提交 bfbc25bd 编写于 作者: K Kexin Zhao

add fp16 pool2d support

上级 02b3cfb1
......@@ -78,7 +78,8 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn pool algorithm ---------------------
auto handle = ctx.cuda_device_context().cudnn_handle();
T alpha = 1.0f, beta = 0.0f;
typename platform::CudnnDataType<T>::ScalingParamType alpha = 1.0f,
beta = 0.0f;
PADDLE_ENFORCE(platform::dynload::cudnnPoolingForward(
handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
......@@ -144,7 +145,8 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn pool algorithm ---------------------
auto handle = ctx.cuda_device_context().cudnn_handle();
T alpha = 1.0f, beta = 0.0f;
typename platform::CudnnDataType<T>::ScalingParamType alpha = 1.0f,
beta = 0.0f;
if (input_grad) {
T *input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
......@@ -162,17 +164,19 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(pool2d, CUDNN, ::paddle::platform::CUDAPlace,
REGISTER_OP_KERNEL(pool2d, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNOpKernel<float>,
ops::PoolCUDNNOpKernel<double>);
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, ::paddle::platform::CUDAPlace,
ops::PoolCUDNNOpKernel<double>,
ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNGradOpKernel<float>,
ops::PoolCUDNNGradOpKernel<double>);
REGISTER_OP_KERNEL(pool3d, CUDNN, ::paddle::platform::CUDAPlace,
REGISTER_OP_KERNEL(pool3d, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNOpKernel<float>,
ops::PoolCUDNNOpKernel<double>);
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, ::paddle::platform::CUDAPlace,
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNGradOpKernel<float>,
ops::PoolCUDNNGradOpKernel<double>);
......@@ -124,11 +124,15 @@ framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
}
#endif
auto input_data_type = framework::ToDataType(ctx.Input<Tensor>("X")->type());
if (input_data_type == framework::proto::VarType::FP16) {
PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
"float16 can only be used when CUDNN is used");
}
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout_, library_);
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
library_);
}
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
......
......@@ -483,9 +483,9 @@ class OpTest(unittest.TestCase):
input: input numpy array
Returns:
input: if the dtype of input is np.float16, its dtype will be
changed to np.uint16 so that the internal memory will be
reinterpreted input as of dtype np.uint16.
input: The dtype of input will be changed to np.uint16 if
it is originally np.float16, such that the internal memory
of input will be reinterpreted as of dtype np.uint16.
"""
if input.dtype == np.float16:
input.dtype = np.uint16
......
......@@ -65,10 +65,10 @@ class TestConv2dOp(OpTest):
def setUp(self):
self.use_cudnn = False
self.use_mkldnn = False
self.dtype = np.float32
self.init_op_type()
self.init_group()
self.init_dilation()
self.init_data_type()
self.init_test_case()
conv2d_param = {
......@@ -159,9 +159,6 @@ class TestConv2dOp(OpTest):
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3]
def init_data_type(self):
self.dtype = np.float32
def init_dilation(self):
self.dilations = [1, 1]
......@@ -246,8 +243,10 @@ class TestCUDNN(TestConv2dOp):
self.op_type = "conv2d"
class TestFP16CUDNN(TestCUDNN):
def init_data_type(self):
class TestFP16CUDNN(TestConv2dOp):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d"
self.dtype = np.float16
def test_check_output(self):
......@@ -263,8 +262,10 @@ class TestCUDNNWithPad(TestWithPad):
self.op_type = "conv2d"
class TestFP16CUDNNWithPad(TestCUDNNWithPad):
def init_data_type(self):
class TestFP16CUDNNWithPad(TestWithPad):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d"
self.dtype = np.float16
def test_check_output(self):
......@@ -280,8 +281,10 @@ class TestCUDNNWithStride(TestWithStride):
self.op_type = "conv2d"
class TestFP16CUDNNWithStride(TestCUDNNWithStride):
def init_data_type(self):
class TestFP16CUDNNWithStride(TestWithStride):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d"
self.dtype = np.float16
def test_check_output(self):
......@@ -297,8 +300,10 @@ class TestCUDNNWithGroup(TestWithGroup):
self.op_type = "conv2d"
class TestFP16CUDNNWithGroup(TestCUDNNWithGroup):
def init_data_type(self):
class TestFP16CUDNNWithGroup(TestWithGroup):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d"
self.dtype = np.float16
def test_check_output(self):
......@@ -314,8 +319,10 @@ class TestCUDNNWith1x1(TestWith1x1):
self.op_type = "conv2d"
class TestFP16CUDNNWith1x1(TestCUDNNWith1x1):
def init_data_type(self):
class TestFP16CUDNNWith1x1(TestWith1x1):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d"
self.dtype = np.float16
def test_check_output(self):
......@@ -331,8 +338,10 @@ class TestCUDNNWithInput1x1Filter1x1(TestWithInput1x1Filter1x1):
self.op_type = "conv2d"
class TestFP16CUDNNWithInput1x1Filter1x1(TestCUDNNWithInput1x1Filter1x1):
def init_data_type(self):
class TestFP16CUDNNWithInput1x1Filter1x1(TestWithInput1x1Filter1x1):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d"
self.dtype = np.float16
def test_check_output(self):
......
......@@ -80,6 +80,7 @@ class TestPool2d_Op(OpTest):
def setUp(self):
self.use_cudnn = False
self.use_mkldnn = False
self.dtype = np.float32
self.init_test_case()
self.init_global_pool()
self.init_op_type()
......@@ -87,11 +88,11 @@ class TestPool2d_Op(OpTest):
self.init_ceil_mode()
if self.global_pool:
self.paddings = [0 for _ in range(len(self.paddings))]
input = np.random.random(self.shape).astype("float32")
input = np.random.random(self.shape).astype(self.dtype)
output = self.pool2D_forward_naive(input, self.ksize, self.strides,
self.paddings, self.global_pool,
self.ceil_mode).astype("float32")
self.inputs = {'X': input}
self.ceil_mode).astype(self.dtype)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
self.attrs = {
'strides': self.strides,
......@@ -105,7 +106,7 @@ class TestPool2d_Op(OpTest):
'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter
}
self.outputs = {'Out': output.astype('float32')}
self.outputs = {'Out': output}
def test_check_output(self):
if self.use_cudnn:
......@@ -115,6 +116,8 @@ class TestPool2d_Op(OpTest):
self.check_output()
def test_check_grad(self):
if self.dtype == np.float16:
return
if self.use_cudnn and self.pool_type != "max":
place = core.CUDAPlace(0)
self.check_grad_with_place(
......@@ -212,36 +215,114 @@ class TestCUDNNCase1(TestPool2d_Op):
self.op_type = "pool2d"
class TestFP16CUDNNCase1(TestPool2d_Op):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase2(TestCase1):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase2(TestCase1):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase3(TestCase2):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase3(TestCase2):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase4(TestCase3):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase4(TestCase3):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase5(TestCase4):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase5(TestCase4):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase6(TestCase5):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase6(TestCase5):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "pool2d"
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCeilModeCase1(TestCUDNNCase1):
def init_ceil_mode(self):
self.ceil_mode = True
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册