Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bee95fc8
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bee95fc8
编写于
9月 29, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix code format and some bug
上级
6326c40d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
180 addition
and
121 deletion
+180
-121
paddle/operators/math/pooling.cc
paddle/operators/math/pooling.cc
+10
-10
paddle/operators/math/pooling.cu
paddle/operators/math/pooling.cu
+82
-65
paddle/operators/math/pooling.h
paddle/operators/math/pooling.h
+0
-1
paddle/operators/pool_with_index_op.cc
paddle/operators/pool_with_index_op.cc
+45
-26
paddle/operators/pool_with_index_op.h
paddle/operators/pool_with_index_op.h
+7
-3
python/paddle/v2/framework/tests/test_pool_max_op.py
python/paddle/v2/framework/tests/test_pool_max_op.py
+36
-16
未找到文件。
paddle/operators/math/pooling.cc
浏览文件 @
bee95fc8
...
...
@@ -26,7 +26,6 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
.
dims
()[
1
];
...
...
@@ -112,11 +111,11 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
input_grad_data
[
input_idx
]
+=
output_grad_data
[
output_idx
];
}
}
// offset
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
mask_data
+=
output_stride
;
}
// offset
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
mask_data
+=
output_stride
;
}
}
};
...
...
@@ -152,6 +151,7 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
const
int
padding_width
=
paddings
[
2
];
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
.
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -170,17 +170,17 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
int
wstart
=
pw
*
stride_width
-
padding_width
;
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
int
index
=
-
1
;
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
if
(
ele
<
input_data
[(
d
*
input_height
+
h
)
*
input_width
+
w
])
{
index
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
ele
=
input_data
[(
d
*
input_height
+
h
)
*
input_width
+
w
];
int
input_idx
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
if
(
ele
<
input_data
[
input_idx
])
{
index
=
input_idx
;
ele
=
input_data
[
input_idx
];
}
}
}
...
...
paddle/operators/math/pooling.cu
浏览文件 @
bee95fc8
...
...
@@ -20,14 +20,14 @@ namespace operators {
namespace
math
{
template
<
typename
T
>
__global__
void
KernelMaxPool2dWithIdx
Forward
(
__global__
void
KernelMaxPool2dWithIdx
(
const
int
nthreads
,
const
T
*
input_data
,
T
*
output_data
,
T
*
mask_data
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
)
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
int
ph
=
(
index
/
output_width
)
%
output_height
;
int
c
=
(
index
/
output_width
/
output_height
)
%
channels
;
...
...
@@ -43,51 +43,58 @@ __global__ void KernelMaxPool2dWithIdxForward(
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_height
*
input_width
;
T
ele
=
-
FLT_MAX
;
int
index
=
-
1
;
int
max_
index
=
-
1
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
if
(
ele
<
input_data
[
h
*
input_width
+
w
])
{
index
=
h
*
input_width
+
w
;
ele
=
input_data
[
h
*
input_width
+
w
];
int
input_index
=
h
*
input_width
+
w
;
if
(
ele
<
input_data
[
input_index
])
{
max_index
=
input_index
;
ele
=
input_data
[
input_index
];
}
}
}
output_data
[
index
]
=
ele
;
mask_data
[
index
]
=
index
;
mask_data
[
index
]
=
max_
index
;
}
}
template
<
typename
T
>
__global__
void
KernelMaxPool2DWithIdx
Backwar
d
(
__global__
void
KernelMaxPool2DWithIdx
Gra
d
(
const
int
nthreads
,
T
*
input_grad
,
const
T
*
output_grad
,
const
T
*
mask_data
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
int
offsetW
=
index
%
input_width
+
padding
_width
;
int
offsetH
=
(
index
/
input_width
)
%
input_height
+
padding
_height
;
int
offsetC
=
(
index
/
input_width
/
input_height
)
%
channels
;
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
)
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
w_offset
=
index
%
input
_width
;
int
h_offset
=
(
index
/
input_width
)
%
input
_height
;
int
c_offset
=
(
index
/
input_width
/
input_height
)
%
channels
;
int
batch_idx
=
index
/
input_width
/
input_height
/
channels
;
int
phstart
=
(
offsetH
<
ksize_height
)
?
0
:
(
offsetH
-
ksize_height
)
/
stride_height
+
1
;
int
pwstart
=
(
offsetW
<
ksize_width
)
?
0
:
(
offsetW
-
ksize_width
)
/
stride_width
+
1
;
int
phend
=
min
(
offsetH
/
stride_height
+
1
,
output_height
);
int
pwend
=
min
(
offsetW
/
stride_width
+
1
,
output_width
);
int
ph_start
=
(
h_offset
+
padding_height
<
ksize_height
)
?
0
:
(
h_offset
+
padding_height
-
ksize_height
)
/
stride_height
+
1
;
int
pw_start
=
(
w_offset
+
padding_width
<
ksize_width
)
?
0
:
(
w_offset
+
padding_width
-
ksize_width
)
/
stride_width
+
1
;
int
ph_end
=
min
((
h_offset
+
padding_height
)
/
stride_height
+
1
,
output_height
);
int
pw_end
=
min
((
w_offset
+
padding_width
)
/
stride_width
+
1
,
output_width
);
T
gradient
=
0
;
int
input_current_featuremap_idx
=
h_offset
*
input_width
+
w_offset
;
int
output_idx
=
(
batch_idx
*
channels
+
offsetC
)
*
output_height
*
output_width
;
(
batch_idx
*
channels
+
c_offset
)
*
output_height
*
output_width
;
mask_data
+=
output_idx
;
output_grad
+=
output_idx
;
for
(
int
ph
=
phstart
;
ph
<
phend
;
++
ph
)
{
for
(
int
pw
=
pwstart
;
pw
<
pwend
;
++
pw
)
{
if
((
offsetH
*
input_width
+
offsetW
)
==
mask_data
[
ph
*
output_width
+
pw
])
for
(
int
ph
=
ph_start
;
ph
<
ph_end
;
++
ph
)
{
for
(
int
pw
=
pw_start
;
pw
<
pw_end
;
++
pw
)
{
if
(
mask_data
[
ph
*
output_width
+
pw
]
==
input_current_featuremap_idx
)
gradient
+=
output_grad
[
ph
*
output_width
+
pw
];
}
}
...
...
@@ -125,7 +132,7 @@ class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool2dWithIdx
Forward
<
KernelMaxPool2dWithIdx
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
output_data
,
mask_data
,
...
...
@@ -167,7 +174,7 @@ class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool2DWithIdx
Backwar
d
<
KernelMaxPool2DWithIdx
Gra
d
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_grad_data
,
output_grad_data
,
...
...
@@ -184,7 +191,7 @@ template class MaxPool2dWithIndexFunctor<platform::GPUPlace, double>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
>;
template
<
typename
T
>
__global__
void
KernelMaxPool3DWithIdx
Forward
(
__global__
void
KernelMaxPool3DWithIdx
(
const
int
nthreads
,
const
T
*
input_data
,
T
*
output_data
,
T
*
mask_data
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
...
...
@@ -200,6 +207,7 @@ __global__ void KernelMaxPool3DWithIdxForward(
int
c
=
(
index
/
output_width
/
output_height
/
output_depth
)
%
channels
;
int
batch_idx
=
index
/
output_width
/
output_height
/
output_depth
/
channels
;
int
dstart
=
pd
*
stride_depth
-
padding_depth
;
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
wstart
=
pw
*
stride_width
-
padding_width
;
...
...
@@ -209,8 +217,9 @@ __global__ void KernelMaxPool3DWithIdxForward(
dstart
=
max
(
dstart
,
0
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
T
ele
=
-
FLT_MAX
;
int
index
=
-
1
;
int
max_
index
=
-
1
;
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_depth
*
input_height
*
input_width
;
...
...
@@ -218,19 +227,19 @@ __global__ void KernelMaxPool3DWithIdxForward(
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
if
(
ele
<
input_data
[(
d
*
input_height
+
h
)
*
input_width
+
w
])
{
index
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
ele
=
input_data
[
(
d
*
input_height
+
h
)
*
input_width
+
w
];
max_
index
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
ele
=
input_data
[
max_index
];
}
}
}
}
output_data
[
index
]
=
ele
;
mask_data
[
index
]
=
index
;
mask_data
[
index
]
=
max_
index
;
}
}
template
<
typename
T
>
__global__
void
KernelMaxPool3DWithIdx
Backwar
d
(
__global__
void
KernelMaxPool3DWithIdx
Gra
d
(
const
int
nthreads
,
T
*
input_grad
,
const
T
*
output_grad
,
const
T
*
mask
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
...
...
@@ -240,37 +249,45 @@ __global__ void KernelMaxPool3DWithIdxBackward(
const
int
padding_width
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
);
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
offsetW
=
index
%
input_width
+
padding
_width
;
int
offsetH
=
(
index
/
input_width
)
%
input_height
+
padding
_height
;
int
offsetD
=
(
index
/
input_width
/
input_height
)
%
input_depth
+
padding_depth
;
int
offsetC
=
(
index
/
input_width
/
input_height
/
input_depth
)
%
channels
;
int
w_offset
=
index
%
input
_width
;
int
h_offset
=
(
index
/
input_width
)
%
input
_height
;
int
d_offset
=
(
index
/
input_width
/
input_height
)
%
input_depth
;
int
c_offset
=
(
index
/
input_width
/
input_height
/
input_depth
)
%
channels
;
int
batch_idx
=
index
/
input_width
/
input_height
/
input_depth
/
channels
;
int
pdstart
=
(
offsetD
<
ksize_depth
)
?
0
:
(
offsetD
-
ksize_depth
)
/
stride_depth
+
1
;
int
phstart
=
(
offsetH
<
ksize_height
)
?
0
:
(
offsetH
-
ksize_height
)
/
stride_height
+
1
;
int
pwstart
=
(
offsetW
<
ksize_width
)
?
0
:
(
offsetW
-
ksize_width
)
/
stride_width
+
1
;
int
pdend
=
min
((
offsetD
)
/
stride_depth
+
1
,
output_depth
);
int
phend
=
min
((
offsetH
)
/
stride_height
+
1
,
output_height
);
int
pwend
=
min
((
offsetW
)
/
stride_width
+
1
,
output_width
);
int
pd_start
=
(
d_offset
+
padding_depth
<
ksize_depth
)
?
0
:
(
d_offset
+
padding_depth
-
ksize_depth
)
/
stride_depth
+
1
;
int
ph_start
=
(
h_offset
+
padding_height
<
ksize_height
)
?
0
:
(
h_offset
+
padding_height
-
ksize_height
)
/
stride_height
+
1
;
int
pw_start
=
(
w_offset
+
padding_width
<
ksize_width
)
?
0
:
(
w_offset
+
padding_width
-
ksize_width
)
/
stride_width
+
1
;
int
pd_end
=
min
((
d_offset
+
padding_depth
)
/
stride_depth
+
1
,
output_depth
);
int
ph_end
=
min
((
h_offset
+
padding_height
)
/
stride_height
+
1
,
output_height
);
int
pw_end
=
min
((
w_offset
+
padding_width
)
/
stride_width
+
1
,
output_width
);
T
gradient
=
0
;
int
output_idx
=
(
batch_idx
*
channels
+
offsetC
)
*
output_depth
*
int
input_current_feature_map_idx
=
(
d_offset
*
input_height
+
h_offset
)
*
input_width
+
w_offset
;
int
output_idx
=
(
batch_idx
*
channels
+
c_offset
)
*
output_depth
*
output_height
*
output_width
;
mask
+=
output_idx
;
output_grad
+=
output_idx
;
for
(
int
pd
=
pd
start
;
pd
<
pd
end
;
++
pd
)
{
for
(
int
ph
=
ph
start
;
ph
<
ph
end
;
++
ph
)
{
for
(
int
pw
=
pw
start
;
pw
<
pw
end
;
++
pw
)
{
if
(
((
offsetD
*
input_height
+
offsetH
)
*
input_width
+
offsetW
)
==
mask
[(
pd
*
output_height
+
ph
)
*
output_width
+
pw
]
)
for
(
int
pd
=
pd
_start
;
pd
<
pd_
end
;
++
pd
)
{
for
(
int
ph
=
ph
_start
;
ph
<
ph_
end
;
++
ph
)
{
for
(
int
pw
=
pw
_start
;
pw
<
pw_
end
;
++
pw
)
{
if
(
mask
[(
pd
*
output_height
+
ph
)
*
output_width
+
pw
]
==
input_current_feature_map_idx
)
gradient
+=
output_grad
[(
pd
*
output_height
+
ph
)
*
output_width
+
pw
];
}
...
...
@@ -308,7 +325,7 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
.
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
output_depth
*
output_height
*
output_width
;
...
...
@@ -316,7 +333,7 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool3DWithIdx
Forward
<
KernelMaxPool3DWithIdx
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
...
...
@@ -341,10 +358,10 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
const
int
input_depth
=
input_grad
.
dims
()[
2
];
const
int
input_height
=
input_grad
.
dims
()[
3
];
const
int
input_width
=
input_grad
.
dims
()[
4
];
const
int
output_channels
=
in
put_grad
.
dims
()[
1
];
const
int
output_depth
=
in
put_grad
.
dims
()[
2
];
const
int
output_height
=
in
put_grad
.
dims
()[
3
];
const
int
output_width
=
in
put_grad
.
dims
()[
4
];
const
int
output_channels
=
out
put_grad
.
dims
()[
1
];
const
int
output_depth
=
out
put_grad
.
dims
()[
2
];
const
int
output_height
=
out
put_grad
.
dims
()[
3
];
const
int
output_width
=
out
put_grad
.
dims
()[
4
];
const
int
ksize_depth
=
ksize
[
0
];
const
int
ksize_height
=
ksize
[
1
];
const
int
ksize_width
=
ksize
[
2
];
...
...
@@ -365,7 +382,7 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool3DWithIdx
Backwar
d
<
KernelMaxPool3DWithIdx
Gra
d
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
...
...
paddle/operators/math/pooling.h
浏览文件 @
bee95fc8
...
...
@@ -23,7 +23,6 @@ namespace operators {
namespace
math
{
//////////////////////
#define FLT_MAX __FLT_MAX__
/////////////////////
template
<
typename
Place
,
typename
T
>
class
MaxPool2dWithIndexFunctor
{
...
...
paddle/operators/pool_with_index_op.cc
浏览文件 @
bee95fc8
...
...
@@ -76,8 +76,8 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContextBase
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"X"
)
),
"X(Input) of
MaxPoolWithIndexOpGrad
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"X(Input) of
Pooling
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"X@GRAD(Input@GRAD) of MaxPoolWithIndexOpGrad should not be null."
);
...
...
@@ -97,28 +97,37 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"number of channels, H and W is the height and width of image."
);
AddOutput
(
"Out"
,
"The output tensor of pooling operator."
"The format of output tensor is also NCHW."
);
"The format of output tensor is also NCHW."
"Where N is batch size, C is "
"the number of channels, H and W is the height and "
"width of image."
);
AddOutput
(
"Mask"
,
"The Mask tensor of pooling operator."
"The format of output tensor is also NCHW."
);
"The format of output tensor is also NCHW."
"Where N is batch size, C is the number of channels, H and W "
"is the height and width of image."
"The value in it is the index in current feature map"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"pooling size(height, width) of pooling operator."
);
"ksize"
,
"Pooling size(height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."
);
// TODO(Add checker)
AddAttr
<
bool
>
(
"globalPooling"
,
"
w
hether to use the globalPooling."
"
int constant equal to false or true
"
"
default false
"
"
W
hether to use the globalPooling."
"
Bool constant equal to false or true.
"
"
Default false.
"
"If globalPooling = true, ksize is ignored and need not be specified."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"
s
trides(height, width) of pooling operator."
"
default {1,1}
"
)
.
SetDefault
({
1
,
1
});
"
S
trides(height, width) of pooling operator."
"
Default {1,1}.
"
)
.
SetDefault
({
1
,
1
});
// TODO(Add checker)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"
p
addings(height, width) of pooling operator."
"
default {0,0}
"
)
.
SetDefault
({
0
,
0
});
"
P
addings(height, width) of pooling operator."
"
Default {0,0}.
"
)
.
SetDefault
({
0
,
0
});
// TODO(Add checker)
AddComment
(
R"DOC(
The maxPooling2d with index operation calculates the output and the mask based on
...
...
@@ -140,30 +149,40 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"image."
);
AddOutput
(
"Out"
,
"The output tensor of pooling operator."
"The format of output tensor is also NCDHW."
);
"The format of output tensor is also NCDHW."
"Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and "
"width of image."
);
AddOutput
(
"Mask"
,
"The Mask tensor of pooling operator."
"The format of output tensor is also NCDHW."
);
"The format of output tensor is also NCDHW."
"Where N is batch size, C is the number of channels, D, H and W "
"is the depth, height and width of image."
"The value in it is the index in current feature map"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"pooling size(depth, height, width) of pooling operator."
);
"ksize"
,
"Pooling size(depth, height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."
);
// TODO(Add checker)
AddAttr
<
bool
>
(
"globalPooling"
,
"
w
hether to use the globalPooling."
"
int constant equal to false or true
"
"
default false
"
"
W
hether to use the globalPooling."
"
Bool constant equal to false or true.
"
"
Default false.
"
"If globalPooling = true, ksize is ignored and need not be specified."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"
s
trides(depth, height, width) of pooling operator."
"
default {1,1,1}
"
)
.
SetDefault
({
1
,
1
,
1
});
"
S
trides(depth, height, width) of pooling operator."
"
Default {1,1,1}.
"
)
.
SetDefault
({
1
,
1
,
1
});
// TODO(Add checker)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings(depth, height, width) of pooling operator."
"default {0,0,0}"
)
.
SetDefault
({
0
,
0
,
0
});
"Paddings(depth, height, width) of pooling operator."
"Default {0,0,0}."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Add checker)
AddComment
(
R"DOC(
The maxpooling3d with index operation calculates the output and the mask based on
the input and ksize, strides, paddings parameters.
...
...
paddle/operators/pool_with_index_op.h
浏览文件 @
bee95fc8
...
...
@@ -32,11 +32,10 @@ class MaxPoolWithIndexKernel : public framework::OpKernel {
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
Tensor
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
bool
global_pooling
=
context
.
Attr
<
bool
>
(
"globalPooling"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
global_pooling
)
{
if
(
context
.
Attr
<
bool
>
(
"globalPooling"
)
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
ksize
[
i
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
i
+
2
]);
}
...
...
@@ -63,7 +62,7 @@ template <typename Place, typename T>
class
MaxPoolWithIndexGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
mask
=
context
.
Input
<
Tensor
>
(
"Ma
ks
"
);
const
Tensor
*
mask
=
context
.
Input
<
Tensor
>
(
"Ma
sk
"
);
const
Tensor
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
in_x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
...
...
@@ -71,6 +70,11 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"globalPooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
ksize
[
i
]
=
static_cast
<
int
>
(
in_x_grad
->
dims
()[
i
+
2
]);
}
}
if
(
in_x_grad
)
{
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
python/paddle/v2/framework/tests/test_pool_max_op.py
浏览文件 @
bee95fc8
...
...
@@ -3,7 +3,11 @@ import numpy as np
from
op_test
import
OpTest
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
=
[
0
,
0
],
global_pool
=
0
):
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
=
[
0
,
0
,
0
],
global_pool
=
0
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
...
...
@@ -25,8 +29,19 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
x_masked
=
x
[:,
:,
d_start
:
d_end
,
h_start
:
h_end
,
w_start
:
w_end
]
out
[:,
:,
k
,
i
,
j
]
=
np
.
max
(
x_masked
,
axis
=
(
2
,
3
,
4
))
# mask[:,:, k, i, j] = np.argmax(x_masked, axis=(2, 3, 4))
return
out
for
n
in
xrange
(
N
):
for
c
in
xrange
(
C
):
arr
=
x_masked
[
n
,
c
,
:,
:,
:]
index
=
np
.
where
(
arr
==
np
.
max
(
arr
))
sub_deep
=
index
[
0
][
0
]
sub_row
=
index
[
1
][
0
]
sub_col
=
index
[
2
][
0
]
index
=
((
d_start
+
sub_deep
)
*
H
+
(
h_start
+
sub_row
))
*
W
+
w_start
+
sub_col
mask
[
n
,
c
,
k
,
i
,
j
]
=
index
return
out
,
mask
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
=
[
0
,
0
],
global_pool
=
0
):
...
...
@@ -47,19 +62,25 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
x_masked
=
x
[:,
:,
r_start
:
r_end
,
c_start
:
c_end
]
out
[:,
:,
i
,
j
]
=
np
.
max
(
x_masked
,
axis
=
(
2
,
3
))
# mask[:,:, i, j] = np.argmax(x_masked, axis=(2, 3))
return
out
for
n
in
xrange
(
N
):
for
c
in
xrange
(
C
):
arr
=
x_masked
[
n
,
c
,
:,
:]
index
=
np
.
where
(
arr
==
np
.
max
(
arr
))
sub_row
=
index
[
0
][
0
]
sub_col
=
index
[
1
][
0
]
index
=
(
r_start
+
sub_row
)
*
W
+
c_start
+
sub_col
mask
[
n
,
c
,
i
,
j
]
=
index
return
out
,
mask
class
TestMaxPoolWithIndex_Op
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
"maxPool3dWithIndex"
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
=
self
.
pool_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
)
# mask = np.zeros(output.shape)
output
,
mask
=
self
.
pool_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
)
self
.
attrs
=
{
'strides'
:
self
.
strides
,
...
...
@@ -69,7 +90,7 @@ class TestMaxPoolWithIndex_Op(OpTest):
}
self
.
inputs
=
{
'X'
:
input
}
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
,
"Mask"
:
mask
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -78,7 +99,8 @@ class TestMaxPoolWithIndex_Op(OpTest):
# self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)
def
initTestCase
(
self
):
self
.
global_pool
=
0
self
.
global_pool
=
False
self
.
op_type
=
"maxPool3dWithIndex"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
,
7
]
self
.
ksize
=
[
3
,
3
,
3
]
...
...
@@ -86,10 +108,9 @@ class TestMaxPoolWithIndex_Op(OpTest):
self
.
paddings
=
[
1
,
1
,
1
]
""""
class
TestCase1
(
TestMaxPoolWithIndex_Op
):
def
initTestCase
(
self
):
self.global_pool =
1
self
.
global_pool
=
True
self
.
op_type
=
"maxPool3dWithIndex"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
...
...
@@ -100,7 +121,7 @@ class TestCase1(TestMaxPoolWithIndex_Op):
class
TestCase2
(
TestMaxPoolWithIndex_Op
):
def
initTestCase
(
self
):
self.global_pool =
0
self
.
global_pool
=
False
self
.
op_type
=
"maxPool2dWithIndex"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
]
...
...
@@ -111,7 +132,7 @@ class TestCase2(TestMaxPoolWithIndex_Op):
class
TestCase3
(
TestMaxPoolWithIndex_Op
):
def
initTestCase
(
self
):
self.global_pool =
1
self
.
global_pool
=
True
self
.
op_type
=
"maxPool2dWithIndex"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
]
...
...
@@ -122,4 +143,3 @@ class TestCase3(TestMaxPoolWithIndex_Op):
if
__name__
==
'__main__'
:
unittest
.
main
()
"""
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录