Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bec68fa0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bec68fa0
编写于
2月 03, 2019
作者:
T
Tao Luo
提交者:
GitHub
2月 03, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15637 from jerrywgz/refine_box_coder
speed up box_coder in CPU
上级
7ddf4e2c
ceb412b0
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
60 addition
and
88 deletion
+60
-88
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+6
-14
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+2
-8
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+44
-33
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+4
-4
python/paddle/fluid/tests/unittests/test_box_coder_op.py
python/paddle/fluid/tests/unittests/test_box_coder_op.py
+4
-29
未找到文件。
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
bec68fa0
...
...
@@ -38,20 +38,12 @@ class BoxCoderOp : public framework::OperatorWithKernel {
"The shape of PriorBox is [N, 4]"
);
if
(
ctx
->
HasInput
(
"PriorBoxVar"
))
{
auto
prior_box_var_dims
=
ctx
->
GetInputDim
(
"PriorBoxVar"
);
PADDLE_ENFORCE
(
prior_box_var_dims
.
size
()
==
1
||
prior_box_var_dims
.
size
()
==
2
,
"Input(PriorBoxVar) of BoxCoderOp should be 1 or 2."
);
if
(
prior_box_var_dims
.
size
()
==
1
)
{
PADDLE_ENFORCE_EQ
(
prior_box_var_dims
[
0
],
4
,
"The 1st dimension of Input(PriorBoxVar) should be 4"
"when the rank is 1."
);
}
else
{
PADDLE_ENFORCE_EQ
(
prior_box_dims
,
prior_box_var_dims
,
"The dimension of Input(PriorBoxVar) should be equal to"
"the dimension of Input(PriorBox when the rank is 2.)"
);
}
PADDLE_ENFORCE
(
prior_box_var_dims
.
size
()
==
2
,
"Input(PriorBoxVar) of BoxCoderOp should be 2."
);
PADDLE_ENFORCE_EQ
(
prior_box_dims
,
prior_box_var_dims
,
"The dimension of Input(PriorBoxVar) should be equal to"
"the dimension of Input(PriorBox) when the rank is 2."
);
}
}
...
...
paddle/fluid/operators/detection/box_coder_op.cu
浏览文件 @
bec68fa0
...
...
@@ -56,10 +56,7 @@ __global__ void EncodeCenterSizeKernel(
output
[
idx
*
len
+
2
]
=
log
(
fabs
(
target_box_width
/
prior_box_width
));
output
[
idx
*
len
+
3
]
=
log
(
fabs
(
target_box_height
/
prior_box_height
));
if
(
prior_box_var_data
)
{
int
prior_var_offset
=
0
;
if
(
prior_box_var_size
==
2
)
{
prior_var_offset
=
col_idx
*
len
;
}
int
prior_var_offset
=
col_idx
*
len
;
output
[
idx
*
len
]
/=
prior_box_var_data
[
prior_var_offset
];
output
[
idx
*
len
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
idx
*
len
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
...
...
@@ -99,10 +96,7 @@ __global__ void DecodeCenterSizeKernel(
T
box_var_x
=
T
(
1
),
box_var_y
=
T
(
1
);
T
box_var_w
=
T
(
1
),
box_var_h
=
T
(
1
);
if
(
prior_box_var_data
)
{
int
prior_var_offset
=
0
;
if
(
prior_box_var_size
==
2
)
{
prior_var_offset
=
axis
==
0
?
col_idx
*
len
:
row_idx
*
len
;
}
int
prior_var_offset
=
axis
==
0
?
col_idx
*
len
:
row_idx
*
len
;
box_var_x
=
prior_box_var_data
[
prior_var_offset
];
box_var_y
=
prior_box_var_data
[
prior_var_offset
+
1
];
box_var_w
=
prior_box_var_data
[
prior_var_offset
+
2
];
...
...
paddle/fluid/operators/detection/box_coder_op.h
浏览文件 @
bec68fa0
...
...
@@ -79,10 +79,7 @@ class BoxCoderKernel : public framework::OpKernel<T> {
output
[
offset
+
3
]
=
std
::
log
(
std
::
fabs
(
target_box_height
/
prior_box_height
));
if
(
prior_box_var
)
{
int
prior_var_offset
=
0
;
if
(
prior_box_var
->
dims
().
size
()
==
2
)
{
prior_var_offset
=
j
*
len
;
}
int
prior_var_offset
=
j
*
len
;
output
[
offset
]
/=
prior_box_var_data
[
prior_var_offset
];
output
[
offset
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
offset
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
...
...
@@ -95,11 +92,12 @@ class BoxCoderKernel : public framework::OpKernel<T> {
}
}
}
template
<
int
axis
,
int
var_size
>
void
DecodeCenterSize
(
const
framework
::
Tensor
*
target_box
,
const
framework
::
Tensor
*
prior_box
,
const
framework
::
Tensor
*
prior_box_var
,
const
bool
normalized
,
const
int
axis
,
const
std
::
vector
<
float
>
variance
,
T
*
output
)
const
{
const
bool
normalized
,
std
::
vector
<
float
>
variance
,
T
*
output
)
const
{
int64_t
row
=
target_box
->
dims
()[
0
];
int64_t
col
=
target_box
->
dims
()[
1
];
int64_t
len
=
target_box
->
dims
()[
2
];
...
...
@@ -107,19 +105,17 @@ class BoxCoderKernel : public framework::OpKernel<T> {
auto
*
target_box_data
=
target_box
->
data
<
T
>
();
auto
*
prior_box_data
=
prior_box
->
data
<
T
>
();
const
T
*
prior_box_var_data
=
nullptr
;
if
(
prior_box_var
)
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
if
(
var_size
==
2
)
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
int
prior_box_offset
=
0
;
T
var_data
[
4
]
=
{
1.
,
1.
,
1.
,
1.
};
T
*
var_ptr
=
var_data
;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
if
(
axis
==
0
)
{
prior_box_offset
=
j
*
len
;
}
else
if
(
axis
==
1
)
{
prior_box_offset
=
i
*
len
;
}
prior_box_offset
=
axis
==
0
?
j
*
len
:
i
*
len
;
T
prior_box_width
=
prior_box_data
[
prior_box_offset
+
2
]
-
prior_box_data
[
prior_box_offset
]
+
(
normalized
==
false
);
...
...
@@ -133,26 +129,18 @@ class BoxCoderKernel : public framework::OpKernel<T> {
T
target_box_center_x
=
0
,
target_box_center_y
=
0
;
T
target_box_width
=
0
,
target_box_height
=
0
;
T
box_var_x
=
T
(
1
),
box_var_y
=
T
(
1
);
T
box_var_w
=
T
(
1
),
box_var_h
=
T
(
1
);
if
(
prior_box_var
)
{
int
prior_var_offset
=
0
;
if
(
prior_box_var
->
dims
().
size
()
==
2
)
{
if
(
axis
==
0
)
prior_var_offset
=
j
*
len
;
else
if
(
axis
==
1
)
prior_var_offset
=
i
*
len
;
}
box_var_x
=
prior_box_var_data
[
prior_var_offset
];
box_var_y
=
prior_box_var_data
[
prior_var_offset
+
1
];
box_var_w
=
prior_box_var_data
[
prior_var_offset
+
2
];
box_var_h
=
prior_box_var_data
[
prior_var_offset
+
3
];
}
else
if
(
!
(
variance
.
empty
()))
{
box_var_x
=
static_cast
<
T
>
(
variance
[
0
]);
box_var_y
=
static_cast
<
T
>
(
variance
[
1
]);
box_var_w
=
static_cast
<
T
>
(
variance
[
2
]);
box_var_h
=
static_cast
<
T
>
(
variance
[
3
]);
int
prior_var_offset
=
axis
==
0
?
j
*
len
:
i
*
len
;
if
(
var_size
==
2
)
{
std
::
memcpy
(
var_ptr
,
prior_box_var_data
+
prior_var_offset
,
4
*
sizeof
(
T
));
}
else
if
(
var_size
==
1
)
{
var_ptr
=
reinterpret_cast
<
T
*>
(
variance
.
data
());
}
T
box_var_x
=
*
var_ptr
;
T
box_var_y
=
*
(
var_ptr
+
1
);
T
box_var_w
=
*
(
var_ptr
+
2
);
T
box_var_h
=
*
(
var_ptr
+
3
);
target_box_center_x
=
box_var_x
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
...
...
@@ -211,8 +199,31 @@ class BoxCoderKernel : public framework::OpKernel<T> {
EncodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
axis
,
variance
,
output
);
if
(
prior_box_var
)
{
if
(
axis
==
0
)
{
DecodeCenterSize
<
0
,
2
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
{
DecodeCenterSize
<
1
,
2
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
}
else
if
(
!
(
variance
.
empty
()))
{
if
(
axis
==
0
)
{
DecodeCenterSize
<
0
,
1
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
{
DecodeCenterSize
<
1
,
1
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
}
else
{
if
(
axis
==
0
)
{
DecodeCenterSize
<
0
,
0
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
{
DecodeCenterSize
<
1
,
0
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
}
}
}
};
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
bec68fa0
...
...
@@ -397,10 +397,10 @@ def box_coder(prior_box,
input is image feature map, they are close to
the origin of the coordinate system. [xmax, ymax]
is the right bottom coordinate of the anchor box.
prior_box_var(Variable|list
): prior_box_var supports two types of input.
One is variable with shape [M, 4] holds M group.
The other one is list consist of 4 elements
shared by all boxes.
prior_box_var(Variable|list
|None): prior_box_var supports two types
of input. One is variable with shape [M, 4]
holds M group. The other one is list consist of
4 elements
shared by all boxes.
target_box(Variable): This input can be a 2-D LoDTensor with shape
[N, 4] when code_type is 'encode_center_size'.
This input also can be a 3-D Tensor with shape
...
...
python/paddle/fluid/tests/unittests/test_box_coder_op.py
浏览文件 @
bec68fa0
...
...
@@ -34,7 +34,9 @@ def box_decoder(t_box, p_box, pb_v, output_box, norm, axis=0):
pb_y
=
pb_y
.
reshape
(
shape
)
if
pb_v
.
ndim
==
2
:
pb_v
=
pb_v
.
reshape
(
1
,
pb_v
.
shape
[
0
],
pb_v
.
shape
[
1
])
var_shape
=
(
1
,
pb_v
.
shape
[
0
],
pb_v
.
shape
[
1
])
if
axis
==
0
else
(
pb_v
.
shape
[
0
],
1
,
pb_v
.
shape
[
1
])
pb_v
=
pb_v
.
reshape
(
var_shape
)
if
pb_v
.
ndim
==
1
:
tb_x
=
pb_v
[
0
]
*
t_box
[:,
:,
0
]
*
pb_w
+
pb_x
tb_y
=
pb_v
[
1
]
*
t_box
[:,
:,
1
]
*
pb_h
+
pb_y
...
...
@@ -125,33 +127,6 @@ class TestBoxCoderOp(OpTest):
self
.
outputs
=
{
'OutputBox'
:
output_box
}
class
TestBoxCoderOpWithOneRankVar
(
OpTest
):
def
test_check_output
(
self
):
self
.
check_output
()
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
81
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
20
,
81
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
,
box_normalized
)
self
.
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
target_box
,
}
self
.
attrs
=
{
'code_type'
:
'decode_center_size'
,
'box_normalized'
:
False
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
class
TestBoxCoderOpWithoutBoxVar
(
OpTest
):
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -210,7 +185,7 @@ class TestBoxCoderOpWithAxis(OpTest):
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
30
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
30
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
30
,
81
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录