Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bdf3b392
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 2 年 前同步成功
通知
708
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bdf3b392
编写于
7月 08, 2020
作者:
L
longxiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix scalexy bug
上级
beaa62a7
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
37 addition
and
21 deletion
+37
-21
ppdet/modeling/losses/iou_aware_loss.py
ppdet/modeling/losses/iou_aware_loss.py
+3
-2
ppdet/modeling/losses/iou_loss.py
ppdet/modeling/losses/iou_loss.py
+8
-4
ppdet/modeling/losses/yolo_loss.py
ppdet/modeling/losses/yolo_loss.py
+26
-15
未找到文件。
ppdet/modeling/losses/iou_aware_loss.py
浏览文件 @
bdf3b392
...
@@ -54,6 +54,7 @@ class IouAwareLoss(IouLoss):
...
@@ -54,6 +54,7 @@ class IouAwareLoss(IouLoss):
anchors
,
anchors
,
downsample_ratio
,
downsample_ratio
,
batch_size
,
batch_size
,
scale_x_y
,
eps
=
1.e-10
):
eps
=
1.e-10
):
'''
'''
Args:
Args:
...
@@ -67,9 +68,9 @@ class IouAwareLoss(IouLoss):
...
@@ -67,9 +68,9 @@ class IouAwareLoss(IouLoss):
'''
'''
pred
=
self
.
_bbox_transform
(
x
,
y
,
w
,
h
,
anchors
,
downsample_ratio
,
pred
=
self
.
_bbox_transform
(
x
,
y
,
w
,
h
,
anchors
,
downsample_ratio
,
batch_size
,
False
)
batch_size
,
False
,
scale_x_y
,
eps
)
gt
=
self
.
_bbox_transform
(
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
gt
=
self
.
_bbox_transform
(
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
batch_size
,
True
)
batch_size
,
True
,
scale_x_y
,
eps
)
iouk
=
self
.
_iou
(
pred
,
gt
,
ioup
,
eps
)
iouk
=
self
.
_iou
(
pred
,
gt
,
ioup
,
eps
)
iouk
.
stop_gradient
=
True
iouk
.
stop_gradient
=
True
...
...
ppdet/modeling/losses/iou_loss.py
浏览文件 @
bdf3b392
...
@@ -63,6 +63,7 @@ class IouLoss(object):
...
@@ -63,6 +63,7 @@ class IouLoss(object):
anchors
,
anchors
,
downsample_ratio
,
downsample_ratio
,
batch_size
,
batch_size
,
scale_x_y
=
1.
,
ioup
=
None
,
ioup
=
None
,
eps
=
1.e-10
):
eps
=
1.e-10
):
'''
'''
...
@@ -75,9 +76,9 @@ class IouLoss(object):
...
@@ -75,9 +76,9 @@ class IouLoss(object):
eps (float): the decimal to prevent the denominator eqaul zero
eps (float): the decimal to prevent the denominator eqaul zero
'''
'''
pred
=
self
.
_bbox_transform
(
x
,
y
,
w
,
h
,
anchors
,
downsample_ratio
,
pred
=
self
.
_bbox_transform
(
x
,
y
,
w
,
h
,
anchors
,
downsample_ratio
,
batch_size
,
False
)
batch_size
,
False
,
scale_x_y
,
eps
)
gt
=
self
.
_bbox_transform
(
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
gt
=
self
.
_bbox_transform
(
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
batch_size
,
True
)
batch_size
,
True
,
scale_x_y
,
eps
)
iouk
=
self
.
_iou
(
pred
,
gt
,
ioup
,
eps
)
iouk
=
self
.
_iou
(
pred
,
gt
,
ioup
,
eps
)
if
self
.
loss_square
:
if
self
.
loss_square
:
loss_iou
=
1.
-
iouk
*
iouk
loss_iou
=
1.
-
iouk
*
iouk
...
@@ -145,7 +146,7 @@ class IouLoss(object):
...
@@ -145,7 +146,7 @@ class IouLoss(object):
return
diou_term
+
ciou_term
return
diou_term
+
ciou_term
def
_bbox_transform
(
self
,
dcx
,
dcy
,
dw
,
dh
,
anchors
,
downsample_ratio
,
def
_bbox_transform
(
self
,
dcx
,
dcy
,
dw
,
dh
,
anchors
,
downsample_ratio
,
batch_size
,
is_gt
):
batch_size
,
is_gt
,
scale_x_y
,
eps
):
grid_x
=
int
(
self
.
_MAX_WI
/
downsample_ratio
)
grid_x
=
int
(
self
.
_MAX_WI
/
downsample_ratio
)
grid_y
=
int
(
self
.
_MAX_HI
/
downsample_ratio
)
grid_y
=
int
(
self
.
_MAX_HI
/
downsample_ratio
)
an_num
=
len
(
anchors
)
//
2
an_num
=
len
(
anchors
)
//
2
...
@@ -179,8 +180,11 @@ class IouLoss(object):
...
@@ -179,8 +180,11 @@ class IouLoss(object):
cy
.
gradient
=
True
cy
.
gradient
=
True
else
:
else
:
dcx_sig
=
fluid
.
layers
.
sigmoid
(
dcx
)
dcx_sig
=
fluid
.
layers
.
sigmoid
(
dcx
)
cx
=
fluid
.
layers
.
elementwise_add
(
dcx_sig
,
gi
)
/
grid_x_act
dcy_sig
=
fluid
.
layers
.
sigmoid
(
dcy
)
dcy_sig
=
fluid
.
layers
.
sigmoid
(
dcy
)
if
(
abs
(
scale_x_y
-
1.0
)
>
eps
):
dcx_sig
=
scale_x_y
*
dcx_sig
-
0.5
*
(
scale_x_y
-
1
)
dcy_sig
=
scale_x_y
*
dcy_sig
-
0.5
*
(
scale_x_y
-
1
)
cx
=
fluid
.
layers
.
elementwise_add
(
dcx_sig
,
gi
)
/
grid_x_act
cy
=
fluid
.
layers
.
elementwise_add
(
dcy_sig
,
gj
)
/
grid_y_act
cy
=
fluid
.
layers
.
elementwise_add
(
dcy_sig
,
gj
)
/
grid_y_act
anchor_w_
=
[
anchors
[
i
]
for
i
in
range
(
0
,
len
(
anchors
))
if
i
%
2
==
0
]
anchor_w_
=
[
anchors
[
i
]
for
i
in
range
(
0
,
len
(
anchors
))
if
i
%
2
==
0
]
...
...
ppdet/modeling/losses/yolo_loss.py
浏览文件 @
bdf3b392
...
@@ -92,7 +92,7 @@ class YOLOv3Loss(object):
...
@@ -92,7 +92,7 @@ class YOLOv3Loss(object):
return
{
'loss'
:
sum
(
losses
)}
return
{
'loss'
:
sum
(
losses
)}
def
_get_fine_grained_loss
(
self
,
outputs
,
targets
,
gt_box
,
batch_size
,
def
_get_fine_grained_loss
(
self
,
outputs
,
targets
,
gt_box
,
batch_size
,
num_classes
,
mask_anchors
,
ignore_thresh
):
num_classes
,
mask_anchors
,
ignore_thresh
,
eps
=
1.e-10
):
"""
"""
Calculate fine grained YOLOv3 loss
Calculate fine grained YOLOv3 loss
...
@@ -136,12 +136,25 @@ class YOLOv3Loss(object):
...
@@ -136,12 +136,25 @@ class YOLOv3Loss(object):
tx
,
ty
,
tw
,
th
,
tscale
,
tobj
,
tcls
=
self
.
_split_target
(
target
)
tx
,
ty
,
tw
,
th
,
tscale
,
tobj
,
tcls
=
self
.
_split_target
(
target
)
tscale_tobj
=
tscale
*
tobj
tscale_tobj
=
tscale
*
tobj
loss_x
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
,
tx
)
*
tscale_tobj
scale_x_y
=
self
.
scale_x_y
if
not
isinstance
(
loss_x
=
fluid
.
layers
.
reduce_sum
(
loss_x
,
dim
=
[
1
,
2
,
3
])
self
.
scale_x_y
,
Sequence
)
else
self
.
scale_x_y
[
i
]
loss_y
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
y
,
ty
)
*
tscale_tobj
if
(
abs
(
scale_x_y
-
1.0
)
<
eps
):
loss_y
=
fluid
.
layers
.
reduce_sum
(
loss_y
,
dim
=
[
1
,
2
,
3
])
loss_x
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
,
tx
)
*
tscale_tobj
loss_x
=
fluid
.
layers
.
reduce_sum
(
loss_x
,
dim
=
[
1
,
2
,
3
])
loss_y
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
y
,
ty
)
*
tscale_tobj
loss_y
=
fluid
.
layers
.
reduce_sum
(
loss_y
,
dim
=
[
1
,
2
,
3
])
else
:
dx
=
scale_x_y
*
fluid
.
layers
.
sigmoid
(
x
)
-
0.5
*
(
scale_x_y
-
1.0
)
dy
=
scale_x_y
*
fluid
.
layers
.
sigmoid
(
y
)
-
0.5
*
(
scale_x_y
-
1.0
)
loss_x
=
fluid
.
layers
.
abs
(
dx
-
tx
)
*
tscale_tobj
loss_x
=
fluid
.
layers
.
reduce_sum
(
loss_x
,
dim
=
[
1
,
2
,
3
])
loss_y
=
fluid
.
layers
.
abs
(
dy
-
ty
)
*
tscale_tobj
loss_y
=
fluid
.
layers
.
reduce_sum
(
loss_y
,
dim
=
[
1
,
2
,
3
])
# NOTE: we refined loss function of (w, h) as L1Loss
# NOTE: we refined loss function of (w, h) as L1Loss
loss_w
=
fluid
.
layers
.
abs
(
w
-
tw
)
*
tscale_tobj
loss_w
=
fluid
.
layers
.
abs
(
w
-
tw
)
*
tscale_tobj
loss_w
=
fluid
.
layers
.
reduce_sum
(
loss_w
,
dim
=
[
1
,
2
,
3
])
loss_w
=
fluid
.
layers
.
reduce_sum
(
loss_w
,
dim
=
[
1
,
2
,
3
])
...
@@ -149,7 +162,7 @@ class YOLOv3Loss(object):
...
@@ -149,7 +162,7 @@ class YOLOv3Loss(object):
loss_h
=
fluid
.
layers
.
reduce_sum
(
loss_h
,
dim
=
[
1
,
2
,
3
])
loss_h
=
fluid
.
layers
.
reduce_sum
(
loss_h
,
dim
=
[
1
,
2
,
3
])
if
self
.
_iou_loss
is
not
None
:
if
self
.
_iou_loss
is
not
None
:
loss_iou
=
self
.
_iou_loss
(
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
loss_iou
=
self
.
_iou_loss
(
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample
,
self
.
_batch_size
)
downsample
,
self
.
_batch_size
,
scale_x_y
)
loss_iou
=
loss_iou
*
tscale_tobj
loss_iou
=
loss_iou
*
tscale_tobj
loss_iou
=
fluid
.
layers
.
reduce_sum
(
loss_iou
,
dim
=
[
1
,
2
,
3
])
loss_iou
=
fluid
.
layers
.
reduce_sum
(
loss_iou
,
dim
=
[
1
,
2
,
3
])
loss_ious
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_iou
))
loss_ious
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_iou
))
...
@@ -157,14 +170,12 @@ class YOLOv3Loss(object):
...
@@ -157,14 +170,12 @@ class YOLOv3Loss(object):
if
self
.
_iou_aware_loss
is
not
None
:
if
self
.
_iou_aware_loss
is
not
None
:
loss_iou_aware
=
self
.
_iou_aware_loss
(
loss_iou_aware
=
self
.
_iou_aware_loss
(
ioup
,
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample
,
ioup
,
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample
,
self
.
_batch_size
)
self
.
_batch_size
,
scale_x_y
)
loss_iou_aware
=
loss_iou_aware
*
tobj
loss_iou_aware
=
loss_iou_aware
*
tobj
loss_iou_aware
=
fluid
.
layers
.
reduce_sum
(
loss_iou_aware
=
fluid
.
layers
.
reduce_sum
(
loss_iou_aware
,
dim
=
[
1
,
2
,
3
])
loss_iou_aware
,
dim
=
[
1
,
2
,
3
])
loss_iou_awares
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_iou_aware
))
loss_iou_awares
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_iou_aware
))
scale_x_y
=
self
.
scale_x_y
if
not
isinstance
(
self
.
scale_x_y
,
Sequence
)
else
self
.
scale_x_y
[
i
]
loss_obj_pos
,
loss_obj_neg
=
self
.
_calc_obj_loss
(
loss_obj_pos
,
loss_obj_neg
=
self
.
_calc_obj_loss
(
output
,
obj
,
tobj
,
gt_box
,
self
.
_batch_size
,
anchors
,
output
,
obj
,
tobj
,
gt_box
,
self
.
_batch_size
,
anchors
,
num_classes
,
downsample
,
self
.
_ignore_thresh
,
scale_x_y
)
num_classes
,
downsample
,
self
.
_ignore_thresh
,
scale_x_y
)
...
@@ -293,7 +304,7 @@ class YOLOv3Loss(object):
...
@@ -293,7 +304,7 @@ class YOLOv3Loss(object):
downsample_ratio
=
downsample
,
downsample_ratio
=
downsample
,
clip_bbox
=
False
,
clip_bbox
=
False
,
scale_x_y
=
scale_x_y
)
scale_x_y
=
scale_x_y
)
# 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox
# 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox
# and gt bbox in each sample
# and gt bbox in each sample
if
batch_size
>
1
:
if
batch_size
>
1
:
...
@@ -322,17 +333,17 @@ class YOLOv3Loss(object):
...
@@ -322,17 +333,17 @@ class YOLOv3Loss(object):
pred
=
fluid
.
layers
.
squeeze
(
pred
,
axes
=
[
0
])
pred
=
fluid
.
layers
.
squeeze
(
pred
,
axes
=
[
0
])
gt
=
box_xywh2xyxy
(
fluid
.
layers
.
squeeze
(
gt
,
axes
=
[
0
]))
gt
=
box_xywh2xyxy
(
fluid
.
layers
.
squeeze
(
gt
,
axes
=
[
0
]))
ious
.
append
(
fluid
.
layers
.
iou_similarity
(
pred
,
gt
))
ious
.
append
(
fluid
.
layers
.
iou_similarity
(
pred
,
gt
))
iou
=
fluid
.
layers
.
stack
(
ious
,
axis
=
0
)
iou
=
fluid
.
layers
.
stack
(
ious
,
axis
=
0
)
# 3. Get iou_mask by IoU between gt bbox and prediction bbox,
# 3. Get iou_mask by IoU between gt bbox and prediction bbox,
# Get obj_mask by tobj(holds gt_score), calculate objectness loss
# Get obj_mask by tobj(holds gt_score), calculate objectness loss
max_iou
=
fluid
.
layers
.
reduce_max
(
iou
,
dim
=-
1
)
max_iou
=
fluid
.
layers
.
reduce_max
(
iou
,
dim
=-
1
)
iou_mask
=
fluid
.
layers
.
cast
(
max_iou
<=
ignore_thresh
,
dtype
=
"float32"
)
iou_mask
=
fluid
.
layers
.
cast
(
max_iou
<=
ignore_thresh
,
dtype
=
"float32"
)
if
self
.
match_score
:
if
self
.
match_score
:
max_prob
=
fluid
.
layers
.
reduce_max
(
prob
,
dim
=-
1
)
max_prob
=
fluid
.
layers
.
reduce_max
(
prob
,
dim
=-
1
)
iou_mask
=
iou_mask
*
fluid
.
layers
.
cast
(
iou_mask
=
iou_mask
*
fluid
.
layers
.
cast
(
max_prob
<=
0.25
,
dtype
=
"float32"
)
max_prob
<=
0.25
,
dtype
=
"float32"
)
output_shape
=
fluid
.
layers
.
shape
(
output
)
output_shape
=
fluid
.
layers
.
shape
(
output
)
an_num
=
len
(
anchors
)
//
2
an_num
=
len
(
anchors
)
//
2
iou_mask
=
fluid
.
layers
.
reshape
(
iou_mask
,
(
-
1
,
an_num
,
output_shape
[
2
],
iou_mask
=
fluid
.
layers
.
reshape
(
iou_mask
,
(
-
1
,
an_num
,
output_shape
[
2
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录