提交 bf740a3f 编写于 作者: Q qijun

merge baidu/develop

...@@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and ...@@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and
- [Deep Learning 101](http://book.paddlepaddle.org/index.html) - [Deep Learning 101](http://book.paddlepaddle.org/index.html)
You might want to start from the this online interactive book that can run in Jupyter Notebook. You might want to start from this online interactive book that can run in Jupyter Notebook.
- [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html) - [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html)
......
...@@ -20,34 +20,30 @@ INCLUDE(ExternalProject) ...@@ -20,34 +20,30 @@ INCLUDE(ExternalProject)
SET(MKLDNN_PROJECT "extern_mkldnn") SET(MKLDNN_PROJECT "extern_mkldnn")
SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn) SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn)
SET(MKLDNN_INSTALL_ROOT ${CMAKE_INSTALL_PREFIX}) SET(MKLDNN_INSTALL_DIR ${THIRD_PARTY_PATH}/install/mkldnn)
IF(NOT "$ENV{HOME}" STREQUAL "/root") SET(MKLDNN_INC_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
SET(MKLDNN_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLDNN_INSTALL_DIR "${MKLDNN_INSTALL_ROOT}/opt/paddle/third_party/mkldnn")
SET(MKLDNN_INCLUDE_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
IF(WIN32) IF(WIN32 OR APPLE)
MESSAGE(WARNING "It is not supported compiling with mkldnn in windows Paddle yet." MESSAGE(WARNING
"Force WITH_MKLDNN=OFF") "Windows or Mac is not supported with MKLDNN in Paddle yet."
SET(WITH_MKLDNN OFF) "Force WITH_MKLDNN=OFF")
SET(WITH_MKLDNN OFF CACHE STRING "Disable MKLDNN in Windows and MacOS" FORCE)
return() return()
ELSE(WIN32) ENDIF()
SET(MKLDNN_LIBRARY "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path") SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE) MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
#SET(CMAKE_MACOSX_RPATH 1) # hold for MacOS SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib") SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${MKLDNN_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR})
IF(${CBLAS_PROVIDER} STREQUAL "MKLML") IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
SET(MKLDNN_DEPENDS ${MKLML_PROJECT}) SET(MKLDNN_DEPENDS ${MKLML_PROJECT})
SET(MKLDNN_MKLROOT ${MKLML_ROOT}) SET(MKLDNN_MKLROOT ${MKLML_ROOT})
SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB}) SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB})
SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR}) SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR})
MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}")
ENDIF() ENDIF()
ExternalProject_Add( ExternalProject_Add(
...@@ -57,16 +53,15 @@ ExternalProject_Add( ...@@ -57,16 +53,15 @@ ExternalProject_Add(
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git" GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.9" GIT_TAG "v0.9"
PREFIX ${MKLDNN_SOURCES_DIR} PREFIX ${MKLDNN_SOURCES_DIR}
CONFIGURE_COMMAND mkdir -p <SOURCE_DIR>/build
BUILD_COMMAND cd <SOURCE_DIR>/build
&& cmake .. -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} -DMKLROOT=${MKLDNN_MKLROOT}
&& $(MAKE)
INSTALL_COMMAND cd <SOURCE_DIR>/build && $(MAKE) install
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLDNN_MKLROOT}
) )
ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL) ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIBRARY}) SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB})
ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT})
MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIBRARY}") MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIB}")
LIST(APPEND external_project_dependencies mkldnn) LIST(APPEND external_project_dependencies mkldnn)
...@@ -16,19 +16,23 @@ IF(NOT ${WITH_MKLML}) ...@@ -16,19 +16,23 @@ IF(NOT ${WITH_MKLML})
return() return()
ENDIF(NOT ${WITH_MKLML}) ENDIF(NOT ${WITH_MKLML})
IF(WIN32 OR APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with MKLML in Paddle yet."
"Force WITH_MKLML=OFF")
SET(WITH_MKLML OFF CACHE STRING "Disable MKLML package in Windows and MacOS" FORCE)
return()
ENDIF()
INCLUDE(ExternalProject) INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml") SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.20170425") SET(MKLML_VER "mklml_lnx_2018.0.20170720")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz") SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml") SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}") SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "opt/paddle/third_party/mklml") SET(MKLML_DST_DIR "mklml")
SET(MKLML_INSTALL_ROOT "${CMAKE_INSTALL_PREFIX}") SET(MKLML_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
IF(NOT "$ENV{HOME}" STREQUAL "/root")
SET(MKLML_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR}) SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER}) SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER})
SET(MKLML_INC_DIR ${MKLML_ROOT}/include) SET(MKLML_INC_DIR ${MKLML_ROOT}/include)
......
...@@ -187,7 +187,13 @@ function(cc_library TARGET_NAME) ...@@ -187,7 +187,13 @@ function(cc_library TARGET_NAME)
endif() endif()
# cpplint code style # cpplint code style
add_style_check_target(${TARGET_NAME} ${cc_library_SRCS}) foreach(source_file ${cc_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${cc_library_SRCS} ${cc_library_HEADERS})
else(cc_library_SRCS) else(cc_library_SRCS)
if (cc_library_DEPS) if (cc_library_DEPS)
...@@ -239,6 +245,14 @@ function(nv_library TARGET_NAME) ...@@ -239,6 +245,14 @@ function(nv_library TARGET_NAME)
add_dependencies(${TARGET_NAME} ${nv_library_DEPS}) add_dependencies(${TARGET_NAME} ${nv_library_DEPS})
target_link_libraries(${TARGET_NAME} ${nv_library_DEPS}) target_link_libraries(${TARGET_NAME} ${nv_library_DEPS})
endif() endif()
# cpplint code style
foreach(source_file ${nv_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${nv_library_SRCS} ${nv_library_HEADERS})
else(nv_library_SRCS) else(nv_library_SRCS)
if (nv_library_DEPS) if (nv_library_DEPS)
merge_static_libs(${TARGET_NAME} ${nv_library_DEPS}) merge_static_libs(${TARGET_NAME} ${nv_library_DEPS})
......
...@@ -15,7 +15,6 @@ if(Boost_FOUND) ...@@ -15,7 +15,6 @@ if(Boost_FOUND)
add_subdirectory(platform) add_subdirectory(platform)
add_subdirectory(framework) add_subdirectory(framework)
add_subdirectory(operators) add_subdirectory(operators)
add_subdirectory(pybind)
endif() endif()
if(WITH_C_API) if(WITH_C_API)
......
...@@ -31,8 +31,14 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. ...@@ -31,8 +31,14 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init) add_dependencies(framework_py_proto framework_py_proto_init)
cc_library(net SRCS net.cc DEPS op_registry) cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(net_op_test SRCS net_op_test.cc DEPS net)
cc_library(backward SRCS backward.cc DEPS net)
cc_test(backward_test SRCS backward_test.cc DEPS backward) cc_test(backward_test SRCS backward_test.cc DEPS backward)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
recurrent_op)
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include <list> #include <list>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -32,7 +32,7 @@ static bool AllInSet(const std::vector<std::string>& names, ...@@ -32,7 +32,7 @@ static bool AllInSet(const std::vector<std::string>& names,
} }
static std::shared_ptr<OperatorBase> NOP() { static std::shared_ptr<OperatorBase> NOP() {
auto net_op = std::make_shared<NetOp>(); auto net_op = std::make_shared<operators::NetOp>();
net_op->type_ = "@NOP@"; net_op->type_ = "@NOP@";
net_op->CompleteAddOp(); net_op->CompleteAddOp();
return net_op; return net_op;
...@@ -42,9 +42,9 @@ static std::shared_ptr<OperatorBase> NOP() { ...@@ -42,9 +42,9 @@ static std::shared_ptr<OperatorBase> NOP() {
// //
// no_grad_names the gradient variable names without gradient calculating. // no_grad_names the gradient variable names without gradient calculating.
// //
// uniq_id is a unique index used inside recursively calling BackwardRecursive. // uniq_id is a unique index used inside recursively calling
// use `uid = uniq_id++;` to get the unique index, and pass `uniq_id` through // BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
// recursive calling. // pass `uniq_id` through recursive calling.
// //
// returns The backward operator. For simple situation, it is a simple // returns The backward operator. For simple situation, it is a simple
// operator. For complex situation, it is a NetOp. // operator. For complex situation, it is a NetOp.
...@@ -64,8 +64,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -64,8 +64,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
return NOP(); return NOP();
} }
// All output gradients of forwarding operator do not need to calculate. Then // All output gradients of forwarding operator do not need to calculate.
// all input gradients cannot be computed at all, and we put them into // Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP. // `no_grad_names` set. Return an NOP.
if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(), if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(),
no_grad_names)) { no_grad_names)) {
...@@ -77,14 +77,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -77,14 +77,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
} }
// Returned gradient network // Returned gradient network
auto net = std::make_shared<NetOp>(); auto net = std::make_shared<operators::NetOp>();
if (forwardOp.IsNetOp()) { if (forwardOp.IsNetOp()) {
// Because forwardOp is a net op, it can static_cast. // Because forwardOp is a net op, it can static_cast.
auto& forwardNet = static_cast<const NetOp&>(forwardOp); auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
// Map from output gradient variable name to operator's indices in backward // Map from output gradient variable name to operator's indices in
// net. That operator generates that variable. // backward net. That operator generates that variable.
std::unordered_map<std::string, std::vector<size_t>> dup_output_ops; std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;
size_t local_op_id = 0; size_t local_op_id = 0;
...@@ -168,6 +168,9 @@ std::shared_ptr<OperatorBase> Backward( ...@@ -168,6 +168,9 @@ std::shared_ptr<OperatorBase> Backward(
std::unordered_set<std::string> no_grad_names; std::unordered_set<std::string> no_grad_names;
no_grad_names.reserve(no_grad_vars.size()); no_grad_names.reserve(no_grad_vars.size());
no_grad_names.insert(OperatorBase::EMPTY_VAR_NAME() +
OperatorBase::GRAD_VAR_SUFFIX());
for (auto& name : no_grad_vars) { for (auto& name : no_grad_vars) {
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX()); no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
} }
......
...@@ -15,8 +15,9 @@ ...@@ -15,8 +15,9 @@
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -70,7 +71,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { ...@@ -70,7 +71,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
} }
}; };
class FcOp : public NetOp { class FcOp : public ops::NetOp {
public: public:
void Init() override { void Init() override {
AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")}, AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")},
...@@ -161,8 +162,8 @@ TEST(Backward, simple_op_grad) { ...@@ -161,8 +162,8 @@ TEST(Backward, simple_op_grad) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
auto gop = f::OpRegistry::CreateGradOp(*fwd); auto gop = f::OpRegistry::CreateGradOp(*fwd);
ASSERT_EQ(1UL, gop->inputs_.size()); ASSERT_EQ(4UL, gop->inputs_.size());
ASSERT_EQ("Out" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->inputs_[0]); ASSERT_EQ(f::OperatorBase::EMPTY_VAR_NAME(), gop->inputs_[0]);
ASSERT_EQ("rowwise_add_grad", gop->type_); ASSERT_EQ("rowwise_add_grad", gop->type_);
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[0]); ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[0]);
ASSERT_EQ("b" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[1]); ASSERT_EQ("b" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[1]);
...@@ -182,7 +183,8 @@ TEST(Backward, simple_op_not_need_grad) { ...@@ -182,7 +183,8 @@ TEST(Backward, simple_op_not_need_grad) {
auto no_input_gop = f::Backward(*fwd, {"X", "b"}); auto no_input_gop = f::Backward(*fwd, {"X", "b"});
ASSERT_NE(no_input_gop, nullptr); ASSERT_NE(no_input_gop, nullptr);
ASSERT_TRUE(no_input_gop->IsNetOp()); ASSERT_TRUE(no_input_gop->IsNetOp());
ASSERT_EQ(0UL, std::static_pointer_cast<f::NetOp>(no_input_gop)->ops_.size()); ASSERT_EQ(0UL,
std::static_pointer_cast<ops::NetOp>(no_input_gop)->ops_.size());
} }
TEST(Backward, net_fc_backward_normal) { TEST(Backward, net_fc_backward_normal) {
...@@ -191,7 +193,7 @@ TEST(Backward, net_fc_backward_normal) { ...@@ -191,7 +193,7 @@ TEST(Backward, net_fc_backward_normal) {
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {}); std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp()); ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<f::NetOp *>(gop.get()); auto net = static_cast<ops::NetOp *>(gop.get());
ASSERT_NO_THROW(net->DebugString()); ASSERT_NO_THROW(net->DebugString());
...@@ -214,7 +216,7 @@ TEST(Backward, net_fc_backward_not_have_b) { ...@@ -214,7 +216,7 @@ TEST(Backward, net_fc_backward_not_have_b) {
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {}); std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp()); ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<f::NetOp *>(gop.get()); auto net = static_cast<ops::NetOp *>(gop.get());
ASSERT_NO_THROW(net->DebugString()); ASSERT_NO_THROW(net->DebugString());
...@@ -228,7 +230,7 @@ TEST(Backward, net_fc_backward_not_have_b) { ...@@ -228,7 +230,7 @@ TEST(Backward, net_fc_backward_not_have_b) {
} }
TEST(Backward, net_input_of_network_not_need_grad) { TEST(Backward, net_input_of_network_not_need_grad) {
f::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"},
{"mul_tmp_0", "add_tmp_0", "hidden0"}, {})); {"mul_tmp_0", "add_tmp_0", "hidden0"}, {}));
net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"},
...@@ -236,7 +238,7 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -236,7 +238,7 @@ TEST(Backward, net_input_of_network_not_need_grad) {
net.CompleteAddOp(); net.CompleteAddOp();
auto bwd = Backward(net, {"X"}); // X@GRAD is not need. auto bwd = Backward(net, {"X"}); // X@GRAD is not need.
ASSERT_TRUE(bwd->IsNetOp()); ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(bwd.get()); auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
std::unordered_set<std::string> all_output = std::unordered_set<std::string>( std::unordered_set<std::string> all_output = std::unordered_set<std::string>(
bwd_net->outputs_.begin(), bwd_net->outputs_.end()); bwd_net->outputs_.begin(), bwd_net->outputs_.end());
...@@ -253,7 +255,7 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -253,7 +255,7 @@ TEST(Backward, net_input_of_network_not_need_grad) {
ASSERT_EQ(2UL, bwd_net->ops_.size()); ASSERT_EQ(2UL, bwd_net->ops_.size());
ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp()); ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
auto first_fc_grad = static_cast<f::NetOp *>(bwd_net->ops_[1].get()); auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
ASSERT_EQ(3UL, first_fc_grad->ops_.size()); ASSERT_EQ(3UL, first_fc_grad->ops_.size());
ASSERT_EQ( ASSERT_EQ(
f::OperatorBase::EMPTY_VAR_NAME(), f::OperatorBase::EMPTY_VAR_NAME(),
...@@ -261,14 +263,14 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -261,14 +263,14 @@ TEST(Backward, net_input_of_network_not_need_grad) {
} }
TEST(Backward, net_shared_weight) { TEST(Backward, net_shared_weight) {
f::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {})); net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {}));
net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {})); net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {}));
net.CompleteAddOp(); net.CompleteAddOp();
auto bwd = f::Backward(net, {}); auto bwd = f::Backward(net, {});
ASSERT_TRUE(bwd->IsNetOp()); ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(bwd.get()); auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
ASSERT_EQ(3UL, bwd_net->ops_.size()); ASSERT_EQ(3UL, bwd_net->ops_.size());
ASSERT_EQ("add", bwd_net->ops_[2]->type_); ASSERT_EQ("add", bwd_net->ops_[2]->type_);
} }
...@@ -285,7 +287,7 @@ TEST(Backward, op_all_input_are_not_need) { ...@@ -285,7 +287,7 @@ TEST(Backward, op_all_input_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
auto backward = f::Backward(*fwd, {"X", "b"}); auto backward = f::Backward(*fwd, {"X", "b"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty()); ASSERT_TRUE(net->ops_.empty());
} }
...@@ -293,7 +295,7 @@ TEST(Backward, op_all_output_are_not_need) { ...@@ -293,7 +295,7 @@ TEST(Backward, op_all_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
auto backward = f::Backward(*fwd, {"Out"}); auto backward = f::Backward(*fwd, {"Out"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty()); ASSERT_TRUE(net->ops_.empty());
} }
...@@ -301,7 +303,7 @@ TEST(Backward, op_part_of_output_are_not_need) { ...@@ -301,7 +303,7 @@ TEST(Backward, op_part_of_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {}); auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {});
auto backward = f::Backward(*fwd, {"Z"}); auto backward = f::Backward(*fwd, {"Z"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_EQ(net->ops_.size(), 2UL); ASSERT_EQ(net->ops_.size(), 2UL);
auto &fill_zero = *net->ops_[0]; auto &fill_zero = *net->ops_[0];
...@@ -341,7 +343,7 @@ TEST(Backward, op_part_of_input_are_not_need) { ...@@ -341,7 +343,7 @@ TEST(Backward, op_part_of_input_are_not_need) {
} }
TEST(Backward, linear_net_intermediate_variable_has_no_grad) { TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
f::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"},
{"mul_out1", "add_out1", "out1"}, {})); {"mul_out1", "add_out1", "out1"}, {}));
net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"},
...@@ -351,14 +353,13 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { ...@@ -351,14 +353,13 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
net.CompleteAddOp(); net.CompleteAddOp();
auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"}); auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(backward.get()); auto bwd_net = static_cast<ops::NetOp *>(backward.get());
ASSERT_EQ(bwd_net->ops_.size(), 3UL); ASSERT_EQ(bwd_net->ops_.size(), 3UL);
auto &grad_fc = *bwd_net->ops_[0]; auto &grad_fc = *bwd_net->ops_[0];
EXPECT_EQ(grad_fc.inputs_.size(), EXPECT_EQ(grad_fc.inputs_.size(),
3UL /* external input number */ 3UL /* external input number */
+ 1UL /* external output number*/ + 1UL /* external output number*/
+ 1UL /* number of gradient of external output*/ + 1UL /* number of gradient of external output*/
- 1UL /*ignoreGradient varable number*/
+ 2U /* internal variable number*/); + 2U /* internal variable number*/);
EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/ EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/
+ 2UL /* input number of rowwise_add */ + 2UL /* input number of rowwise_add */
......
...@@ -25,18 +25,15 @@ limitations under the License. */ ...@@ -25,18 +25,15 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
namespace {
typedef boost::variant<Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>, Dim<7>,
Dim<8>, Dim<9>>
DDimVar;
}
/** /**
* \brief A dynamically sized dimension. * \brief A dynamically sized dimension.
* *
* The number of dimensions must be between [1, 9]. * The number of dimensions must be between [1, 9].
*/ */
struct DDim { struct DDim {
typedef boost::variant<Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>, Dim<7>,
Dim<8>, Dim<9>>
DDimVar;
DDimVar var; DDimVar var;
DDim() : var(Dim<1>()) {} DDim() : var(Dim<1>()) {}
......
...@@ -8,107 +8,97 @@ You may obtain a copy of the License at ...@@ -8,107 +8,97 @@ You may obtain a copy of the License at
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOpArgType::OUT WARRANTIES OR CONDITIONS OF ANY KOpArgType::IND, either
See the License for the specific language governing permissions and express or implied. See the License for the specific language governing
limitations under the License. */ permissions and limitations under the License. */
#include "paddle/framework/grad_op_builder.h" #include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
OperatorBase* GradOpBuilder::Build() { class OpRegistry;
BuildOpInOutArgList();
std::string grad_op_type = OpRegistry::grad_ops().at(op_.type_); using VarIndexMap = std::unordered_map<std::string, int>;
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
CompleteGradOp(grad_op);
return grad_op;
}
OpInOutArg* GradOpBuilder::BuildArg(const VarProto& var, enum class OpArgType { IN, OUT };
const VarIndexMap& var_map,
const std::vector<int>& format, static std::vector<int>* GetOpFormat(OperatorBase* op, const OpArgType& type) {
InOutType type) { std::string key = type == OpArgType::IN ? "input_format" : "output_format";
int idx = var_map.at(var.name()); return op->attrs_.count(key)
int begin_idx = format.empty() ? idx : format.at(idx); ? &boost::get<std::vector<int>>(op->attrs_.at(key))
int end_idx = format.empty() ? idx + 1 : format.at(idx + 1); : nullptr;
return new OpInOutArg(var.name(), type, !var.ignore_gradient(), begin_idx,
end_idx);
} }
void GradOpBuilder::BuildOpInOutArgList() { static const std::vector<int>* GetOpFormat(const OperatorBase* op,
const OpProto& op_proto = OpRegistry::protos().at(op_.type_); const OpArgType& type) {
const auto& var_map = *(OpRegistry::VarIndexMaps().at(op_.type_)); std::string key = type == OpArgType::IN ? "input_format" : "output_format";
const std::vector<int>& in_format = return op->attrs_.count(key)
op_.attrs_.count("input_format") ? &boost::get<std::vector<int>>(op->attrs_.at(key))
? op_.GetAttr<std::vector<int>>("input_format") : nullptr;
: std::vector<int>();
const std::vector<int>& out_format =
op_.attrs_.count("output_format")
? op_.GetAttr<std::vector<int>>("output_format")
: std::vector<int>();
for (const auto& var : op_proto.inputs()) {
arg_list_.emplace_back(
std::shared_ptr<OpInOutArg>(BuildArg(var, var_map, in_format, IN)));
}
for (const auto& var : op_proto.outputs()) {
arg_list_.emplace_back(
std::shared_ptr<OpInOutArg>(BuildArg(var, var_map, out_format, OUT)));
}
} }
void GradOpBuilder::AddArgIntoGradOp(const OpInOutArg* arg, static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
std::vector<std::string>& in_out, const OpArgType& src_type, const OpArgType& dst_type,
std::vector<int>& format, int& idx, bool is_grad) {
VarIndexMap* varmap, int& idx, const std::vector<std::string>& src_inout =
bool is_grad) const { src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_;
std::string var_name = arg->proto_name_; const std::vector<int>* src_format = GetOpFormat(src_op, src_type);
if (is_grad) {
var_name += OperatorBase::GRAD_VAR_SUFFIX(); std::vector<std::string>& dst_inout =
} dst_type == OpArgType::IN ? dst_op->inputs_ : dst_op->outputs_;
(*varmap)[var_name] = idx++; std::vector<int>* dst_format = GetOpFormat(dst_op, dst_type);
size_t pre_sz = in_out.size(); const OpProto& proto = OpRegistry::protos().at(src_op->type_);
auto base_it = arg->type_ == IN ? op_.inputs_.begin() : op_.outputs_.begin(); const auto& src_arg_list =
std::copy(base_it + arg->begin_idx_, base_it + arg->end_idx_, src_type == OpArgType::IN ? proto.inputs() : proto.outputs();
std::back_inserter(in_out));
if (is_grad) { for (const auto& arg : src_arg_list) {
for (size_t i = pre_sz; i < in_out.size(); ++i) { std::string src_name = arg.name();
in_out[i] += OperatorBase::GRAD_VAR_SUFFIX(); std::string dst_name =
is_grad ? src_name + OperatorBase::GRAD_VAR_SUFFIX() : src_name;
(*dst_op->in_out_idxs_)[dst_name] = idx++;
int src_arg_idx = src_op->in_out_idxs_->at(src_name);
int src_begin =
src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx);
int src_end = src_format == nullptr ? src_arg_idx + 1
: src_format->at(src_arg_idx + 1);
for (int i = src_begin; i < src_end; ++i) {
std::string s = is_grad ? src_inout[i] + OperatorBase::GRAD_VAR_SUFFIX()
: arg.ignore_gradient()
? OperatorBase::EMPTY_VAR_NAME()
: src_inout[i];
dst_inout.emplace_back(s);
}
if (dst_format != nullptr) {
dst_format->push_back(dst_inout.size());
} }
} }
format.push_back(in_out.size());
} }
void GradOpBuilder::CompleteGradOp(OperatorBase* grad_op) const { OperatorBase* BuildGradOp(const OperatorBase* op) {
grad_op->attrs_ = op_.attrs_; std::string grad_op_type = OpRegistry::grad_ops().at(op->type_);
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
grad_op->attrs_ = op->attrs_;
grad_op->attrs_.erase("input_format"); grad_op->attrs_.erase("input_format");
grad_op->attrs_.erase("output_format"); grad_op->attrs_.erase("output_format");
VarIndexMap* grad_varmap = new VarIndexMap(); if (GetOpFormat(op, OpArgType::IN) != nullptr) {
grad_op->attrs_["output_format"] = std::vector<int>({0});
}
if (GetOpFormat(op, OpArgType::IN) != nullptr ||
GetOpFormat(op, OpArgType::OUT) != nullptr) {
grad_op->attrs_["input_format"] = std::vector<int>({0});
}
grad_op->in_out_idxs_.reset(new VarIndexMap());
int in_idx = 0; int in_idx = 0;
int out_idx = 0; int out_idx = 0;
std::vector<int> in_format({0}); TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I
std::vector<int> out_format({0}); TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G
for (const auto& arg : arg_list_) { TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG
// op_'s inputs_ and outputs_ TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG
if (arg->needed_in_grad_) { return grad_op;
AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap,
in_idx, false);
}
if (arg->type_ == IN) {
// gradients of op_'s inputs_
AddArgIntoGradOp(arg.get(), grad_op->outputs_, out_format, grad_varmap,
out_idx, true);
} else {
// gradients of op_'s outputs_
AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap,
in_idx, true);
}
}
grad_op->attrs_["input_format"] = in_format;
grad_op->attrs_["output_format"] = out_format;
grad_op->in_out_idxs_.reset(grad_varmap);
} }
} // namespace framework } // namespace framework
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class OpRegistry;
OperatorBase* BuildGradOp(const OperatorBase* op);
enum InOutType { IN, OUT };
struct OpInOutArg {
OpInOutArg(const std::string& proto_name, const InOutType& type,
bool needed_in_grad, size_t begin_idx, size_t end_idx)
: proto_name_(proto_name),
type_(type),
needed_in_grad_(needed_in_grad),
begin_idx_(begin_idx),
end_idx_(end_idx) {}
std::string proto_name_;
InOutType type_;
bool needed_in_grad_;
size_t begin_idx_;
size_t end_idx_;
};
class GradOpBuilder {
using VarIndexMap = std::unordered_map<std::string, int>;
public:
GradOpBuilder(const OperatorBase& op) : op_(op) {}
OperatorBase* Build();
private:
OpInOutArg* BuildArg(const VarProto& var, const VarIndexMap& var_map,
const std::vector<int>& format, InOutType type);
void BuildOpInOutArgList();
void AddArgIntoGradOp(const OpInOutArg* arg, std::vector<std::string>& in_out,
std::vector<int>& format, VarIndexMap* varmap, int& idx,
bool is_grad) const;
void CompleteGradOp(OperatorBase* grad_op) const;
const OperatorBase& op_;
std::vector<std::shared_ptr<OpInOutArg>> arg_list_;
};
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -8,10 +8,49 @@ USE_OP(add_two); ...@@ -8,10 +8,49 @@ USE_OP(add_two);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class NOP : public OperatorBase {
public:
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope,
const platform::DeviceContext &dev_ctx) const override {}
};
class MutiInOutOpMaker : public OpProtoAndCheckerMaker {
public:
MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").SetMultiple();
AddInput("In3", "another single input");
AddOutput("Out1", "a single output");
AddOutput("Out2_mult", "a multiple output").SetMultiple();
AddComment("test op with multiple inputs and outputs");
}
};
class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
public:
IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").SetMultiple().IgnoreGradient();
AddInput("In3_mult", "another multiple input").SetMultiple();
AddOutput("Out1_mult", "a multiple output").SetMultiple();
AddOutput("Out2", "a single output").IgnoreGradient();
AddComment("op with inputs and outputs ignored in gradient calculating");
}
};
} // namespace framework
} // namespace paddle
namespace f = paddle::framework;
TEST(GradOpBuilder, AddTwo) { TEST(GradOpBuilder, AddTwo) {
std::shared_ptr<OperatorBase> add_op( std::shared_ptr<f::OperatorBase> add_op(
OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {})); f::OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {}));
std::shared_ptr<OperatorBase> grad_add_op = OpRegistry::CreateGradOp(*add_op); std::shared_ptr<f::OperatorBase> grad_add_op =
f::OpRegistry::CreateGradOp(*add_op);
EXPECT_EQ(static_cast<int>(grad_add_op->inputs_.size()), 4); EXPECT_EQ(static_cast<int>(grad_add_op->inputs_.size()), 4);
EXPECT_EQ(static_cast<int>(grad_add_op->outputs_.size()), 2); EXPECT_EQ(static_cast<int>(grad_add_op->outputs_.size()), 2);
EXPECT_EQ(grad_add_op->Input("X"), "x"); EXPECT_EQ(grad_add_op->Input("X"), "x");
...@@ -22,5 +61,85 @@ TEST(GradOpBuilder, AddTwo) { ...@@ -22,5 +61,85 @@ TEST(GradOpBuilder, AddTwo) {
EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD"); EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD");
} }
} // namespace framework REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker);
} // namespace paddle REGISTER_GRADIENT_OP(mult_io, mult_io_grad, f::NOP);
\ No newline at end of file REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker);
REGISTER_GRADIENT_OP(io_ignored, io_ignored_grad, f::NOP);
TEST(GradOpBuilder, MutiInOut) {
f::AttributeMap attrs{{"input_format", std::vector<int>{0, 1, 4, 5}},
{"output_format", std::vector<int>{0, 1, 3}}};
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"mult_io", {"in1", "in2_1", "in2_2", "in2_3", "in3"},
{"out1", "out2_1", "out2_2"}, attrs));
std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op);
ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({"in2_1", "in2_2", "in2_3"}));
EXPECT_EQ(grad_test_op->Input("In3"), "in3");
EXPECT_EQ(grad_test_op->Input("Out1"), "out1");
EXPECT_EQ(grad_test_op->Inputs("Out2_mult"),
std::vector<std::string>({"out2_1", "out2_2"}));
EXPECT_EQ(grad_test_op->Input("Out1" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out1" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(
grad_test_op->Inputs("Out2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>(
{"out2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"out2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"in1" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(
grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in2_3" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
EXPECT_EQ(grad_test_op->Output("In3" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"in3" + f::OperatorBase::GRAD_VAR_SUFFIX());
}
TEST(GradOpBuilder, IOIgnoredInGradient) {
f::AttributeMap attrs{{"input_format", std::vector<int>{0, 1, 3, 5}},
{"output_format", std::vector<int>{0, 2, 3}}};
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"io_ignored", {"in1", "in2_1", "in2_2", "in3_1", "in3_2"},
{"out1_1", "out1_2", "out2"}, attrs));
std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op);
// 'In2' and 'Out2' are ignored in gradient calculating
ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({f::OperatorBase::EMPTY_VAR_NAME(),
f::OperatorBase::EMPTY_VAR_NAME()}));
EXPECT_EQ(grad_test_op->Inputs("In3_mult"),
std::vector<std::string>({"in3_1", "in3_2"}));
EXPECT_EQ(grad_test_op->Inputs("Out1_mult"),
std::vector<std::string>({"out1_1", "out1_2"}));
EXPECT_EQ(grad_test_op->Input("Out2"), f::OperatorBase::EMPTY_VAR_NAME());
EXPECT_EQ(
grad_test_op->Inputs("Out1_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>(
{"out1_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"out1_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
EXPECT_EQ(grad_test_op->Input("Out2" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out2" + f::OperatorBase::GRAD_VAR_SUFFIX());
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"in1" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(
grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
EXPECT_EQ(
grad_test_op->Outputs("In3_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>({"in3_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in3_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
}
...@@ -306,8 +306,7 @@ class OpRegistry { ...@@ -306,8 +306,7 @@ class OpRegistry {
static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) { static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(), PADDLE_ENFORCE(!op.IsNetOp(),
"Use framework::Backward to get backward ops"); "Use framework::Backward to get backward ops");
GradOpBuilder builder(op); std::shared_ptr<OperatorBase> grad_op(BuildGradOp(&op));
std::shared_ptr<OperatorBase> grad_op(builder.Build());
grad_op->Init(); grad_op->Init();
return grad_op; return grad_op;
} }
...@@ -315,7 +314,7 @@ class OpRegistry { ...@@ -315,7 +314,7 @@ class OpRegistry {
static std::unordered_map<std::string, OpProto>& protos() { static std::unordered_map<std::string, OpProto>& protos() {
static std::unordered_map<std::string, OpProto> protos_; static std::unordered_map<std::string, OpProto> protos_;
return protos_; return protos_;
}; }
static std::unordered_map<std::string, std::string>& grad_ops() { static std::unordered_map<std::string, std::string>& grad_ops() {
static std::unordered_map<std::string, std::string> grad_ops_; static std::unordered_map<std::string, std::string> grad_ops_;
...@@ -337,7 +336,7 @@ class OpRegistry { ...@@ -337,7 +336,7 @@ class OpRegistry {
static std::unordered_map<std::string, OpAttrChecker>& op_checkers() { static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
static std::unordered_map<std::string, OpAttrChecker> op_checkers_; static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
return op_checkers_; return op_checkers_;
}; }
static void GenerateTempVariableName(OperatorBase* op) { static void GenerateTempVariableName(OperatorBase* op) {
static std::atomic<size_t> gUniqId(0UL); static std::atomic<size_t> gUniqId(0UL);
...@@ -354,7 +353,7 @@ class OpRegistry { ...@@ -354,7 +353,7 @@ class OpRegistry {
template <typename OpType, typename ProtoMakerType> template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper { class OpRegisterHelper {
public: public:
OpRegisterHelper(const char* op_type) { explicit OpRegisterHelper(const char* op_type) {
OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type); OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
} }
}; };
......
...@@ -55,6 +55,10 @@ class OperatorBase { ...@@ -55,6 +55,10 @@ class OperatorBase {
/// e.g. Variable "x@GRAD" is the gradient of varibale "x". /// e.g. Variable "x@GRAD" is the gradient of varibale "x".
static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; } static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; }
static std::string GRAD_VAR_NAME(const std::string& name) {
return name + GRAD_VAR_SUFFIX();
}
/// Variables with this suffix are supposed to be filled up with zeros. /// Variables with this suffix are supposed to be filled up with zeros.
static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; } static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; }
...@@ -284,7 +288,7 @@ class OperatorWithKernel : public OperatorBase { ...@@ -284,7 +288,7 @@ class OperatorWithKernel : public OperatorBase {
platform::Place place_; platform::Place place_;
OpKernelKey() = default; OpKernelKey() = default;
OpKernelKey(const platform::DeviceContext& dev_ctx) { explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
place_ = dev_ctx.GetPlace(); place_ = dev_ctx.GetPlace();
} }
......
...@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License"); ...@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
...@@ -17,19 +17,19 @@ limitations under the License. */ ...@@ -17,19 +17,19 @@ limitations under the License. */
#include <vector> #include <vector>
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
#include "paddle/framework/tensor_py.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h" #include "pybind11/numpy.h"
#include "pybind11/pybind11.h" #include "pybind11/pybind11.h"
#include "pybind11/stl.h" #include "pybind11/stl.h"
namespace py = pybind11; namespace py = pybind11;
namespace pd = paddle::framework;
USE_OP(add_two); USE_OP(add_two);
USE_OP(onehot_cross_entropy); USE_OP(onehot_cross_entropy);
...@@ -41,17 +41,18 @@ USE_OP(sigmoid); ...@@ -41,17 +41,18 @@ USE_OP(sigmoid);
USE_OP(softmax); USE_OP(softmax);
USE_OP(rowwise_add); USE_OP(rowwise_add);
USE_OP_WITHOUT_KERNEL(recurrent_op); USE_OP_WITHOUT_KERNEL(recurrent_op);
namespace paddle {
namespace framework {
template <typename ClassType> template <typename ClassType>
void ExposeOperator(ClassType& m) { void ExposeOperator(ClassType &m) {
m.def("infer_shape", &ClassType::type::InferShape) m.def("infer_shape", &ClassType::type::InferShape)
.def("run", &ClassType::type::Run) .def("run", &ClassType::type::Run)
.def("type", .def("type",
[](const typename ClassType::type& op) -> std::string { [](const typename ClassType::type &op) -> std::string {
return op.type_; return op.type_;
}) })
.def("outputs", .def("outputs",
[](const typename ClassType::type& op) -> std::vector<std::string> { [](const typename ClassType::type &op) -> std::vector<std::string> {
return op.outputs_; return op.outputs_;
}) })
.def("__str__", &ClassType::type::DebugString); .def("__str__", &ClassType::type::DebugString);
...@@ -73,80 +74,81 @@ bool IsCompileGPU() { ...@@ -73,80 +74,81 @@ bool IsCompileGPU() {
PYBIND11_PLUGIN(core) { PYBIND11_PLUGIN(core) {
py::module m("core", "C++ core of PaddlePaddle"); py::module m("core", "C++ core of PaddlePaddle");
py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol()) py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
.def_buffer([](pd::Tensor& self) -> py::buffer_info { .def_buffer(
return paddle::pybind::CastToPyBuffer(self); [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
})
.def("get_dims", .def("get_dims",
[](const pd::Tensor& self) { return pd::vectorize(self.dims()); }) [](const Tensor &self) { return vectorize(self.dims()); })
.def("set_dims", .def("set_dims",
[](pd::Tensor& self, const std::vector<int>& dim) { [](Tensor &self, const std::vector<int> &dim) {
self.Resize(pd::make_ddim(dim)); self.Resize(make_ddim(dim));
}) })
.def("alloc_float", .def("alloc_float",
[](pd::Tensor& self, paddle::platform::GPUPlace& place) { [](Tensor &self, paddle::platform::GPUPlace &place) {
self.mutable_data<float>(place); self.mutable_data<float>(place);
}) })
.def("alloc_float", .def("alloc_float",
[](pd::Tensor& self, paddle::platform::CPUPlace& place) { [](Tensor &self, paddle::platform::CPUPlace &place) {
self.mutable_data<float>(place); self.mutable_data<float>(place);
}) })
.def("alloc_int", .def("alloc_int",
[](pd::Tensor& self, paddle::platform::CPUPlace& place) { [](Tensor &self, paddle::platform::CPUPlace &place) {
self.mutable_data<int>(place); self.mutable_data<int>(place);
}) })
.def("alloc_int", .def("alloc_int",
[](pd::Tensor& self, paddle::platform::GPUPlace& place) { [](Tensor &self, paddle::platform::GPUPlace &place) {
self.mutable_data<int>(place); self.mutable_data<int>(place);
}) })
.def("set", paddle::pybind::PyCPUTensorSetFromArray<float>) .def("set", PyCPUTensorSetFromArray<float>)
.def("set", paddle::pybind::PyCPUTensorSetFromArray<int>) .def("set", PyCPUTensorSetFromArray<int>)
#ifndef PADDLE_ONLY_CPU #ifndef PADDLE_ONLY_CPU
.def("set", paddle::pybind::PyCUDATensorSetFromArray<float>) .def("set", PyCUDATensorSetFromArray<float>)
.def("set", paddle::pybind::PyCUDATensorSetFromArray<int>) .def("set", PyCUDATensorSetFromArray<int>)
#endif #endif
.def("shape", .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
[](pd::Tensor& self) { return pd::vectorize(self.dims()); }); .def("set_float_element",
[](Tensor &self, size_t offset, float f) {
// TODO(yuyang18): Only support GPU now.
self.data<float>()[offset] = f;
})
.def("get_float_element", [](Tensor &self, size_t offset) -> float {
// TODO(yuyang18): Only support GPU now.
return self.data<float>()[offset];
});
py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class. py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
All parameter, weight, gradient are variables in Paddle. All parameter, weight, gradient are variables in Paddle.
)DOC") )DOC")
.def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); }) .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
.def("set_int", .def("set_int",
[](pd::Variable& var, int val) -> void { [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
*var.GetMutable<int>() = val; .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
})
.def("get_int",
[](const pd::Variable& var) -> int { return var.Get<int>(); })
.def("get_tensor", .def("get_tensor",
[](pd::Variable& self) -> pd::Tensor* { [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
return self.GetMutable<pd::Tensor>();
},
py::return_value_policy::reference) py::return_value_policy::reference)
.def("get_net", .def("get_net",
[](pd::Variable& self) -> pd::NetOp* { [](Variable &self) -> ops::NetOp * {
return self.GetMutable<pd::NetOp>(); return self.GetMutable<ops::NetOp>();
}, },
py::return_value_policy::reference); py::return_value_policy::reference);
py::class_<pd::Scope>(m, "Scope", "") py::class_<Scope>(m, "Scope", "")
.def("new_var", .def("new_var",
[](pd::Scope& self, const std::string& name) -> pd::Variable* { [](Scope &self, const std::string &name) -> Variable * {
return self.NewVar(name); return self.NewVar(name);
}, },
py::return_value_policy::reference) py::return_value_policy::reference)
.def("find_var", &pd::Scope::FindVar, py::return_value_policy::reference) .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
.def(py::init<>()) .def(py::init<>())
.def("new_scope", .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
[](pd::Scope& self) -> pd::Scope* { return &self.NewScope(); },
py::return_value_policy::reference) py::return_value_policy::reference)
.def("drop_kids", &pd::Scope::DropKids); .def("drop_kids", &Scope::DropKids);
//! @note: Be careful! PyBind will return std::string as an unicode, not //! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python. //! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<py::bytes> { m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
auto& protos = pd::OpRegistry::protos(); auto &protos = OpRegistry::protos();
std::vector<py::bytes> ret_values; std::vector<py::bytes> ret_values;
for (auto it = protos.begin(); it != protos.end(); ++it) { for (auto it = protos.begin(); it != protos.end(); ++it) {
PADDLE_ENFORCE(it->second.IsInitialized(), PADDLE_ENFORCE(it->second.IsInitialized(),
...@@ -161,8 +163,8 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -161,8 +163,8 @@ All parameter, weight, gradient are variables in Paddle.
m.def_submodule( m.def_submodule(
"var_names", "var_names",
"The module will return special predefined variable name in Paddle") "The module will return special predefined variable name in Paddle")
.def("empty", pd::OperatorBase::EMPTY_VAR_NAME) .def("empty", OperatorBase::EMPTY_VAR_NAME)
.def("temp", pd::OperatorBase::TMP_VAR_NAME); .def("temp", OperatorBase::TMP_VAR_NAME);
// clang-format off // clang-format off
py::class_<paddle::platform::DeviceContext>(m, "DeviceContext") py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
.def_static("create", .def_static("create",
...@@ -185,43 +187,45 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -185,43 +187,45 @@ All parameter, weight, gradient are variables in Paddle.
py::class_<paddle::platform::CPUPlace>(m, "CPUPlace").def(py::init<>()); py::class_<paddle::platform::CPUPlace>(m, "CPUPlace").def(py::init<>());
py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base( py::class_<OperatorBase, std::shared_ptr<OperatorBase>> operator_base(
m, "Operator"); m, "Operator");
operator_base.def_static("create", [](py::bytes protobin) { operator_base.def_static("create", [](py::bytes protobin) {
pd::OpDesc desc; OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc"); "Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(), PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s", "User OpDesc is not initialized, reason %s",
desc.InitializationErrorString()); desc.InitializationErrorString());
return pd::OpRegistry::CreateOp(desc); return OpRegistry::CreateOp(desc);
}); });
operator_base.def("backward", operator_base.def("backward",
[](const pd::OperatorBase& forwardOp, [](const OperatorBase &forwardOp,
const std::unordered_set<std::string>& no_grad_vars) { const std::unordered_set<std::string> &no_grad_vars) {
return pd::Backward(forwardOp, no_grad_vars); return Backward(forwardOp, no_grad_vars);
}); });
ExposeOperator(operator_base); ExposeOperator(operator_base);
py::class_<pd::NetOp, std::shared_ptr<pd::NetOp>> net(m, "Net"); py::class_<ops::NetOp, std::shared_ptr<ops::NetOp>> net(m, "Net");
net.def_static("create", net.def_static("create",
[]() -> std::shared_ptr<pd::NetOp> { []() -> std::shared_ptr<ops::NetOp> {
auto retv = std::make_shared<pd::NetOp>(); auto retv = std::make_shared<ops::NetOp>();
retv->type_ = "plain_net"; retv->type_ = "plain_net";
return retv; return retv;
}) })
.def("add_op", &pd::NetOp::AddOp) .def("add_op", &ops::NetOp::AddOp)
.def("add_op", .def(
[](pd::NetOp& self, const std::shared_ptr<pd::NetOp>& net) -> void { "add_op",
self.AddOp(std::static_pointer_cast<pd::OperatorBase>(net)); [](ops::NetOp &self, const std::shared_ptr<ops::NetOp> &net) -> void {
}) self.AddOp(std::static_pointer_cast<OperatorBase>(net));
.def("complete_add_op", &pd::NetOp::CompleteAddOp) })
.def("complete_add_op", &ops::NetOp::CompleteAddOp)
.def("complete_add_op", .def("complete_add_op",
[](std::shared_ptr<pd::NetOp>& self) { self->CompleteAddOp(); }); [](std::shared_ptr<ops::NetOp> &self) { self->CompleteAddOp(); });
ExposeOperator(net); ExposeOperator(net);
m.def("unique_integer", UniqueIntegerGenerator); m.def("unique_integer", UniqueIntegerGenerator);
...@@ -230,3 +234,5 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -230,3 +234,5 @@ All parameter, weight, gradient are variables in Paddle.
return m.ptr(); return m.ptr();
} }
} // namespace framework
} // namespace paddle
...@@ -26,19 +26,17 @@ limitations under the License. */ ...@@ -26,19 +26,17 @@ limitations under the License. */
#include "unsupported/Eigen/CXX11/Tensor" #include "unsupported/Eigen/CXX11/Tensor"
namespace paddle { namespace paddle {
namespace pybind {
namespace details { // forward declare
template <bool less, size_t i, typename... args>
struct CastToPyBufferImpl;
} // namespace details
} // namespace pybind
namespace framework { namespace framework {
namespace details {
template <bool less, size_t i, typename... args>
struct CastToPyBufferImpl;
}
class Tensor { class Tensor {
public: public:
template <bool less, size_t i, typename... args> template <bool less, size_t i, typename... args>
friend struct paddle::pybind::details::CastToPyBufferImpl; friend struct details::CastToPyBufferImpl;
template <typename T, size_t D, int MajorType, typename IndexType> template <typename T, size_t D, int MajorType, typename IndexType>
friend struct EigenTensor; friend struct EigenTensor;
......
...@@ -23,7 +23,7 @@ namespace py = pybind11; ...@@ -23,7 +23,7 @@ namespace py = pybind11;
namespace paddle { namespace paddle {
namespace pybind { namespace framework {
namespace details { namespace details {
...@@ -63,11 +63,8 @@ struct CastToPyBufferImpl<true, I, ARGS...> { ...@@ -63,11 +63,8 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
} }
return py::buffer_info( return py::buffer_info(
dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.holder_->place()), dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.holder_->place()),
sizeof(CUR_TYPE), sizeof(CUR_TYPE), py::format_descriptor<CUR_TYPE>::format(),
py::format_descriptor<CUR_TYPE>::format(), (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides);
(size_t)framework::arity(dst_tensor.dims()),
dims_outside,
strides);
} else { } else {
constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value; constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor); return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
...@@ -110,8 +107,8 @@ void PyCUDATensorSetFromArray( ...@@ -110,8 +107,8 @@ void PyCUDATensorSetFromArray(
self.Resize(framework::make_ddim(dims)); self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place); auto *dst = self.mutable_data<T>(place);
paddle::platform::GpuMemcpySync( paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice); cudaMemcpyHostToDevice);
} }
#endif #endif
......
...@@ -967,8 +967,9 @@ void RecurrentGradientMachine::generateSequence() { ...@@ -967,8 +967,9 @@ void RecurrentGradientMachine::generateSequence() {
size_t numSequences = getGenBatchSize(); size_t numSequences = getGenBatchSize();
resizeBootFrame(numSequences); resizeBootFrame(numSequences);
// We create only two sub-network in generation for alternate use. // We create only two sub-network in generation, one stores states of all
// Thus, we can reduce total memory of output_ in layer forward. // layers in previous time step and the other storing the states at current
// time step.
resizeOrCreateFrames(2); resizeOrCreateFrames(2);
// outFrameLines_.size() > 1UL // outFrameLines_.size() > 1UL
...@@ -1001,10 +1002,9 @@ void RecurrentGradientMachine::generateSequence() { ...@@ -1001,10 +1002,9 @@ void RecurrentGradientMachine::generateSequence() {
// init outArg // init outArg
size_t resultNum = generator_.config.num_results_per_sample(); size_t resultNum = generator_.config.num_results_per_sample();
IVector::resizeOrCreate( size_t maxGenWordCount =
generator_.outArg.ids, generator_.config.max_num_frames() * numSequences * resultNum;
generator_.config.max_num_frames() * numSequences * resultNum, IVector::resizeOrCreate(generator_.outArg.ids, maxGenWordCount, false);
false);
if (resultNum > 1) { if (resultNum > 1) {
CHECK_LE(resultNum, static_cast<size_t>(generator_.config.beam_size())); CHECK_LE(resultNum, static_cast<size_t>(generator_.config.beam_size()));
Matrix::resizeOrCreate(generator_.outArg.in, Matrix::resizeOrCreate(generator_.outArg.in,
...@@ -1012,6 +1012,11 @@ void RecurrentGradientMachine::generateSequence() { ...@@ -1012,6 +1012,11 @@ void RecurrentGradientMachine::generateSequence() {
/* width */ resultNum, /* width */ resultNum,
false, false,
/* useGpu */ false); /* useGpu */ false);
Matrix::resizeOrCreate(generator_.outArg.value,
/* height */ maxGenWordCount,
/* width */ 1,
false,
/* useGpu */ false);
} }
ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions, ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions,
numSequences + 1, numSequences + 1,
...@@ -1313,13 +1318,20 @@ void RecurrentGradientMachine::fillGenOutputs() { ...@@ -1313,13 +1318,20 @@ void RecurrentGradientMachine::fillGenOutputs() {
starts[0] = 0; starts[0] = 0;
if (numResults > 1) { if (numResults > 1) {
real* probs = generator_.outArg.in->getData(); real* probs = generator_.outArg.in->getData();
real* idsProb = generator_.outArg.value->getData();
size_t curPos = 0;
for (size_t i = 0; i < finalPaths_.size(); ++i) { for (size_t i = 0; i < finalPaths_.size(); ++i) {
for (size_t j = 0; j < finalPaths_[i].size(); ++j) { for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
Path& path = finalPaths_[i][j]; Path& path = finalPaths_[i][j];
generator_.ids.push_back(path.ids.size()); // sequence size size_t genLen = path.ids.size();
generator_.ids.push_back(genLen); // sequence size
generator_.ids.insert( generator_.ids.insert(
generator_.ids.end(), path.ids.begin(), path.ids.end()); generator_.ids.end(), path.ids.begin(), path.ids.end());
generator_.ids.push_back(-1); // end of sequence generator_.ids.push_back(-1); // end of sequence
memcpy(idsProb + curPos, path.idsProb.data(), sizeof(real) * genLen);
curPos += genLen;
idsProb[curPos++] = -1.0;
probs[i * numResults + j] = path.logProb; probs[i * numResults + j] = path.logProb;
if (!j && dataArgsSize_) { if (!j && dataArgsSize_) {
......
...@@ -189,6 +189,11 @@ public: ...@@ -189,6 +189,11 @@ public:
*/ */
std::vector<int> ids; std::vector<int> ids;
/**
* @brief idsProb, log probability of each generated words.
*/
std::vector<real> idsProb;
/** /**
* @brief logProb, current probability of path. * @brief logProb, current probability of path.
*/ */
...@@ -228,11 +233,13 @@ public: ...@@ -228,11 +233,13 @@ public:
*/ */
Path(Path& old, int newId, real logProb, int machineId, int topIndex) Path(Path& old, int newId, real logProb, int machineId, int topIndex)
: ids(old.ids), : ids(old.ids),
idsProb(old.idsProb),
logProb(old.logProb + logProb), logProb(old.logProb + logProb),
machineId(machineId), machineId(machineId),
topIndex(topIndex), topIndex(topIndex),
seqId(old.seqId) { seqId(old.seqId) {
ids.push_back(newId); ids.push_back(newId);
idsProb.push_back(logProb);
if (!old.probHistory.empty()) { if (!old.probHistory.empty()) {
this->probHistory = old.probHistory; this->probHistory = old.probHistory;
// probHistory store current prob, not sum // probHistory store current prob, not sum
...@@ -411,8 +418,9 @@ protected: ...@@ -411,8 +418,9 @@ protected:
struct Generator { struct Generator {
GeneratorConfig config; GeneratorConfig config;
std::vector<int> ids; // store generated sequences std::vector<int> ids; // store generated sequences
Argument outArg; // final output argument std::vector<real> idsProb; // log probability of each generated word
Argument outArg; // final output argument
}; };
bool generating_; bool generating_;
Generator generator_; Generator generator_;
......
...@@ -400,7 +400,6 @@ void initDataLayer(TestConfig testConf, ...@@ -400,7 +400,6 @@ void initDataLayer(TestConfig testConf,
const std::vector<int>& labelSeqStartPositions = const std::vector<int>& labelSeqStartPositions =
testConf.inputDefs[i].labelSeqStartPositions; testConf.inputDefs[i].labelSeqStartPositions;
if (labelSeqStartPositions.size() != 0) { if (labelSeqStartPositions.size() != 0) {
CHECK(!sequenceStartPositions);
CHECK_GE(static_cast<int>(labelSeqStartPositions.size()), 2); CHECK_GE(static_cast<int>(labelSeqStartPositions.size()), 2);
sequenceStartPositions = sequenceStartPositions =
...@@ -410,6 +409,19 @@ void initDataLayer(TestConfig testConf, ...@@ -410,6 +409,19 @@ void initDataLayer(TestConfig testConf,
useGpu); useGpu);
data.sequenceStartPositions = sequenceStartPositions; data.sequenceStartPositions = sequenceStartPositions;
} }
const std::vector<int>& labelSubSeqStartPositions =
testConf.inputDefs[i].labelSubSeqStartPositions;
if (labelSubSeqStartPositions.size() != 0) {
CHECK_GE(static_cast<int>(labelSubSeqStartPositions.size()), 2);
subSequenceStartPositions =
ICpuGpuVector::create(labelSubSeqStartPositions.size(), useGpu);
subSequenceStartPositions->copyFrom(labelSubSeqStartPositions.data(),
labelSubSeqStartPositions.size(),
useGpu);
data.subSequenceStartPositions = subSequenceStartPositions;
}
break; break;
} }
default: default:
......
...@@ -67,6 +67,7 @@ struct InputDef { ...@@ -67,6 +67,7 @@ struct InputDef {
bool isStatic; bool isStatic;
std::vector<int> labelInitValue; std::vector<int> labelInitValue;
std::vector<int> labelSeqStartPositions; std::vector<int> labelSeqStartPositions;
std::vector<int> labelSubSeqStartPositions;
MatrixPtr selfDefinedData; MatrixPtr selfDefinedData;
InputDef(InputType type, string nameIn, size_t dimIn, size_t sizeIn) { InputDef(InputType type, string nameIn, size_t dimIn, size_t sizeIn) {
...@@ -81,8 +82,10 @@ struct InputDef { ...@@ -81,8 +82,10 @@ struct InputDef {
InputDef(InputType type, InputDef(InputType type,
string nameIn, string nameIn,
MatrixPtr selfDefinedData, MatrixPtr selfDefinedData,
std::vector<int> selfDefinedSeqStartPos = {}) std::vector<int> selfDefinedSeqStartPos = {},
std::vector<int> selfDefinedSubSeqStartPos = {})
: labelSeqStartPositions(selfDefinedSeqStartPos), : labelSeqStartPositions(selfDefinedSeqStartPos),
labelSubSeqStartPositions(selfDefinedSubSeqStartPos),
selfDefinedData(selfDefinedData) { selfDefinedData(selfDefinedData) {
inputType = type; inputType = type;
name = nameIn; name = nameIn;
......
...@@ -442,7 +442,8 @@ DEFINE_MATRIX_UNARY_PARAMETER_OP(Clip, TWO_PARAMETER, ...@@ -442,7 +442,8 @@ DEFINE_MATRIX_UNARY_PARAMETER_OP(Clip, TWO_PARAMETER,
template<class T> template<class T>
void BaseMatrixT<T>::clip(T p1, T p2) { applyUnary(unary::Clip<T>(p1, p2)); } void BaseMatrixT<T>::clip(T p1, T p2) { applyUnary(unary::Clip<T>(p1, p2)); }
DEFINE_MATRIX_BINARY_PARAMETER_OP(ClipDerivative, TWO_PARAMETER, a = b < p1 ? 0 : (b > p2 ? 0 : 1)); DEFINE_MATRIX_BINARY_PARAMETER_OP(ClipDerivative, TWO_PARAMETER,
a = b < p1 ? 0 : (b > p2 ? 0 : 1));
template<class T> template<class T>
void BaseMatrixT<T>::clipDerivative(BaseMatrixT& b, T p1, T p2) { void BaseMatrixT<T>::clipDerivative(BaseMatrixT& b, T p1, T p2) {
applyBinary(binary::ClipDerivative<T>(p1, p2), b); applyBinary(binary::ClipDerivative<T>(p1, p2), b);
......
...@@ -39,7 +39,7 @@ class BuddyAllocator { ...@@ -39,7 +39,7 @@ class BuddyAllocator {
public: public:
void* Alloc(size_t unaligned_size); void* Alloc(size_t unaligned_size);
void Free(void*); void Free(void* ptr);
size_t Used(); size_t Used();
public: public:
......
...@@ -33,17 +33,17 @@ namespace detail { ...@@ -33,17 +33,17 @@ namespace detail {
*/ */
class MetadataCache { class MetadataCache {
public: public:
MetadataCache(bool uses_gpu); explicit MetadataCache(bool uses_gpu);
public: public:
/*! \brief Load the associated metadata for the specified memory block. */ /*! \brief Load the associated metadata for the specified memory block. */
Metadata load(const MemoryBlock*); Metadata load(const MemoryBlock* memory_block);
/*! \brief Store the associated metadata for the specified memory block. */ /*! \brief Store the associated metadata for the specified memory block. */
void store(MemoryBlock*, const Metadata&); void store(MemoryBlock* memory_block, const Metadata& meta_data);
/*! \brief Indicate that the specified metadata will no longer be used. */ /*! \brief Indicate that the specified metadata will no longer be used. */
void invalidate(MemoryBlock*); void invalidate(MemoryBlock* memory_block);
public: public:
MetadataCache(const MetadataCache&) = delete; MetadataCache(const MetadataCache&) = delete;
......
...@@ -68,7 +68,7 @@ class PODDeleter { ...@@ -68,7 +68,7 @@ class PODDeleter {
static_assert(std::is_pod<T>::value, "T must be POD"); static_assert(std::is_pod<T>::value, "T must be POD");
public: public:
PODDeleter(Place place) : place_(place) {} explicit PODDeleter(Place place) : place_(place) {}
void operator()(T* ptr) { Free(place_, static_cast<void*>(ptr)); } void operator()(T* ptr) { Free(place_, static_cast<void*>(ptr)); }
private: private:
......
...@@ -43,6 +43,9 @@ endfunction() ...@@ -43,6 +43,9 @@ endfunction()
add_subdirectory(math) add_subdirectory(math)
cc_library(net_op SRCS net_op.cc DEPS op_registry)
cc_test(net_op_test SRCS net_op_test.cc DEPS net_op)
op_library(add_op SRCS add_op.cc add_op.cu) op_library(add_op SRCS add_op.cc add_op.cu)
cc_test(add_op_test SRCS add_op_test.cc DEPS add_op) cc_test(add_op_test SRCS add_op_test.cc DEPS add_op)
...@@ -61,6 +64,6 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu) ...@@ -61,6 +64,6 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library(fc_op op_library(fc_op
SRCS fc_op.cc SRCS fc_op.cc
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net) DEPS mul_op rowwise_add_op sigmoid_op softmax_op net_op)
op_library(recurrent_op SRCS recurrent_op.cc DEPS op_desc tensor op_registry operator net) op_library(recurrent_op SRCS recurrent_op.cc DEPS op_desc tensor op_registry operator net_op)
cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op) cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/add_op.h" #include "paddle/operators/add_op.h"
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include "paddle/operators/cross_entropy_op.h" #include "paddle/operators/cross_entropy_op.h"
REGISTER_OP_GPU_KERNEL(onehot_cross_entropy, REGISTER_OP_GPU_KERNEL(onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<ops::GPUPlace, float>); ops::OnehotCrossEntropyOpKernel<ops::GPUPlace, float>);
\ No newline at end of file
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/fill_zeros_like_op.h" #include "paddle/operators/fill_zeros_like_op.h"
REGISTER_OP_GPU_KERNEL( REGISTER_OP_GPU_KERNEL(
fill_zeros_like, fill_zeros_like,
paddle::operators::FillZerosLikeKernel<paddle::platform::GPUPlace, float>); paddle::operators::FillZerosLikeKernel<paddle::platform::GPUPlace, float>);
\ No newline at end of file
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include "paddle/operators/mean_op.h" #include "paddle/operators/mean_op.h"
REGISTER_OP_GPU_KERNEL(mean, ops::MeanKernel<ops::GPUPlace, float>); REGISTER_OP_GPU_KERNEL(mean, ops::MeanKernel<ops::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(mean_grad, ops::MeanGradKernel<ops::GPUPlace, float>); REGISTER_OP_GPU_KERNEL(mean_grad, ops::MeanGradKernel<ops::GPUPlace, float>);
\ No newline at end of file
...@@ -16,5 +16,4 @@ ...@@ -16,5 +16,4 @@
#include "paddle/operators/mul_op.h" #include "paddle/operators/mul_op.h"
REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel<ops::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel<ops::GPUPlace, float>);
\ No newline at end of file
...@@ -14,11 +14,11 @@ ...@@ -14,11 +14,11 @@
limitations under the License. limitations under the License.
*/ */
#include "paddle/framework/net.h" #include "paddle/operators/net_op.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace framework { namespace operators {
void NetOp::CompleteAddOp(bool calc) { void NetOp::CompleteAddOp(bool calc) {
add_op_done_ = true; add_op_done_ = true;
...@@ -74,5 +74,5 @@ std::string NetOp::DebugString() const { ...@@ -74,5 +74,5 @@ std::string NetOp::DebugString() const {
bool NetOp::IsNetOp() const { return true; } bool NetOp::IsNetOp() const { return true; }
} // namespace framework } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -14,15 +14,17 @@ limitations under the License. */ ...@@ -14,15 +14,17 @@ limitations under the License. */
#pragma once #pragma once
#include <paddle/framework/op_desc.pb.h> #include "paddle/framework/op_desc.pb.h"
#include <paddle/framework/operator.h>
#include "paddle/framework/op_proto.pb.h" #include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace framework { namespace operators {
/** /**
* @brief Network is also a type of Operator * @brief Network is also a type of Operator
* *
...@@ -37,13 +39,13 @@ namespace framework { ...@@ -37,13 +39,13 @@ namespace framework {
* This is the base class of network, all the networks should implement the APIs * This is the base class of network, all the networks should implement the APIs
* it defines. * it defines.
*/ */
class NetOp : public OperatorBase { class NetOp : public framework::OperatorBase {
public: public:
/** /**
* Infer all the operators' input and output variables' shapes, will be called * Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch * before every mini-batch
*/ */
void InferShape(const Scope& scope) const override { void InferShape(const framework::Scope& scope) const override {
for (auto& op : ops_) { for (auto& op : ops_) {
op->InferShape(scope); op->InferShape(scope);
} }
...@@ -56,7 +58,7 @@ class NetOp : public OperatorBase { ...@@ -56,7 +58,7 @@ class NetOp : public OperatorBase {
* scope will be used instead. If no OpContext is provicded, default context * scope will be used instead. If no OpContext is provicded, default context
* will be used. * will be used.
*/ */
void Run(const Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
for (auto& op : ops_) { for (auto& op : ops_) {
op->Run(scope, dev_ctx); op->Run(scope, dev_ctx);
...@@ -88,7 +90,7 @@ class NetOp : public OperatorBase { ...@@ -88,7 +90,7 @@ class NetOp : public OperatorBase {
std::vector<std::shared_ptr<OperatorBase>> ops_; std::vector<std::shared_ptr<OperatorBase>> ops_;
private: private:
bool add_op_done_{false}; bool add_op_done_{false};
template <typename T, typename KeyType> template <typename T, typename KeyType>
...@@ -97,5 +99,5 @@ class NetOp : public OperatorBase { ...@@ -97,5 +99,5 @@ class NetOp : public OperatorBase {
} }
}; };
} // namespace framework } // namespace operators
} // namespace paddle } // namespace paddle
#include "paddle/operators/net_op.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <paddle/framework/net.h>
#include <paddle/framework/op_registry.h> #include "paddle/framework/op_registry.h"
#include <paddle/framework/operator.h> #include "paddle/framework/operator.h"
namespace paddle { namespace paddle {
namespace framework { namespace operators {
static int infer_shape_cnt = 0; static int infer_shape_cnt = 0;
static int run_cnt = 0; static int run_cnt = 0;
class TestOp : public OperatorBase { class TestOp : public OperatorBase {
public: public:
void InferShape(const framework::Scope& scope) const override { void InferShape(const framework::Scope& scope) const override {
++infer_shape_cnt; ++infer_shape_cnt;
} }
...@@ -21,7 +23,7 @@ class TestOp : public OperatorBase { ...@@ -21,7 +23,7 @@ class TestOp : public OperatorBase {
}; };
class EmptyOp : public OperatorBase { class EmptyOp : public OperatorBase {
public: public:
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {} const platform::DeviceContext& dev_ctx) const override {}
...@@ -73,7 +75,7 @@ TEST(OpKernel, all) { ...@@ -73,7 +75,7 @@ TEST(OpKernel, all) {
ASSERT_THROW(net->AddOp(op2), paddle::platform::EnforceNotMet); ASSERT_THROW(net->AddOp(op2), paddle::platform::EnforceNotMet);
} }
TEST(Net, insert_op) { TEST(NetOp, insert_op) {
NetOp net; NetOp net;
auto op1 = std::make_shared<EmptyOp>(); auto op1 = std::make_shared<EmptyOp>();
op1->inputs_ = {"x", "w1", "b1"}; op1->inputs_ = {"x", "w1", "b1"};
...@@ -85,5 +87,5 @@ TEST(Net, insert_op) { ...@@ -85,5 +87,5 @@ TEST(Net, insert_op) {
ASSERT_EQ(3UL, net.ops_.size()); ASSERT_EQ(3UL, net.ops_.size());
} }
} // namespace framework } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -18,8 +18,8 @@ ...@@ -18,8 +18,8 @@
#include <cstring> #include <cstring>
#include <sstream> #include <sstream>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
namespace paddle { namespace paddle {
......
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using namespace paddle::framework; using namespace paddle::framework; // NOLINT
namespace rnn { namespace rnn {
...@@ -94,7 +94,7 @@ void InitArgument(const ArgumentName& name, Argument* arg); ...@@ -94,7 +94,7 @@ void InitArgument(const ArgumentName& name, Argument* arg);
}; // namespace rnn }; // namespace rnn
// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now. // The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
// TODO: // TODO(Yan Chunwei):
// 1. No-padding computing for sequences with indifinite length in one batch. // 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence. // 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory. // 3. Internal Memory.
...@@ -172,12 +172,10 @@ public: ...@@ -172,12 +172,10 @@ public:
/** /**
* InferShape must be called before Run. * InferShape must be called before Run.
*/ */
virtual void InferShape(const Scope& scope) const override { void InferShape(const Scope& scope) const override { alg_.InferShape(scope); }
alg_.InferShape(scope);
}
virtual void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
alg_.Run(scope, dev_ctx); alg_.Run(scope, dev_ctx);
} }
...@@ -194,12 +192,10 @@ public: ...@@ -194,12 +192,10 @@ public:
/** /**
* InferShape must be called before Run. * InferShape must be called before Run.
*/ */
virtual void InferShape(const Scope& scope) const override { void InferShape(const Scope& scope) const override { alg_.InferShape(scope); }
alg_.InferShape(scope);
}
virtual void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
alg_.Run(scope, dev_ctx); alg_.Run(scope, dev_ctx);
} }
......
...@@ -11,14 +11,15 @@ ...@@ -11,14 +11,15 @@
limitations under the License. limitations under the License.
*/ */
#include "paddle/operators/recurrent_op.h"
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h" #include "paddle/framework/tensor.h"
#include "paddle/operators/recurrent_op.h" #include "paddle/operators/net_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include "paddle/operators/rowwise_add_op.h" #include "paddle/operators/rowwise_add_op.h"
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include "paddle/operators/sgd_op.h" #include "paddle/operators/sgd_op.h"
REGISTER_OP_GPU_KERNEL(sgd, ops::SGDOpKernel<ops::GPUPlace, float>); REGISTER_OP_GPU_KERNEL(sgd, ops::SGDOpKernel<ops::GPUPlace, float>);
\ No newline at end of file
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include "paddle/operators/sigmoid_op.h" #include "paddle/operators/sigmoid_op.h"
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/softmax_op.h" #include "paddle/operators/softmax_op.h"
namespace paddle { namespace paddle {
...@@ -19,12 +20,13 @@ namespace operators { ...@@ -19,12 +20,13 @@ namespace operators {
class SoftmaxOp : public OperatorWithKernel { class SoftmaxOp : public OperatorWithKernel {
protected: protected:
void InferShape(const InferShapeContext &ctx) const override { void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1, "Only one input is need for softmax"); PADDLE_ENFORCE(ctx.InputSize() == 1UL,
PADDLE_ENFORCE(ctx.Input<Tensor>(0)->dims().size() == 2, "Only one input is need for softmax");
PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
"The input of softmax op must be matrix"); "The input of softmax op must be matrix");
PADDLE_ENFORCE(ctx.OutputSize() == 1, PADDLE_ENFORCE(ctx.OutputSize() == 1UL,
"Only one output is need for softmax"); "Only one output is need for softmax");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims()); ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
} }
}; };
...@@ -40,10 +42,19 @@ public: ...@@ -40,10 +42,19 @@ public:
class SoftmaxOpGrad : public OperatorWithKernel { class SoftmaxOpGrad : public OperatorWithKernel {
protected: protected:
void InferShape(const InferShapeContext &ctx) const override {} void InferShape(const InferShapeContext &ctx) const override {
std::string DebugString() const override { PADDLE_ENFORCE(ctx.InputSize() == 3UL,
LOG(INFO) << "SoftmaxOpGrad"; "Input of SoftmaxOpGrad should be 3, X, Y, YG");
return ""; PADDLE_ENFORCE(ctx.OutputSize() == 1UL,
"Output of SoftmaxOpGrad should be 1");
PADDLE_ENFORCE(ctx.InputVar("Y") != nullptr, "Input(Y) should not be null");
PADDLE_ENFORCE(ctx.InputVar(GRAD_VAR_NAME("Y")) != nullptr,
"Input(Y@GRAD) should not be null");
PADDLE_ENFORCE(ctx.Input<Tensor>("Y")->dims() ==
ctx.Input<Tensor>(GRAD_VAR_NAME("Y"))->dims(),
"the shape of Input(0) and Input(1) should be the same");
ctx.Output<Tensor>(GRAD_VAR_NAME("X"))
->Resize(ctx.Input<Tensor>("Y")->dims());
} }
}; };
...@@ -51,5 +62,7 @@ protected: ...@@ -51,5 +62,7 @@ protected:
} // namespace paddle } // namespace paddle
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker); REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker);
REGISTER_GRADIENT_OP(softmax, softmax_grad, ops::SoftmaxOpGrad);
REGISTER_OP_CPU_KERNEL(softmax, ops::SoftmaxKernel<ops::CPUPlace, float>); REGISTER_OP_CPU_KERNEL(softmax, ops::SoftmaxKernel<ops::CPUPlace, float>);
REGISTER_GRADIENT_OP(softmax, softmax_grad, ops::SoftmaxOpGrad);
REGISTER_OP_CPU_KERNEL(softmax_grad,
ops::SoftmaxGradKernel<ops::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/softmax_op.h" #include "paddle/operators/softmax_op.h"
REGISTER_OP_GPU_KERNEL(softmax, ops::SoftmaxKernel<ops::GPUPlace, float>); REGISTER_OP_GPU_KERNEL(softmax, ops::SoftmaxKernel<ops::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(softmax_grad,
ops::SoftmaxGradKernel<ops::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/ddim.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/type_alias.h" #include "paddle/operators/type_alias.h"
namespace paddle { namespace paddle {
...@@ -23,8 +26,8 @@ template <typename Place, typename T> ...@@ -23,8 +26,8 @@ template <typename Place, typename T>
class SoftmaxKernel : public OpKernel { class SoftmaxKernel : public OpKernel {
public: public:
void Compute(const ExecutionContext& context) const override { void Compute(const ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0); auto input = context.Input<Tensor>("X");
auto output = context.Output<Tensor>(0); auto output = context.Output<Tensor>("Y");
output->mutable_data<T>(context.GetPlace()); output->mutable_data<T>(context.GetPlace());
auto logits = EigenMatrix<T>::From(*input); auto logits = EigenMatrix<T>::From(*input);
...@@ -57,5 +60,38 @@ public: ...@@ -57,5 +60,38 @@ public:
.broadcast(one_by_class)); .broadcast(one_by_class));
} }
}; };
template <typename Place, typename T>
class SoftmaxGradKernel : public OpKernel {
public:
void Compute(const ExecutionContext& context) const override {
std::shared_ptr<Tensor> scale_ = std::make_shared<Tensor>();
auto Y = context.Input<Tensor>("Y");
auto dY = context.Input<Tensor>(OperatorBase::GRAD_VAR_NAME("Y"));
auto dX = context.Output<Tensor>(OperatorBase::GRAD_VAR_NAME("X"));
dX->mutable_data<T>(context.GetPlace());
const int batch_size = Y->dims()[0];
const int class_num = Y->dims()[1];
Eigen::DSizes<int, 1> along_class(1);
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
Eigen::DSizes<int, 2> one_by_class(1, class_num);
auto Y_eigen = EigenMatrix<T>::From(*Y);
auto dY_eigen = EigenMatrix<T>::From(*dY);
auto dX_eigen = EigenMatrix<T>::From(*dX);
auto place = context.GetEigenDevice<Place>();
auto dot = (Y_eigen * dY_eigen)
.sum(along_class)
.eval()
.reshape(batch_by_one)
.broadcast(one_by_class);
dX_eigen.device(place) = (dY_eigen - dot) * Y_eigen;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -15,13 +15,14 @@ ...@@ -15,13 +15,14 @@
#pragma once #pragma once
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using OpKernel = framework::OpKernel; using OpKernel = framework::OpKernel;
using OperatorBase = framework::OperatorBase;
using InferShapeContext = framework::InferShapeContext; using InferShapeContext = framework::InferShapeContext;
using ExecutionContext = framework::ExecutionContext; using ExecutionContext = framework::ExecutionContext;
using Variable = framework::Variable; using Variable = framework::Variable;
...@@ -43,15 +44,16 @@ template <typename T, ...@@ -43,15 +44,16 @@ template <typename T,
typename IndexType = Eigen::DenseIndex> typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>; using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using Scope = framework::Scope;
using OperatorWithKernel = framework::OperatorWithKernel; using OperatorWithKernel = framework::OperatorWithKernel;
using OperatorBase = framework::OperatorBase;
using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker; using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker;
using OpProto = framework::OpProto; using OpProto = framework::OpProto;
using OpAttrChecker = framework::OpAttrChecker; using OpAttrChecker = framework::OpAttrChecker;
using CPUPlace = platform::CPUPlace; using CPUPlace = platform::CPUPlace;
using GPUPlace = platform::GPUPlace; using GPUPlace = platform::GPUPlace;
using NetOp = framework::NetOp;
using OpRegistry = framework::OpRegistry; using OpRegistry = framework::OpRegistry;
using OperatorBase = framework::OperatorBase;
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
...@@ -40,7 +40,7 @@ class DeviceContext { ...@@ -40,7 +40,7 @@ class DeviceContext {
class CPUDeviceContext : public DeviceContext { class CPUDeviceContext : public DeviceContext {
public: public:
CPUDeviceContext(); CPUDeviceContext();
CPUDeviceContext(CPUPlace); explicit CPUDeviceContext(CPUPlace);
virtual ~CPUDeviceContext() {} virtual ~CPUDeviceContext() {}
Eigen::DefaultDevice* eigen_device() const; Eigen::DefaultDevice* eigen_device() const;
...@@ -55,7 +55,7 @@ class CPUDeviceContext : public DeviceContext { ...@@ -55,7 +55,7 @@ class CPUDeviceContext : public DeviceContext {
class CUDADeviceContext : public DeviceContext { class CUDADeviceContext : public DeviceContext {
public: public:
explicit CUDADeviceContext(GPUPlace); CUDADeviceContext(GPUPlace); // NOLINT
virtual ~CUDADeviceContext(); virtual ~CUDADeviceContext();
/*! \brief Wait for all operations completion in the stream. */ /*! \brief Wait for all operations completion in the stream. */
...@@ -69,10 +69,10 @@ class CUDADeviceContext : public DeviceContext { ...@@ -69,10 +69,10 @@ class CUDADeviceContext : public DeviceContext {
// clang-format off // clang-format off
/*! \brief Return cublas handle in the device context. */ /*! \brief Return cublas handle in the device context. */
cublasHandle_t cublas_handle (); cublasHandle_t cublas_handle();
/*! \brief Return cudnn handle in the device context. */ /*! \brief Return cudnn handle in the device context. */
cudnnHandle_t cudnn_handle (); cudnnHandle_t cudnn_handle();
/*! \brief Return curand handle in the device context. */ /*! \brief Return curand handle in the device context. */
curandGenerator_t curand_generator(); curandGenerator_t curand_generator();
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <paddle/platform/dynload/cublas.h> #include <paddle/platform/dynload/cublas.h>
namespace paddle { namespace paddle {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <paddle/platform/dynload/cudnn.h> #include <paddle/platform/dynload/cudnn.h>
namespace paddle { namespace paddle {
...@@ -25,4 +39,4 @@ CUDNN_DNN_ROUTINE_EACH_R5(DEFINE_WRAP); ...@@ -25,4 +39,4 @@ CUDNN_DNN_ROUTINE_EACH_R5(DEFINE_WRAP);
} // namespace dynload } // namespace dynload
} // namespace platform } // namespace platform
} // namespace paddle } // namespace paddle
\ No newline at end of file
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <paddle/platform/dynload/curand.h> #include <paddle/platform/dynload/curand.h>
namespace paddle { namespace paddle {
...@@ -10,6 +24,7 @@ void *curand_dso_handle; ...@@ -10,6 +24,7 @@ void *curand_dso_handle;
#define DEFINE_WRAP(__name) DynLoad__##__name __name #define DEFINE_WRAP(__name) DynLoad__##__name __name
CURAND_RAND_ROUTINE_EACH(DEFINE_WRAP); CURAND_RAND_ROUTINE_EACH(DEFINE_WRAP);
}
} } // namespace dynload
} } // namespace platform
\ No newline at end of file } // namespace paddle
...@@ -32,7 +32,7 @@ struct CPUPlace { ...@@ -32,7 +32,7 @@ struct CPUPlace {
struct GPUPlace { struct GPUPlace {
GPUPlace() : GPUPlace(0) {} GPUPlace() : GPUPlace(0) {}
GPUPlace(int d) : device(d) {} GPUPlace(int d) : device(d) {} // NOLINT
// needed for variant equality comparison // needed for variant equality comparison
inline bool operator==(const GPUPlace &o) const { return device == o.device; } inline bool operator==(const GPUPlace &o) const { return device == o.device; }
......
...@@ -69,7 +69,7 @@ cat <<EOF ...@@ -69,7 +69,7 @@ cat <<EOF
Installing ... Installing ...
======================================== ========================================
EOF EOF
make install make install -j `nproc`
pip install /usr/local/opt/paddle/share/wheels/*.whl pip install /usr/local/opt/paddle/share/wheels/*.whl
paddle version paddle version
...@@ -122,7 +122,7 @@ cat <<EOF ...@@ -122,7 +122,7 @@ cat <<EOF
Generating .deb package ... Generating .deb package ...
======================================== ========================================
EOF EOF
cpack -D CPACK_GENERATOR='DEB' .. cpack -D CPACK_GENERATOR='DEB' -j `nproc` ..
cat <<EOF cat <<EOF
......
...@@ -6,14 +6,14 @@ mkdir -p $TRAVIS_BUILD_DIR/build ...@@ -6,14 +6,14 @@ mkdir -p $TRAVIS_BUILD_DIR/build
cd $TRAVIS_BUILD_DIR/build cd $TRAVIS_BUILD_DIR/build
# Compile paddle binaries first # Compile paddle binaries first
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=OFF -DWITH_GOLANG=ON -DWITH_STYLE_CHECK=OFF cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_GOLANG=ON -DWITH_STYLE_CHECK=OFF
mkdir output mkdir output
make -j `nproc` make -j `nproc`
find .. -name '*whl' | xargs pip install # install all wheels. find .. -name '*whl' | xargs pip install # install all wheels.
rm -rf * rm -rf *
# Compile Documentation only. # Compile Documentation only.
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=ON cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_DOC=ON
make -j `nproc` paddle_docs paddle_docs_cn make -j `nproc` paddle_docs paddle_docs_cn
# check websites for broken links # check websites for broken links
......
...@@ -39,8 +39,8 @@ public: ...@@ -39,8 +39,8 @@ public:
// size_ is 0. // size_ is 0.
Piece(); Piece();
Piece(const char* d, size_t n); Piece(const char* d, size_t n);
Piece(const char* d); Piece(const char* d); // NOLINT
Piece(const std::string& s); Piece(const std::string& s); // NOLINT
const char* data() const { return data_; } const char* data() const { return data_; }
size_t len() const { return size_; } size_t len() const { return size_; }
......
...@@ -13,4 +13,5 @@ add_python_test(test_framework ...@@ -13,4 +13,5 @@ add_python_test(test_framework
test_sigmoid_op.py test_sigmoid_op.py
test_softmax_op.py test_softmax_op.py
test_rowwise_add_op.py test_rowwise_add_op.py
test_network.py) test_network.py
gradient_checker.py)
import paddle.v2.framework.core as core
from paddle.v2.framework.create_op_creation_methods import op_creations
import numpy
import unittest
__all__ = ['get_numeric_gradient']
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=1e-2,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
if local_scope is None:
local_scope = core.Scope()
# Create all input variable in local_scope
for var_name in input_values:
var = local_scope.new_var(var_name)
tensor = var.get_tensor()
tensor.set_dims(input_values[var_name].shape)
tensor.alloc_float(core.CPUPlace())
tensor.set(input_values[var_name], core.CPUPlace())
# Create all output variable in local_scope
for output in op.outputs():
if local_scope.find_var(output) is None:
local_scope.new_var(output).get_tensor()
op.infer_shape(local_scope)
# allocate output memory
for output in op.outputs():
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace())
# TODO(yuyang18): Only CPU is support now.
cpu_ctx = core.DeviceContext.create(core.CPUPlace())
def get_output():
op.run(local_scope, cpu_ctx)
return numpy.array(local_scope.find_var(output_name).get_tensor()).sum()
def product(dim):
return reduce(lambda a, b: a * b, dim, 1)
tensor_to_check = local_scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.get_dims())
gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32')
for i in xrange(tensor_size):
origin = tensor_to_check.get_float_element(i)
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
tensor_to_check.set_float_element(i, origin) # restore old value
gradient_flat[i] = (y_pos - y_neg) / delta / 2
return gradient_flat.reshape(tensor_to_check.get_dims())
if __name__ == '__main__':
class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self):
add_op = op_creations.add_two(X="X", Y="Y", Out="Z")
x = numpy.random.random((10, 1)).astype("float32")
y = numpy.random.random((10, 1)).astype("float32")
arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X')
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-2)
unittest.main()
import unittest import unittest
from op_test_util import OpTestMeta
import numpy as np import numpy as np
import paddle.v2.framework.core as core
import paddle.v2.framework.create_op_creation_methods as creation
from op_test_util import OpTestMeta
def stable_softmax(x): def stable_softmax(x):
...@@ -19,5 +23,63 @@ class TestSoftmaxOp(unittest.TestCase): ...@@ -19,5 +23,63 @@ class TestSoftmaxOp(unittest.TestCase):
self.Y = np.apply_along_axis(stable_softmax, 1, self.X) self.Y = np.apply_along_axis(stable_softmax, 1, self.X)
class TestSoftmaxGradOp(unittest.TestCase):
def test_softmax_grad(self):
op = creation.op_creations.softmax(X="X", Y="Y")
backward_op = core.Operator.backward(op, set())
self.assertEqual(backward_op.type(), "softmax_grad")
expected = '''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).'''
self.assertEqual(expected, str(backward_op))
batch_size = 3
class_num = 5
# Initialize X and add 1e-2 for numerical stability
Y = np.random.rand(batch_size, class_num).astype(np.float32)
Y = Y + 1e-2
dY = np.random.rand(batch_size, class_num).astype(np.float32)
# Reference implementation of cross entropy with soft labels
def label_softmax_grad(Y, dY):
dX = Y * 0.0
for i in range(batch_size):
d = np.dot(Y[i, :], dY[i, :])
dX[i, :] = Y[i, :] * (dY[i, :] - d)
return dX
expected = label_softmax_grad(Y, dY)
scope = core.Scope()
places = []
places.append(core.CPUPlace())
if core.is_compile_gpu():
places.append(core.GPUPlace(0))
for place in places:
y = scope.new_var("Y")
y_tensor = y.get_tensor()
y_tensor.set_dims([batch_size, class_num])
y_tensor.alloc_float(place)
y_tensor.set(Y, place)
dy = scope.new_var("Y@GRAD")
dy_tensor = dy.get_tensor()
dy_tensor.set_dims([batch_size, class_num])
dy_tensor.alloc_float(place)
dy_tensor.set(dY, place)
x = scope.new_var("X")
dx = scope.new_var("X@GRAD")
tensor = scope.find_var("X@GRAD").get_tensor()
backward_op.infer_shape(scope)
self.assertEqual([batch_size, class_num], tensor.shape())
ctx = core.DeviceContext.create(place)
backward_op.run(scope, ctx)
actual = np.array(tensor)
np.testing.assert_almost_equal(actual, expected, decimal=3)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册