);
}
void
LockFreeOptimizePass
::
ReplaceAllDownstreamNode
(
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
{
PADDLE_ENFORCE
(
old_optimizer_node
);
PADDLE_ENFORCE
(
new_optimizer_node
);
for
(
ir
::
Node
*
downstream_node
:
old_optimizer_node
->
outputs
)
{
// Remove the old_optimizer_node from downstream_node's inputs vector
auto
&
input_node_vec
=
downstream_node
->
inputs
;
for
(
auto
input_node_iter
=
input_node_vec
.
begin
();
input_node_iter
!=
input_node_vec
.
end
();)
{
if
(
*
input_node_iter
==
old_optimizer_node
)
{
input_node_vec
.
erase
(
input_node_iter
);
break
;
}
else
{
++
input_node_iter
;
}
}
// Add the new_optimizer_node to downstream_node's inputs vector
input_node_vec
.
emplace_back
(
new_optimizer_node
);
new_optimizer_node
->
outputs
.
emplace_back
(
downstream_node
);
}
}
ir
::
Node
*
LockFreeOptimizePass
::
FindForwardOpViaBackwardOp
(
ir
::
Graph
*
graph
,
ir
::
Node
*
backward_node
)
const
{
PADDLE_ENFORCE
(
graph
);
PADDLE_ENFORCE
(
backward_node
);
// strip the suffix _grad of backward_node's name
std
::
string
forward_op_name
=
backward_node
->
Name
();
const
std
::
string
suffix
(
"_grad"
);
if
(
forward_op_name
!=
suffix
&&
forward_op_name
.
size
()
>
suffix
.
size
()
&&
forward_op_name
.
substr
(
forward_op_name
.
size
()
-
suffix
.
size
())
==
suffix
)
{
// if so then strip them off
forward_op_name
=
forward_op_name
.
substr
(
0
,
forward_op_name
.
size
()
-
suffix
.
size
());
}
else
{
LOG
(
WARNING
)
<<
"Illegal backward node's name "
<<
backward_node
->
Name
()
<<
" id "
<<
backward_node
->
id
();
return
nullptr
;
}
for
(
ir
::
Node
*
node
:
graph
->
Nodes
())
{
if
(
node
->
Name
()
==
forward_op_name
)
{
if
(
node
->
outputs
.
size
()
==
0u
)
{
// if forward_node has no output, then it has NO grad op
continue
;
}
// check whether all inputs of the backward_op that ends_with @GRAD
// comes from the output of forward_op is the input of the backward_op
bool
is_related_forward_node
=
true
;
for
(
ir
::
Node
*
backward_input
:
backward_node
->
inputs
)
{
if
(
IsVarNameEndsWith
(
backward_input
,
kGradVarSuffix
))
{
bool
meets_correct_output
=
false
;
for
(
ir
::
Node
*
forward_output
:
node
->
outputs
)
{
if
(
forward_output
->
Name
()
+
kGradVarSuffix
==
backward_input
->
Name
())
{
meets_correct_output
=
true
;
break
;
}
}
if
(
!
meets_correct_output
)
{
is_related_forward_node
=
false
;
break
;
}
}
}
if
(
is_related_forward_node
)
{
return
node
;
}
}
}
return
nullptr
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
lock_free_optimize_pass
,
paddle
::
framework
::
ir
::
LockFreeOptimizePass
);
paddle/fluid/framework/ir/lock_free_optimize_pass.h
0 → 100644
浏览文件 @
c0bc8186
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_
#define PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_
#include <string>
#include <vector>
#include <boost/algorithm/string/predicate.hpp>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Node
;
/*
* Remove the sum op of all gradients of the backward op.
* And remove the dependecies of the optimizer related to the
* same backward op.
*
* Before this pass:
*
* forward_op1 forward_op2
* | |
* grad_op1 grad_op2
* \ /
* \ /
* sum_op
* |
* sgd_op
*
* After this pass:
* forward_op1 forward_op2
* | |
* grad_op1 grad_op2
* | |
* sgd_op1 sgd_op2
*
* sgd_op1 and sgd_op2 will update the same weight which holds the same
* memory, so we could benefits from the acceleration
*/
class
LockFreeOptimizePass
:
public
Pass
{
public:
virtual
~
LockFreeOptimizePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
private:
// Create a new sgd node via current optimizer node
ir
::
Node
*
CreateNewSGDNode
(
ir
::
Graph
*
graph
,
ir
::
Node
*
forward_node
,
ir
::
Node
*
backward_node
,
ir
::
Node
*
grad_sum_node
,
ir
::
Node
*
optimize_node
)
const
;
// Replace the input weight's optimizers
void
ReplaceUpstreamNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
;
// Replace the output weight's optimizers
void
ReplaceAllDownstreamNode
(
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
;
// Find all weight variables in graph
bool
FindAllWeightVars
(
ir
::
Graph
*
graph
)
const
;
// Find the forward_op node via the backward_op node
ir
::
Node
*
FindForwardOpViaBackwardOp
(
ir
::
Graph
*
graph
,
ir
::
Node
*
backward_node
)
const
;
std
::
vector
<
ir
::
Node
*>
FindConnectedNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
downstream_node
)
const
;
inline
bool
IsOpNamed
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kOperation
&&
node
->
Name
()
==
name
;
}
inline
bool
IsVarNamed
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kVariable
&&
node
->
Name
()
==
name
;
}
inline
bool
IsVarNameEndsWith
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kVariable
&&
boost
::
algorithm
::
ends_with
(
node
->
Name
(),
name
);
}
inline
bool
IsVarNameContains
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kVariable
&&
node
->
Name
().
find
(
name
)
!=
std
::
string
::
npos
;
}
inline
bool
IsControlDepFrom
(
ir
::
Node
*
ctrl_dep_node
,
ir
::
Node
*
node
)
const
{
PADDLE_ENFORCE
(
ctrl_dep_node
);
PADDLE_ENFORCE
(
node
);
return
IsControlDepVar
(
*
ctrl_dep_node
)
&&
ctrl_dep_node
->
inputs
.
size
()
>=
1u
&&
ctrl_dep_node
->
inputs
[
0
]
==
node
;
}
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
#endif // PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录