Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bf0c90f2
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bf0c90f2
编写于
6月 26, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into fix_async_update_failed
上级
86e09b34
67ab3240
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
136 addition
and
113 deletion
+136
-113
cmake/external/grpc.cmake
cmake/external/grpc.cmake
+3
-3
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+1
-1
paddle/fluid/operators/assign_value_op.cc
paddle/fluid/operators/assign_value_op.cc
+2
-1
paddle/fluid/operators/distributed/grpc_client.cc
paddle/fluid/operators/distributed/grpc_client.cc
+2
-1
paddle/fluid/operators/distributed/grpc_client.h
paddle/fluid/operators/distributed/grpc_client.h
+10
-10
paddle/fluid/operators/distributed/grpc_server.cc
paddle/fluid/operators/distributed/grpc_server.cc
+10
-10
paddle/fluid/operators/distributed/rpc_client.cc
paddle/fluid/operators/distributed/rpc_client.cc
+4
-0
paddle/fluid/operators/distributed/rpc_client.h
paddle/fluid/operators/distributed/rpc_client.h
+10
-9
paddle/fluid/operators/distributed/rpc_server.cc
paddle/fluid/operators/distributed/rpc_server.cc
+4
-3
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+0
-2
paddle/fluid/operators/random_crop_op.cc
paddle/fluid/operators/random_crop_op.cc
+5
-3
paddle/fluid/operators/random_crop_op.h
paddle/fluid/operators/random_crop_op.h
+15
-9
paddle/fluid/operators/reader/create_custom_reader_op.cc
paddle/fluid/operators/reader/create_custom_reader_op.cc
+6
-4
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
.../fluid/operators/reader/create_double_buffer_reader_op.cc
+2
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+15
-13
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+7
-4
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+32
-32
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+6
-4
python/paddle/fluid/metrics.py
python/paddle/fluid/metrics.py
+2
-2
未找到文件。
cmake/external/grpc.cmake
浏览文件 @
bf0c90f2
...
...
@@ -40,12 +40,12 @@ ExternalProject_Add(
# NOTE(wuyi):
# this package is generated by following steps:
# 1. git clone -b v1.8.x https://github.com/grpc/grpc.git
# 2. submodule update --init
# 2.
git
submodule update --init
# 3. keep only zlib, cares, protobuf, boringssl under "third_party",
# checkout and clean other dirs under third_party
# 4. remove .git, and package the directory.
URL
"http://paddlepaddledeps.bj.bcebos.com/grpc-v1.
8
.x.tar.gz"
URL_MD5
"
c9c58ee7d0e8929a63155af6a2ecdbd0
"
URL
"http://paddlepaddledeps.bj.bcebos.com/grpc-v1.
10
.x.tar.gz"
URL_MD5
"
1f268a2aff6759839dccd256adcc91cf
"
PREFIX
${
GRPC_SOURCES_DIR
}
UPDATE_COMMAND
""
CONFIGURE_COMMAND
""
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
bf0c90f2
...
...
@@ -470,7 +470,7 @@ void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
void
MultiDevSSAGraphBuilder
::
CreateDistTrainOp
(
SSAGraph
*
result
,
const
OpDesc
&
op
)
const
{
int
op_dev_id
=
-
1
;
if
(
op
.
Type
()
==
"split_byref"
)
{
if
(
op
.
Type
()
==
"split_byref"
||
op
.
Type
()
==
"split_selected_rows"
)
{
op_dev_id
=
GetVarDeviceID
(
op
.
InputArgumentNames
()[
0
]);
if
(
strategy_
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
)
{
op_dev_id
=
GetAppropriateDeviceID
(
op
.
InputArgumentNames
());
...
...
paddle/fluid/operators/assign_value_op.cc
浏览文件 @
bf0c90f2
...
...
@@ -70,6 +70,7 @@ $$Out = values$$
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
assign_value
,
ops
::
AssignValueOp
,
ops
::
AssignValueOpMaker
);
REGISTER_OPERATOR
(
assign_value
,
ops
::
AssignValueOp
,
ops
::
AssignValueOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
assign_value
,
ops
::
AssignValueKernel
<
int
>
,
ops
::
AssignValueKernel
<
float
>
);
paddle/fluid/operators/distributed/grpc_client.cc
浏览文件 @
bf0c90f2
...
...
@@ -269,14 +269,15 @@ void GRPCClient::Proceed() {
}
std
::
shared_ptr
<
grpc
::
Channel
>
GRPCClient
::
GetChannel
(
const
std
::
string
&
ep
)
{
// TODO(Yancey1989): make grpc client completely thread-safe
std
::
lock_guard
<
std
::
mutex
>
guard
(
chan_mutex_
);
auto
it
=
channels_
.
find
(
ep
);
if
(
it
!=
channels_
.
end
())
{
return
it
->
second
;
}
// Channel configurations:
grpc
::
ChannelArguments
args
;
args
.
SetInt
(
GRPC_ARG_MAX_RECONNECT_BACKOFF_MS
,
2000
);
args
.
SetCompressionAlgorithm
(
GRPC_COMPRESS_NONE
);
args
.
SetMaxSendMessageSize
(
std
::
numeric_limits
<
int
>::
max
());
args
.
SetMaxReceiveMessageSize
(
std
::
numeric_limits
<
int
>::
max
());
...
...
paddle/fluid/operators/distributed/grpc_client.h
浏览文件 @
bf0c90f2
...
...
@@ -76,6 +76,7 @@ class BaseProcessor {
virtual
void
Prepare
(
const
VarHandle
&
var_info
,
int64_t
time_out
)
{
context_
.
reset
(
new
grpc
::
ClientContext
());
var_h_
=
var_info
;
context_
->
set_wait_for_ready
(
true
);
std
::
chrono
::
system_clock
::
time_point
deadline
=
std
::
chrono
::
system_clock
::
now
()
+
std
::
chrono
::
milliseconds
(
time_out
);
...
...
@@ -85,6 +86,7 @@ class BaseProcessor {
virtual
void
Prepare
(
int64_t
time_out
)
{
context_
.
reset
(
new
grpc
::
ClientContext
());
context_
->
set_wait_for_ready
(
true
);
std
::
chrono
::
system_clock
::
time_point
deadline
=
std
::
chrono
::
system_clock
::
now
()
+
std
::
chrono
::
milliseconds
(
time_out
);
...
...
@@ -176,26 +178,24 @@ class GRPCClient : public RPCClient {
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
int64_t
time_out
=
FLAGS_grpc_deadline
)
override
;
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
int64_t
time_out
=
FLAGS_grpc_deadline
)
override
;
bool
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
int64_t
time_out
=
FLAGS_grpc_deadline
)
override
;
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_grpc_deadline
)
override
;
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_grpc_deadline
)
override
;
void
Wait
()
override
;
...
...
@@ -211,7 +211,7 @@ class GRPCClient : public RPCClient {
void
Proceed
();
void
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
);
int64_t
time_out
=
FLAGS_grpc_deadline
);
std
::
shared_ptr
<
grpc
::
Channel
>
GetChannel
(
const
std
::
string
&
ep
);
...
...
paddle/fluid/operators/distributed/grpc_server.cc
浏览文件 @
bf0c90f2
...
...
@@ -97,7 +97,7 @@ class RequestSend final : public RequestBase {
void
Process
()
override
{
std
::
string
varname
=
GetReqName
();
VLOG
(
3
)
<<
"RequestSend var_name:"
<<
varname
;
VLOG
(
4
)
<<
"RequestSend var_name:"
<<
varname
;
auto
scope
=
request_
->
GetMutableLocalScope
();
auto
invar
=
request_
->
GetVar
();
...
...
@@ -132,7 +132,7 @@ class RequestGet final : public RequestBase {
void
Process
()
override
{
// proc request.
std
::
string
varname
=
request_
.
varname
();
VLOG
(
3
)
<<
"RequestGet "
<<
varname
;
VLOG
(
4
)
<<
"RequestGet "
<<
varname
;
auto
scope
=
request_handler_
->
scope
();
auto
invar
=
scope
->
FindVar
(
varname
);
...
...
@@ -178,7 +178,7 @@ class RequestPrefetch final : public RequestBase {
// prefetch process...
std
::
string
in_var_name
=
request_
->
Varname
();
std
::
string
out_var_name
=
request_
->
OutVarname
();
VLOG
(
3
)
<<
"RequestPrefetch, in_var_name: "
<<
in_var_name
VLOG
(
4
)
<<
"RequestPrefetch, in_var_name: "
<<
in_var_name
<<
" out_var_name: "
<<
out_var_name
;
auto
scope
=
request_
->
GetMutableLocalScope
();
...
...
@@ -201,10 +201,10 @@ class RequestPrefetch final : public RequestBase {
};
void
AsyncGRPCServer
::
WaitServerReady
()
{
VLOG
(
3
)
<<
"AsyncGRPCServer is wait server ready"
;
VLOG
(
4
)
<<
"AsyncGRPCServer is wait server ready"
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
this
->
mutex_ready_
);
condition_ready_
.
wait
(
lock
,
[
=
]
{
return
this
->
ready_
==
1
;
});
VLOG
(
3
)
<<
"AsyncGRPCServer WaitSeverReady"
;
VLOG
(
4
)
<<
"AsyncGRPCServer WaitSeverReady"
;
}
void
AsyncGRPCServer
::
StartServer
()
{
...
...
@@ -243,7 +243,7 @@ void AsyncGRPCServer::StartServer() {
for
(
int
i
=
0
;
i
<
threadnum
;
i
++
)
{
rpc_threads_
[
rpc_name
].
emplace_back
(
new
std
::
thread
(
std
::
bind
(
&
AsyncGRPCServer
::
HandleRequest
,
this
,
cq
.
get
(),
rpc_name
,
f
)));
VLOG
(
3
)
<<
t
.
first
<<
" creates threads!"
;
VLOG
(
4
)
<<
t
.
first
<<
" creates threads!"
;
}
}
...
...
@@ -260,7 +260,7 @@ void AsyncGRPCServer::StartServer() {
auto
&
threads
=
t
.
second
;
for
(
size_t
i
=
0
;
i
<
threads
.
size
();
++
i
)
{
threads
[
i
]
->
join
();
VLOG
(
3
)
<<
t
.
first
<<
" threads ends!"
;
VLOG
(
4
)
<<
t
.
first
<<
" threads ends!"
;
}
}
}
...
...
@@ -268,7 +268,7 @@ void AsyncGRPCServer::StartServer() {
void
AsyncGRPCServer
::
ShutdownQueue
()
{
for
(
auto
&
t
:
rpc_cq_
)
{
t
.
second
->
Shutdown
();
VLOG
(
3
)
<<
t
.
first
<<
"
shutdown!"
;
VLOG
(
4
)
<<
t
.
first
<<
" queue
shutdown!"
;
}
}
...
...
@@ -277,7 +277,7 @@ void AsyncGRPCServer::ShutDownImpl() {
is_shut_down_
=
true
;
ShutdownQueue
();
VLOG
(
3
)
<<
"server_ shutdown!"
;
VLOG
(
4
)
<<
"server_ shutdown!"
;
server_
->
Shutdown
();
}
...
...
@@ -285,7 +285,7 @@ void AsyncGRPCServer::TryToRegisterNewOne(const std::string& rpc_name,
int
req_id
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
cq_mutex_
);
if
(
is_shut_down_
)
{
LOG
(
WARNING
)
<<
"shutdown, do not TryToRegisterNewSendOne"
;
VLOG
(
4
)
<<
"shutdown, do not TryToRegisterNewSendOne"
;
return
;
}
...
...
paddle/fluid/operators/distributed/rpc_client.cc
浏览文件 @
bf0c90f2
...
...
@@ -13,6 +13,10 @@
// limitations under the License.
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "gflags/gflags.h"
// default to 3min to avoid temprary network failures.
DEFINE_int32
(
grpc_deadline
,
180000
,
"deadline timeouts for grpc"
);
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/distributed/rpc_client.h
浏览文件 @
bf0c90f2
...
...
@@ -15,11 +15,14 @@
#pragma once
#include <string>
#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
DECLARE_int32
(
grpc_deadline
);
namespace
paddle
{
namespace
operators
{
namespace
distributed
{
...
...
@@ -32,26 +35,26 @@ class RPCClient {
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
int64_t
time_out
=
FLAGS_grpc_deadline
)
=
0
;
virtual
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
int64_t
time_out
=
FLAGS_grpc_deadline
)
=
0
;
virtual
bool
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
int64_t
time_out
=
FLAGS_grpc_deadline
)
=
0
;
virtual
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_grpc_deadline
)
=
0
;
virtual
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_grpc_deadline
)
=
0
;
// SendComplete tells all the server that current trainer have no more data
// to train, so that the pserver can reduce it's barrier count, and continue
...
...
@@ -60,8 +63,6 @@ class RPCClient {
virtual
void
Wait
()
=
0
;
static
constexpr
int64_t
rpc_time_out
=
120
*
1000
;
template
<
typename
T
>
static
RPCClient
*
GetInstance
()
{
std
::
call_once
(
init_flag_
,
&
RPCClient
::
Init
<
T
>
);
...
...
paddle/fluid/operators/distributed/rpc_server.cc
浏览文件 @
bf0c90f2
...
...
@@ -47,11 +47,12 @@ void RPCServer::WaitBarrier(const std::string& rpc_name) {
return
(
barrier_counter_
[
rpc_name
]
>=
client_num_
||
exit_flag_
.
load
());
});
VLOG
(
3
)
<<
"batch_barrier_:"
<<
barrier_counter_
[
rpc_name
];
VLOG
(
3
)
<<
"batch_barrier_: "
<<
rpc_name
<<
" "
<<
barrier_counter_
[
rpc_name
];
}
void
RPCServer
::
IncreaseBatchBarrier
(
const
std
::
string
rpc_name
)
{
VLOG
(
3
)
<<
"RPCServer begin IncreaseBatchBarrier "
<<
rpc_name
;
VLOG
(
4
)
<<
"RPCServer begin IncreaseBatchBarrier "
<<
rpc_name
;
int
b
=
0
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
b
=
++
barrier_counter_
[
rpc_name
];
...
...
@@ -100,7 +101,7 @@ void RPCServer::SetCond(const std::string& rpc_name) {
}
void
RPCServer
::
WaitCond
(
const
std
::
string
&
rpc_name
)
{
VLOG
(
3
)
<<
"RPCServer WaitCond "
<<
rpc_name
;
VLOG
(
4
)
<<
"RPCServer WaitCond "
<<
rpc_name
;
int
cond
=
0
;
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
bf0c90f2
...
...
@@ -165,7 +165,6 @@ void ListenAndServOp::RunSyncLoop(
void
ListenAndServOp
::
RunAsyncLoop
(
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
,
framework
::
Scope
*
recv_scope
)
const
{
VLOG
(
3
)
<<
"RunAsyncLoop in"
;
// grad name to block id
std
::
unordered_map
<
std
::
string
,
int32_t
>
grad_to_block_id
;
std
::
unordered_map
<
int32_t
,
std
::
string
>
id_to_grad
;
...
...
@@ -207,7 +206,6 @@ void ListenAndServOp::RunAsyncLoop(framework::Executor *executor,
request_get_handler_
->
SetGradToPreparedCtx
(
&
grad_to_prepared_ctx
);
request_prefetch_handler_
->
SetGradToPreparedCtx
(
&
grad_to_prepared_ctx
);
VLOG
(
3
)
<<
"RunAsyncLoop into while"
;
while
(
true
)
{
if
(
rpc_service_
->
IsExit
())
{
LOG
(
INFO
)
<<
"get exit!rpc_processor break!"
;
...
...
paddle/fluid/operators/random_crop_op.cc
浏览文件 @
bf0c90f2
...
...
@@ -37,6 +37,11 @@ class RandomCropOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"SeedOut"
,
"The random seed after random cropping."
)
.
AsIntermediate
();
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"The shape of a cropped instance."
);
AddAttr
<
int
>
(
"startup_seed"
,
"If the input 'Seed' is not initialized, the 'startup_seed' "
"will be used to replace it. Even so, the seed after random "
"crop will also be outputed to the 'SeedOut'."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
This operator takes a batch of instance, and do random cropping on each instance.
It means that cropping positions differs on each instance, which is determined
...
...
@@ -49,8 +54,6 @@ class RandomCropOpMaker : public framework::OpProtoAndCheckerMaker {
class
RandomCropOpInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
seed_dim
=
ctx
->
GetInputDim
(
"Seed"
);
PADDLE_ENFORCE
(
seed_dim
.
size
()
==
1
&&
seed_dim
[
0
]
==
1
);
auto
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape"
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_GT
(
x_dim
.
size
(),
static_cast
<
int64_t
>
(
shape
.
size
()));
...
...
@@ -62,7 +65,6 @@ class RandomCropOpInferShape : public framework::InferShapeBase {
out_dim
[
x_i
]
=
shape
[
shape_i
];
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dim
));
ctx
->
SetOutputDim
(
"SeedOut"
,
framework
::
make_ddim
({
1
}));
}
};
...
...
paddle/fluid/operators/random_crop_op.h
浏览文件 @
bf0c90f2
...
...
@@ -142,16 +142,22 @@ template <typename DeviceContext, typename T>
class
RandomCropKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
virtual
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
&
seed_tensor
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Seed"
));
int64_t
seed
=
0
;
if
(
platform
::
is_cpu_place
(
seed_tensor
.
place
()))
{
seed
=
*
seed_tensor
.
data
<
int64_t
>
();
auto
&
seed_tensor
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Seed"
));
if
(
seed_tensor
.
IsInitialized
())
{
if
(
platform
::
is_cpu_place
(
seed_tensor
.
place
()))
{
seed
=
*
seed_tensor
.
data
<
int64_t
>
();
}
else
{
LOG
(
WARNING
)
<<
"It is slow to place seed in GPU memory. Please verify "
"your program"
;
framework
::
LoDTensor
cpu_seed
;
framework
::
TensorCopySync
(
seed_tensor
,
platform
::
CPUPlace
(),
&
cpu_seed
);
seed
=
*
cpu_seed
.
data
<
int64_t
>
();
}
}
else
{
LOG
(
WARNING
)
<<
"It is slow to place seed in GPU memory. Please verify "
"your program"
;
framework
::
LoDTensor
cpu_seed
;
framework
::
TensorCopySync
(
seed_tensor
,
platform
::
CPUPlace
(),
&
cpu_seed
);
seed
=
*
cpu_seed
.
data
<
int64_t
>
();
VLOG
(
5
)
<<
"WARNING: The input 'Seed' is not initialized, use attribute "
"'startup_seed' instead."
;
seed
=
ctx
.
Attr
<
int
>
(
"startup_seed"
);
}
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
auto
&
x
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
...
...
@@ -171,7 +177,7 @@ class RandomCropKernel : public framework::OpKernel<T> {
engine
.
discard
(
functor
.
prod_batchsize_dims_
*
(
functor
.
rank_
-
functor
.
num_batchsize_dims_
));
*
ctx
.
Output
<
framework
::
LoDTensor
>
(
"SeedOut"
)
->
mutable_data
<
int64_t
>
(
platform
::
CPUPlace
())
=
engine
();
framework
::
make_ddim
({
1
}),
platform
::
CPUPlace
())
=
engine
();
}
};
...
...
paddle/fluid/operators/reader/create_custom_reader_op.cc
浏览文件 @
bf0c90f2
...
...
@@ -39,6 +39,7 @@ class CustomReader : public framework::DecoratedReader {
const
framework
::
ProgramDesc
program_
;
int
sub_block_id_
;
framework
::
Executor
exe_
;
framework
::
Scope
scope_
;
std
::
vector
<
std
::
string
>
source_var_names_
;
std
::
vector
<
std
::
string
>
sink_var_names_
;
...
...
@@ -158,23 +159,24 @@ void CustomReader::ReadNext(std::vector<framework::LoDTensor>* out) {
// The scope for CustomReader's sub-block should be independent and shouldn't
// be any other computation scope's child. Otherwise, data preprocessing and
// compution cannot be concurrent.
framework
::
Scope
scope
;
framework
::
Scope
*
exe_scope
=
&
scope_
.
NewScope
()
;
// 1. Copy LoDTensors from underlying reader's output to source variables.
for
(
size_t
i
=
0
;
i
<
source_var_names_
.
size
();
++
i
)
{
framework
::
Variable
*
var
=
scope
.
Var
(
source_var_names_
[
i
]);
framework
::
Variable
*
var
=
exe_scope
->
Var
(
source_var_names_
[
i
]);
framework
::
LoDTensor
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
ShareDataWith
(
underlying_outs
[
i
]);
tensor
->
set_lod
(
underlying_outs
[
i
].
lod
());
}
// 2. Run the sub-block.
exe_
.
Run
(
program_
,
&
scope
,
sub_block_id_
,
false
,
true
);
exe_
.
Run
(
program_
,
exe_
scope
,
sub_block_id_
,
false
,
true
);
// 3. Copy LoDTensors from sink variables to out.
out
->
resize
(
sink_var_names_
.
size
());
for
(
size_t
i
=
0
;
i
<
sink_var_names_
.
size
();
++
i
)
{
const
auto
&
tensor
=
detail
::
Ref
(
scope
.
FindVar
(
sink_var_names_
[
i
]))
const
auto
&
tensor
=
detail
::
Ref
(
exe_scope
->
FindVar
(
sink_var_names_
[
i
]))
.
Get
<
framework
::
LoDTensor
>
();
framework
::
TensorCopySync
(
tensor
,
platform
::
CPUPlace
(),
&
(
*
out
)[
i
]);
}
scope_
.
DeleteScope
(
exe_scope
);
}
}
// namespace reader
...
...
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
浏览文件 @
bf0c90f2
...
...
@@ -23,13 +23,13 @@ namespace reader {
// 'Double buffer' means we shall maintain two batches of input data at the same
// time. So the kCacheSize shoul be at least 2.
static
constexpr
size_t
kCacheSize
=
3
;
static
constexpr
size_t
kCacheSize
=
5
;
// There will be two bacthes out of the channel during training:
// 1. the one waiting to be sent to the channel
// 2. the one just be received from the channel, which is also being used by
// subsequent operators.
// So the channel size should be kChacheSize - 2
static
constexpr
size_t
kChannelSize
=
1
;
// kCacheSize - 2
static
constexpr
size_t
kChannelSize
=
3
;
// kCacheSize - 2
class
DoubleBufferReader
:
public
framework
::
DecoratedReader
{
public:
...
...
python/paddle/fluid/framework.py
浏览文件 @
bf0c90f2
...
...
@@ -559,19 +559,8 @@ class Operator(object):
self
.
attrs
[
attr_name
]
is
None
):
continue
attr_val
=
self
.
attrs
[
attr_name
]
if
isinstance
(
attr_val
,
Block
):
self
.
desc
.
set_block_attr
(
attr_name
,
self
.
attrs
[
attr_name
].
desc
)
elif
isinstance
(
attr_val
,
list
)
and
attr_val
and
\
all
(
isinstance
(
v
,
Block
)
for
v
in
attr_val
):
self
.
desc
.
set_blocks_attr
(
attr_name
,
[
v
.
desc
for
v
in
attr_val
])
elif
isinstance
(
attr_val
,
core
.
BlockDesc
)
or
\
isinstance
(
attr_val
,
core
.
ProgramDesc
):
self
.
desc
.
set_serialized_attr
(
attr_name
,
attr_val
.
serialize_to_string
())
else
:
self
.
desc
.
set_attr
(
attr_name
,
attr_val
)
self
.
_update_desc_attr
(
attr_name
,
attr_val
)
self
.
desc
.
check_attrs
()
if
self
.
has_kernel
(
type
):
self
.
desc
.
infer_var_type
(
self
.
block
.
desc
)
...
...
@@ -718,6 +707,19 @@ class Operator(object):
ValueError: If the type of value doesn't match with desc.attr_type(name).
"""
self
.
attrs
[
name
]
=
val
self
.
_update_desc_attr
(
name
,
val
)
def
_update_desc_attr
(
self
,
name
,
val
):
"""
Update the value of desc's attribute by attribute's name.
Args:
name(str): the attribute name.
val(bool|int|str|float|list): the value of the attribute.
Raises:
ValueError: If the type of value doesn't match with desc.attr_type(name).
"""
if
isinstance
(
val
,
Block
):
self
.
desc
.
set_block_attr
(
name
,
val
.
desc
)
elif
isinstance
(
val
,
list
)
and
val
and
all
(
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
bf0c90f2
...
...
@@ -110,7 +110,7 @@ class BlockGuardServ(BlockGuard):
class
ListenAndServ
(
object
):
"""
**ListenAndServ Layer**
ListenAndServ is used to create a rpc server bind and listen
on specific TCP port, this server will run the sub-block when
received variables from clients.
...
...
@@ -212,7 +212,7 @@ def Send(endpoints, send_vars, sync=True):
of send_vars to send
send_vars (list): variables to send to server
sync (bool): whether to wait the request finish
"""
assert
(
type
(
send_vars
)
==
list
)
...
...
@@ -469,10 +469,13 @@ def open_files(filenames,
lod_levels(list): List of ints which declaring data lod_level.
dtypes(list): List of strs which declaring data type.
thread_num(int): The maximal concurrent prefetch thread number.
buffer_size(int): The size of prefetch buffer.
buffer_size(int|None): The size of prefetch buffer. If it is setted None,
buffer size will be thread_num * 3.
Default: None
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Default: True
Returns:
Variable: A Reader Variable via which we can get file data.
...
...
@@ -492,7 +495,7 @@ def open_files(filenames,
image, label = fluid.layers.io.read_file(reader)
"""
if
buffer_size
is
None
:
buffer_size
=
thread_num
buffer_size
=
thread_num
*
3
if
isinstance
(
filenames
,
basestring
):
filenames
=
[
filenames
]
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
bf0c90f2
...
...
@@ -23,6 +23,7 @@ from layer_function_generator import autodoc, templatedoc
from
tensor
import
concat
import
utils
import
random
from
..
import
unique_name
__all__
=
[
'fc'
,
...
...
@@ -4266,14 +4267,18 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
say :attr:`actual_shape` has a higher priority
than :attr:`shape`.
act (str): The non-linear activation to be applied to output variable.
inplace(bool): If this flag is set true, a new output tensor is created
whose data is copied from input x, otherwise the output
shares data with input without copying.
inplace(bool): If this flag is set true, the output
shares data with input without copying, otherwise
a new output tensor is created
whose data is copied from input x.
name (str): The name of this layer. It is optional.
Returns:
Variable: The output tensor.
Raises:
TypeError: if actual_shape is neither Variable nor None.
Examples:
.. code-block:: python
...
...
@@ -4285,6 +4290,11 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
if
not
(
isinstance
(
shape
,
list
)
or
isinstance
(
shape
,
tuple
)):
raise
ValueError
(
"Input shape must be a python lsit or tuple."
)
inputs
=
{
"X"
:
x
}
if
isinstance
(
actual_shape
,
Variable
):
inputs
[
"Shape"
]
=
actual_shape
elif
actual_shape
is
not
None
:
raise
TypeError
(
"actual_shape should either be Variable or None"
)
# Validate the shape
unk_dim_idx
=
-
1
...
...
@@ -4305,9 +4315,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
reshaped
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"reshape"
,
inputs
=
{
"X"
:
x
,
"Shape"
:
actual_shape
}
if
isinstance
(
actual_shape
,
Variable
)
else
{
"X"
:
x
},
inputs
=
inputs
,
attrs
=
{
"shape"
:
shape
,
"inplace"
:
inplace
},
outputs
=
{
"Out"
:
reshaped
})
...
...
@@ -4889,47 +4897,39 @@ def random_crop(x, shape, seed=None):
>>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
"""
helper
=
LayerHelper
(
"random_crop"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
x
.
dtype
out
=
helper
.
create_tmp_variable
(
dtype
)
if
seed
is
None
:
seed
=
random
.
randint
(
-
65536
,
65535
)
op_attrs
=
{
"shape"
:
shape
}
if
isinstance
(
seed
,
int
):
seed_value
=
seed
seed
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"fill_constant"
,
inputs
=
{},
outputs
=
{
"Out"
:
seed
},
attrs
=
{
"dtype"
:
seed
.
dtype
,
"shape"
:
[
1
],
"value"
:
float
(
seed_value
),
"force_cpu"
:
True
})
op_attrs
[
"startup_seed"
]
=
seed
seed
=
helper
.
create_variable
(
name
=
unique_name
.
generate
(
"random_crop_seed"
),
dtype
=
"int64"
,
persistable
=
True
)
elif
not
isinstance
(
seed
,
Variable
):
raise
ValueError
(
"'seed' must be a Variable or an int."
)
seed_out
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"random_crop"
,
inputs
=
{
"X"
:
x
,
"Seed"
:
seed
},
outputs
=
{
"Out"
:
out
,
"SeedOut"
:
seed
_out
},
attrs
=
{
"shape"
:
shape
}
)
"SeedOut"
:
seed
},
attrs
=
op_attrs
)
return
out
def
log
(
input
):
def
log
(
x
):
"""
Calculates the natural log of the given input tensor, element-wise.
.. math::
Out =
\\
ln(
input
)
Out =
\\
ln(
x
)
Args:
input
(Variable): Input tensor.
x
(Variable): Input tensor.
Returns:
Variable: The natural log of the input tensor computed element-wise.
...
...
@@ -4938,7 +4938,7 @@ def log(input):
.. code-block:: python
output = fluid.layers.log(
input
)
output = fluid.layers.log(
x
)
"""
helper
=
LayerHelper
(
'log'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
...
...
@@ -4947,18 +4947,18 @@ def log(input):
return
out
def
relu
(
input
):
def
relu
(
x
):
"""
Relu takes one input data (Tensor) and produces one output data (Tensor)
where the rectified linear function, y = max(0,
input
), is applied to
where the rectified linear function, y = max(0,
x
), is applied to
the tensor elementwise.
.. math::
Out =
\\
max(0,
input
)
Out =
\\
max(0,
x
)
Args:
input
(Variable): The input tensor.
x
(Variable): The input tensor.
Returns:
Variable: The output tensor with the same shape as input.
...
...
@@ -4967,7 +4967,7 @@ def relu(input):
.. code-block:: python
output = fluid.layers.relu(
input
)
output = fluid.layers.relu(
x
)
"""
helper
=
LayerHelper
(
'relu'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
bf0c90f2
...
...
@@ -155,7 +155,7 @@ def cast(x, dtype):
Examples:
.. code-block:: python
data = fluid.layers.data(name='x', shape=[13], dtype='float32')
result = fluid.layers.cast(x=data, dtype='float64')
"""
...
...
@@ -188,7 +188,7 @@ def concat(input, axis=0, name=None):
Examples:
.. code-block:: python
out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
"""
helper
=
LayerHelper
(
'concat'
,
**
locals
())
...
...
@@ -238,7 +238,7 @@ def sums(input, out=None):
return
out
def
assign
(
input
,
output
):
def
assign
(
input
,
output
=
None
):
"""
**Assign**
...
...
@@ -246,7 +246,7 @@ def assign(input, output):
Args:
input(Variable|numpy.ndarray): The source variable
output(Variable): The destination variable
output(Variable
|None
): The destination variable
Returns:
Variable: The destination variable that was supplied as the *output*.
...
...
@@ -259,6 +259,8 @@ def assign(input, output):
fluid.layers.assign(hidden, out)
"""
helper
=
LayerHelper
(
'assign'
,
**
locals
())
if
output
is
None
:
output
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
if
isinstance
(
input
,
Variable
):
helper
.
append_op
(
type
=
'assign'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
output
]})
...
...
python/paddle/fluid/metrics.py
浏览文件 @
bf0c90f2
...
...
@@ -596,12 +596,12 @@ class Auc(MetricBase):
tp
,
fn
,
tn
,
fp
=
0
,
0
,
0
,
0
for
i
,
lbl
in
enumerate
(
labels
):
if
lbl
:
if
pred
iction
s
[
i
,
1
]
>=
thresh
:
if
preds
[
i
,
1
]
>=
thresh
:
tp
+=
1
else
:
fn
+=
1
else
:
if
pred
iction
s
[
i
,
1
]
>=
thresh
:
if
preds
[
i
,
1
]
>=
thresh
:
fp
+=
1
else
:
tn
+=
1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录