Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bf700a8e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bf700a8e
编写于
1月 30, 2021
作者:
K
Kaipeng Deng
提交者:
GitHub
1月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix ssd background to last (#2145)
上级
6d92ef31
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
40 addition
and
18 deletion
+40
-18
dygraph/ppdet/engine/trainer.py
dygraph/ppdet/engine/trainer.py
+1
-0
dygraph/ppdet/metrics/map_utils.py
dygraph/ppdet/metrics/map_utils.py
+7
-7
dygraph/ppdet/metrics/metrics.py
dygraph/ppdet/metrics/metrics.py
+6
-1
dygraph/ppdet/modeling/architectures/ssd.py
dygraph/ppdet/modeling/architectures/ssd.py
+11
-1
dygraph/ppdet/modeling/heads/ssd_head.py
dygraph/ppdet/modeling/heads/ssd_head.py
+7
-6
dygraph/ppdet/modeling/losses/ssd_loss.py
dygraph/ppdet/modeling/losses/ssd_loss.py
+8
-3
未找到文件。
dygraph/ppdet/engine/trainer.py
浏览文件 @
bf700a8e
...
@@ -165,6 +165,7 @@ class Trainer(object):
...
@@ -165,6 +165,7 @@ class Trainer(object):
if
not
self
.
_weights_loaded
:
if
not
self
.
_weights_loaded
:
self
.
load_weights
(
self
.
cfg
.
pretrain_weights
)
self
.
load_weights
(
self
.
cfg
.
pretrain_weights
)
model
=
self
.
model
if
self
.
_nranks
>
1
:
if
self
.
_nranks
>
1
:
model
=
paddle
.
DataParallel
(
self
.
model
)
model
=
paddle
.
DataParallel
(
self
.
model
)
else
:
else
:
...
...
dygraph/ppdet/metrics/map_utils.py
浏览文件 @
bf700a8e
...
@@ -102,7 +102,7 @@ class DetectionMAP(object):
...
@@ -102,7 +102,7 @@ class DetectionMAP(object):
self
.
evaluate_difficult
=
evaluate_difficult
self
.
evaluate_difficult
=
evaluate_difficult
self
.
reset
()
self
.
reset
()
def
update
(
self
,
bbox
,
gt_box
,
gt_label
,
difficult
=
None
):
def
update
(
self
,
bbox
,
score
,
label
,
gt_box
,
gt_label
,
difficult
=
None
):
"""
"""
Update metric statics from given prediction and ground
Update metric statics from given prediction and ground
truth infomations.
truth infomations.
...
@@ -117,13 +117,13 @@ class DetectionMAP(object):
...
@@ -117,13 +117,13 @@ class DetectionMAP(object):
# record class score positive
# record class score positive
visited
=
[
False
]
*
len
(
gt_label
)
visited
=
[
False
]
*
len
(
gt_label
)
for
b
in
bbox
:
for
b
,
s
,
l
in
zip
(
bbox
,
score
,
label
)
:
label
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
b
.
tolist
()
xmin
,
ymin
,
xmax
,
ymax
=
b
.
tolist
()
pred
=
[
xmin
,
ymin
,
xmax
,
ymax
]
pred
=
[
xmin
,
ymin
,
xmax
,
ymax
]
max_idx
=
-
1
max_idx
=
-
1
max_overlap
=
-
1.0
max_overlap
=
-
1.0
for
i
,
gl
in
enumerate
(
gt_label
):
for
i
,
gl
in
enumerate
(
gt_label
):
if
int
(
gl
)
==
int
(
l
abel
):
if
int
(
gl
)
==
int
(
l
):
overlap
=
jaccard_overlap
(
pred
,
gt_box
[
i
],
overlap
=
jaccard_overlap
(
pred
,
gt_box
[
i
],
self
.
is_bbox_normalized
)
self
.
is_bbox_normalized
)
if
overlap
>
max_overlap
:
if
overlap
>
max_overlap
:
...
@@ -134,12 +134,12 @@ class DetectionMAP(object):
...
@@ -134,12 +134,12 @@ class DetectionMAP(object):
if
self
.
evaluate_difficult
or
\
if
self
.
evaluate_difficult
or
\
int
(
np
.
array
(
difficult
[
max_idx
]))
==
0
:
int
(
np
.
array
(
difficult
[
max_idx
]))
==
0
:
if
not
visited
[
max_idx
]:
if
not
visited
[
max_idx
]:
self
.
class_score_poss
[
int
(
l
abel
)].
append
([
score
,
1.0
])
self
.
class_score_poss
[
int
(
l
)].
append
([
s
,
1.0
])
visited
[
max_idx
]
=
True
visited
[
max_idx
]
=
True
else
:
else
:
self
.
class_score_poss
[
int
(
l
abel
)].
append
([
score
,
0.0
])
self
.
class_score_poss
[
int
(
l
)].
append
([
s
,
0.0
])
else
:
else
:
self
.
class_score_poss
[
int
(
l
abel
)].
append
([
score
,
0.0
])
self
.
class_score_poss
[
int
(
l
)].
append
([
s
,
0.0
])
def
reset
(
self
):
def
reset
(
self
):
"""
"""
...
...
dygraph/ppdet/metrics/metrics.py
浏览文件 @
bf700a8e
...
@@ -148,6 +148,8 @@ class VOCMetric(Metric):
...
@@ -148,6 +148,8 @@ class VOCMetric(Metric):
def
update
(
self
,
inputs
,
outputs
):
def
update
(
self
,
inputs
,
outputs
):
bboxes
=
outputs
[
'bbox'
].
numpy
()
bboxes
=
outputs
[
'bbox'
].
numpy
()
scores
=
outputs
[
'score'
].
numpy
()
labels
=
outputs
[
'label'
].
numpy
()
bbox_lengths
=
outputs
[
'bbox_num'
].
numpy
()
bbox_lengths
=
outputs
[
'bbox_num'
].
numpy
()
if
bboxes
.
shape
==
(
1
,
1
)
or
bboxes
is
None
:
if
bboxes
.
shape
==
(
1
,
1
)
or
bboxes
is
None
:
...
@@ -171,9 +173,12 @@ class VOCMetric(Metric):
...
@@ -171,9 +173,12 @@ class VOCMetric(Metric):
else
difficults
[
i
]
else
difficults
[
i
]
bbox_num
=
bbox_lengths
[
i
]
bbox_num
=
bbox_lengths
[
i
]
bbox
=
bboxes
[
bbox_idx
:
bbox_idx
+
bbox_num
]
bbox
=
bboxes
[
bbox_idx
:
bbox_idx
+
bbox_num
]
score
=
scores
[
bbox_idx
:
bbox_idx
+
bbox_num
]
label
=
labels
[
bbox_idx
:
bbox_idx
+
bbox_num
]
gt_box
,
gt_label
,
difficult
=
prune_zero_padding
(
gt_box
,
gt_label
,
gt_box
,
gt_label
,
difficult
=
prune_zero_padding
(
gt_box
,
gt_label
,
difficult
)
difficult
)
self
.
detection_map
.
update
(
bbox
,
gt_box
,
gt_label
,
difficult
)
self
.
detection_map
.
update
(
bbox
,
score
,
label
,
gt_box
,
gt_label
,
difficult
)
bbox_idx
+=
bbox_num
bbox_idx
+=
bbox_num
def
accumulate
(
self
):
def
accumulate
(
self
):
...
...
dygraph/ppdet/modeling/architectures/ssd.py
浏览文件 @
bf700a8e
...
@@ -54,4 +54,14 @@ class SSD(BaseArch):
...
@@ -54,4 +54,14 @@ class SSD(BaseArch):
return
{
"loss"
:
self
.
_forward
()}
return
{
"loss"
:
self
.
_forward
()}
def
get_pred
(
self
):
def
get_pred
(
self
):
return
dict
(
zip
([
'bbox'
,
'bbox_num'
],
self
.
_forward
()))
bbox_pred
,
bbox_num
=
self
.
_forward
()
label
=
bbox_pred
[:,
0
]
score
=
bbox_pred
[:,
1
]
bbox
=
bbox_pred
[:,
2
:]
output
=
{
'bbox'
:
bbox
,
'score'
:
score
,
'label'
:
label
,
'bbox_num'
:
bbox_num
}
return
output
dygraph/ppdet/modeling/heads/ssd_head.py
浏览文件 @
bf700a8e
...
@@ -58,7 +58,7 @@ class SSDHead(nn.Layer):
...
@@ -58,7 +58,7 @@ class SSDHead(nn.Layer):
__inject__
=
[
'anchor_generator'
,
'loss'
]
__inject__
=
[
'anchor_generator'
,
'loss'
]
def
__init__
(
self
,
def
__init__
(
self
,
num_classes
=
8
1
,
num_classes
=
8
0
,
in_channels
=
(
512
,
1024
,
512
,
256
,
256
,
256
),
in_channels
=
(
512
,
1024
,
512
,
256
,
256
,
256
),
anchor_generator
=
AnchorGeneratorSSD
().
__dict__
,
anchor_generator
=
AnchorGeneratorSSD
().
__dict__
,
kernel_size
=
3
,
kernel_size
=
3
,
...
@@ -67,7 +67,8 @@ class SSDHead(nn.Layer):
...
@@ -67,7 +67,8 @@ class SSDHead(nn.Layer):
conv_decay
=
0.
,
conv_decay
=
0.
,
loss
=
'SSDLoss'
):
loss
=
'SSDLoss'
):
super
(
SSDHead
,
self
).
__init__
()
super
(
SSDHead
,
self
).
__init__
()
self
.
num_classes
=
num_classes
# add background class
self
.
num_classes
=
num_classes
+
1
self
.
in_channels
=
in_channels
self
.
in_channels
=
in_channels
self
.
anchor_generator
=
anchor_generator
self
.
anchor_generator
=
anchor_generator
self
.
loss
=
loss
self
.
loss
=
loss
...
@@ -106,7 +107,7 @@ class SSDHead(nn.Layer):
...
@@ -106,7 +107,7 @@ class SSDHead(nn.Layer):
score_conv_name
,
score_conv_name
,
nn
.
Conv2D
(
nn
.
Conv2D
(
in_channels
=
in_channels
[
i
],
in_channels
=
in_channels
[
i
],
out_channels
=
num_prior
*
num_classes
,
out_channels
=
num_prior
*
self
.
num_classes
,
kernel_size
=
kernel_size
,
kernel_size
=
kernel_size
,
padding
=
padding
))
padding
=
padding
))
else
:
else
:
...
@@ -114,7 +115,7 @@ class SSDHead(nn.Layer):
...
@@ -114,7 +115,7 @@ class SSDHead(nn.Layer):
score_conv_name
,
score_conv_name
,
SepConvLayer
(
SepConvLayer
(
in_channels
=
in_channels
[
i
],
in_channels
=
in_channels
[
i
],
out_channels
=
num_prior
*
num_classes
,
out_channels
=
num_prior
*
self
.
num_classes
,
kernel_size
=
kernel_size
,
kernel_size
=
kernel_size
,
padding
=
padding
,
padding
=
padding
,
conv_decay
=
conv_decay
,
conv_decay
=
conv_decay
,
...
@@ -129,8 +130,8 @@ class SSDHead(nn.Layer):
...
@@ -129,8 +130,8 @@ class SSDHead(nn.Layer):
box_preds
=
[]
box_preds
=
[]
cls_scores
=
[]
cls_scores
=
[]
prior_boxes
=
[]
prior_boxes
=
[]
for
feat
,
box_conv
,
score_conv
in
zip
(
feats
,
self
.
box_convs
,
for
i
,
(
feat
,
box_conv
,
score_conv
self
.
score_convs
):
)
in
enumerate
(
zip
(
feats
,
self
.
box_convs
,
self
.
score_convs
)
):
box_pred
=
box_conv
(
feat
)
box_pred
=
box_conv
(
feat
)
box_pred
=
paddle
.
transpose
(
box_pred
,
[
0
,
2
,
3
,
1
])
box_pred
=
paddle
.
transpose
(
box_pred
,
[
0
,
2
,
3
,
1
])
box_pred
=
paddle
.
reshape
(
box_pred
,
[
0
,
-
1
,
4
])
box_pred
=
paddle
.
reshape
(
box_pred
,
[
0
,
-
1
,
4
])
...
...
dygraph/ppdet/modeling/losses/ssd_loss.py
浏览文件 @
bf700a8e
...
@@ -114,7 +114,8 @@ class SSDLoss(nn.Layer):
...
@@ -114,7 +114,8 @@ class SSDLoss(nn.Layer):
scores
=
paddle
.
concat
(
scores
,
axis
=
1
)
scores
=
paddle
.
concat
(
scores
,
axis
=
1
)
prior_boxes
=
paddle
.
concat
(
anchors
,
axis
=
0
)
prior_boxes
=
paddle
.
concat
(
anchors
,
axis
=
0
)
gt_label
=
gt_class
.
unsqueeze
(
-
1
)
gt_label
=
gt_class
.
unsqueeze
(
-
1
)
batch_size
,
num_priors
,
num_classes
=
scores
.
shape
batch_size
,
num_priors
=
scores
.
shape
[:
2
]
num_classes
=
scores
.
shape
[
-
1
]
-
1
def
_reshape_to_2d
(
x
):
def
_reshape_to_2d
(
x
):
return
paddle
.
flatten
(
x
,
start_axis
=
2
)
return
paddle
.
flatten
(
x
,
start_axis
=
2
)
...
@@ -137,7 +138,8 @@ class SSDLoss(nn.Layer):
...
@@ -137,7 +138,8 @@ class SSDLoss(nn.Layer):
# 2. Compute confidence for mining hard examples
# 2. Compute confidence for mining hard examples
# 2.1. Get the target label based on matched indices
# 2.1. Get the target label based on matched indices
target_label
,
_
=
self
.
_label_target_assign
(
gt_label
,
matched_indices
)
target_label
,
_
=
self
.
_label_target_assign
(
gt_label
,
matched_indices
,
mismatch_value
=
num_classes
)
confidence
=
_reshape_to_2d
(
scores
)
confidence
=
_reshape_to_2d
(
scores
)
# 2.2. Compute confidence loss.
# 2.2. Compute confidence loss.
# Reshape confidence to 2D tensor.
# Reshape confidence to 2D tensor.
...
@@ -173,7 +175,10 @@ class SSDLoss(nn.Layer):
...
@@ -173,7 +175,10 @@ class SSDLoss(nn.Layer):
encoded_bbox
,
matched_indices
)
encoded_bbox
,
matched_indices
)
# 4.3. Assign classification targets
# 4.3. Assign classification targets
target_label
,
target_conf_weight
=
self
.
_label_target_assign
(
target_label
,
target_conf_weight
=
self
.
_label_target_assign
(
gt_label
,
matched_indices
,
neg_mask
=
neg_mask
)
gt_label
,
matched_indices
,
neg_mask
=
neg_mask
,
mismatch_value
=
num_classes
)
# 5. Compute loss.
# 5. Compute loss.
# 5.1 Compute confidence loss.
# 5.1 Compute confidence loss.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录