Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bdc832cb
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bdc832cb
编写于
11月 06, 2017
作者:
D
Dong Zhihong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"add eval interface"
上级
233a305b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
67 addition
and
13 deletion
+67
-13
paddle/operators/accuracy_op.cc
paddle/operators/accuracy_op.cc
+4
-0
paddle/operators/accuracy_op.h
paddle/operators/accuracy_op.h
+4
-2
python/paddle/v2/framework/evaluator.py
python/paddle/v2/framework/evaluator.py
+57
-10
python/paddle/v2/framework/tests/test_accuracy_op.py
python/paddle/v2/framework/tests/test_accuracy_op.py
+2
-1
未找到文件。
paddle/operators/accuracy_op.cc
浏览文件 @
bdc832cb
...
...
@@ -30,6 +30,8 @@ class AccuracyOp : public framework::OperatorWithKernel {
"Input (Label) of accuracy op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Accuracy"
),
"Output (Accuracy) of AccuracyOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Correct"
),
"Output (Correct) of AccuracyOp should not be null."
);
auto
inference_dim
=
ctx
->
GetInputDim
(
"Out"
);
auto
label_dim
=
ctx
->
GetInputDim
(
"Label"
);
...
...
@@ -43,6 +45,7 @@ class AccuracyOp : public framework::OperatorWithKernel {
" the same as label."
);
ctx
->
SetOutputDim
(
"Accuracy"
,
{
1
});
ctx
->
SetOutputDim
(
"Correct"
,
{
1
});
ctx
->
ShareLoD
(
"Out"
,
/*->*/
"Accuracy"
);
}
...
...
@@ -65,6 +68,7 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Label"
,
"Label of the training data"
);
// TODO(typhoonzero): AddInput("Weight", ...
AddOutput
(
"Accuracy"
,
"The accuracy of current batch"
);
AddOutput
(
"Correct"
,
"The correct samples count of current batch"
);
AddComment
(
R"DOC(
Accuracy. It will print accuracy rate for classification.
...
...
paddle/operators/accuracy_op.h
浏览文件 @
bdc832cb
...
...
@@ -42,8 +42,10 @@ class AccuracyKernel : public framework::OpKernel<T> {
auto
*
indices
=
ctx
.
Input
<
Tensor
>
(
"Indices"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
accuracy
=
ctx
.
Output
<
Tensor
>
(
"Accuracy"
);
auto
*
correct
=
ctx
.
Output
<
Tensor
>
(
"Correct"
);
float
*
accuracy_data
=
accuracy
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
float
*
correct_data
=
correct
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
int
*
accuracy_data
=
accuracy
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
const
int64_t
*
indices_data
=
indices
->
data
<
int64_t
>
();
const
int64_t
*
label_data
=
label
->
data
<
int64_t
>
();
...
...
@@ -68,7 +70,7 @@ class AccuracyKernel : public framework::OpKernel<T> {
}
}
// FIXME(typhoonzero): we don't accumulate the accuracy for now.
*
correct_data
=
num_correct
;
*
accuracy_data
=
static_cast
<
float
>
(
num_correct
)
/
static_cast
<
float
>
(
num_samples
);
}
...
...
python/paddle/v2/framework/evaluator.py
浏览文件 @
bdc832cb
...
...
@@ -12,18 +12,35 @@ class Evaluator(object):
add increment operator to accumulate the metric states
"""
def
__init__
(
self
,
evaluator_typ
e
,
**
kwargs
):
def
__init__
(
self
,
nam
e
,
**
kwargs
):
self
.
_states
=
[]
self
.
_helper
=
LayerHelper
(
layer_type
=
evaluator_typ
e
,
**
kwargs
)
self
.
_helper
=
LayerHelper
(
layer_type
=
nam
e
,
**
kwargs
)
@
staticmethod
def
clear
(
self
):
# def _update(self):
# """
# Updates the internal states througth operator
# """
# raise NotImplementedError()
def
reset
(
self
):
"""
c
lear metric states at the begin of each pass/user specified batch
C
lear metric states at the begin of each pass/user specified batch
"""
raise
NotImplementedError
()
reset_program
=
Program
()
for
var
in
self
.
_states
:
zeros
=
helper
.
create_tmp_variable
(
dtype
=
var
.
data_type
)
self
.
_helper
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
[
zeros
]},
attrs
=
{
"shape"
:
var
.
shape
,
"value"
:
0
,
})
self
.
_helper
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
zeros
},
outputs
=
{
"Out"
:
var
})
return
reset_program
def
eval
uate
(
self
):
def
eval
(
self
):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
"""
...
...
@@ -31,6 +48,10 @@ class Evaluator(object):
class
Accuracy
(
Evaluator
):
"""
Accuracy need two state variable Total, Correct
"""
def
__init__
(
self
,
input
,
label
,
k
=
1
,
**
kwargs
):
super
(
Accuracy
,
self
).
__init__
(
"accuracy"
,
**
kwargs
)
g_total
=
helper
.
create_global_variable
(
...
...
@@ -43,6 +64,8 @@ class Accuracy(Evaluator):
persistable
=
True
,
dtype
=
"int64"
,
shape
=
[
1
])
self
.
_states
.
append
(
g_total
)
self
.
_states
.
append
(
g_correct
)
topk_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
data_type
)
topk_indices
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
...
...
@@ -61,10 +84,34 @@ class Accuracy(Evaluator):
"Indices"
:
[
topk_indices
],
"Label"
:
[
label
]
},
outputs
=
{
"Accuracy"
:
[
acc_out
]})
outputs
=
{
"Accuracy"
:
[
acc_out
],
"Correct"
:
[
tp_out
],
})
helper
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
[
g_total
,
],
},
type
=
"sum"
,
inputs
=
{
"X"
:
[
g_total
,
tp_out
]},
outputs
=
{
"Out"
:
[
g_total
]})
return
acc_out
def
eval
(
self
):
eval_program
=
Program
()
g_total
=
self
.
_program
# This is demo for composing low level op to compute metric
class
F1
(
Evaluator
):
def
__init__
(
self
,
input
,
label
,
**
kwargs
):
super
(
F1
,
self
).
__init__
(
"F1"
,
**
kwargs
)
super
(
Accuracy
,
self
).
__init__
(
"accuracy"
,
**
kwargs
)
g_total
=
helper
.
create_global_variable
(
name
=
unique_name
(
"Total"
),
persistable
=
True
,
dtype
=
"int64"
,
shape
=
[
1
])
g_correct
=
helper
.
create_global_variable
(
name
=
unique_name
(
"Correct"
),
persistable
=
True
,
dtype
=
"int64"
,
shape
=
[
1
])
python/paddle/v2/framework/tests/test_accuracy_op.py
浏览文件 @
bdc832cb
...
...
@@ -18,7 +18,8 @@ class TestAccuracyOp(OpTest):
num_correct
+=
1
break
self
.
outputs
=
{
'Accuracy'
:
np
.
array
([
num_correct
/
float
(
n
)]).
astype
(
"float32"
)
'Accuracy'
:
np
.
array
([
num_correct
/
float
(
n
)]).
astype
(
"float32"
),
'Correct'
:
np
.
array
([
num_correct
]).
astype
(
"int32"
)
}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录