Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bd64719a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bd64719a
编写于
1月 29, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update for today
上级
7aed1c13
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
54 addition
and
34 deletion
+54
-34
benchmark/cluster/vgg16/README.md
benchmark/cluster/vgg16/README.md
+30
-14
benchmark/cluster/vgg16/fluid_trainer.yaml
benchmark/cluster/vgg16/fluid_trainer.yaml
+1
-1
benchmark/cluster/vgg16/v2_trainer.yaml
benchmark/cluster/vgg16/v2_trainer.yaml
+1
-1
benchmark/cluster/vgg16/vgg16_fluid.py
benchmark/cluster/vgg16/vgg16_fluid.py
+21
-18
benchmark/cluster/vgg16/vgg16_v2.py
benchmark/cluster/vgg16/vgg16_v2.py
+1
-0
未找到文件。
benchmark/cluster/vgg16/README.md
浏览文件 @
bd64719a
...
...
@@ -2,41 +2,57 @@
## Test Result
### Single node single thread
### Hardware Infomation
-
CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
-
cpu MHz : 2101.000
-
cache size : 20480 KB
### Single Node Single Thread
-
PServer Count: 10
-
Trainer Count: 20
-
Metrics: samples / sec
| Batch Size | 32 | 64 | 128 | 256 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid |
- | - | 16.74 | -
|
| PaddlePaddle v2 |
- | - | 17.60 | -
|
| PaddlePaddle Fluid |
15.44 | 16.32 | 16.74 | 16.79
|
| PaddlePaddle v2 |
15.97 | 17.04 | 17.60 | 17.83
|
| TensorFlow | - | - | - | - |
### different batch size
-
PServer Count: 10
-
Trainer Count: 20
-
Per trainer CPU Core: 1
-
Metrics: samples / sec
| Batch Size | 32 | 64 | 128 | 256 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid |
- | 247.40 | - | -
|
| PaddlePaddle v2 |
- | - | 256.14 | -
|
| PaddlePaddle Fluid |
190.20 | 222.15 | 247.40 | 258.18
|
| PaddlePaddle v2 |
170.96 | 233.71 | 256.14 | 329.23
|
| TensorFlow | - | - | - | - |
### different pserver number
-
Trainer Count: 100
-
Batch Size: 64
-
Metrics: mini-batch / sec
### Accelerate rate
| PServer Count | 10 | 20 | 40 | 60 |
-
Pserver Count: 20
-
Batch Size: 128
-
Metrics: samples / sec
| Trainer Counter | 20 | 40 | 80 | 100 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid |
- | - | - | -
|
| PaddlePaddle v2 |
- | - | - | -
|
| PaddlePaddle Fluid |
291.06 | 518.80 | 836.26 | 1019.29
|
| PaddlePaddle v2 |
356.28 | - | - | 1041.99
|
| TensorFlow | - | - | - | - |
###
Accelerate rate
###
different pserver number
| Trainer Counter | 20 | 40 | 80 | 100 |
-
Trainer Count: 100
-
Batch Size: 128
-
Metrics: mini-batch / sec
| PServer Count | 10 | 20 | 40 | 60 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid | - | - | - | - |
| PaddlePaddle v2 | - | - | - | - |
...
...
benchmark/cluster/vgg16/fluid_trainer.yaml
浏览文件 @
bd64719a
...
...
@@ -30,7 +30,7 @@ spec:
-
name
:
TOPOLOGY
value
:
"
"
-
name
:
ENTRY
value
:
"
MKL_NUM_THREADS=1
python
/workspace/vgg16_fluid.py
--local
0
--batch_size
128
"
value
:
"
MKL_NUM_THREADS=1
python
/workspace/vgg16_fluid.py
--local
0
--batch_size
256
"
-
name
:
TRAINER_PACKAGE
value
:
"
/workspace"
-
name
:
PADDLE_INIT_PORT
...
...
benchmark/cluster/vgg16/v2_trainer.yaml
浏览文件 @
bd64719a
...
...
@@ -22,7 +22,7 @@ spec:
-
name
:
PADDLE_JOB_NAME
value
:
vgg16v2job
-
name
:
BATCH_SIZE
value
:
"
128
"
value
:
"
256
"
-
name
:
TRAINERS
value
:
"
20"
-
name
:
PSERVERS
...
...
benchmark/cluster/vgg16/vgg16_fluid.py
浏览文件 @
bd64719a
...
...
@@ -20,6 +20,7 @@ import numpy as np
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.profiler
as
profiler
import
argparse
import
functools
import
os
...
...
@@ -160,24 +161,25 @@ def main():
start_time
=
time
.
time
()
num_samples
=
0
accuracy
.
reset
(
exe
)
for
batch_id
,
data
in
enumerate
(
train_reader
()):
ts
=
time
.
time
()
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
(
data_shape
),
data
)).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
loss
,
acc
=
exe
.
run
(
trainer_prog
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
},
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
iters
+=
1
num_samples
+=
len
(
data
)
print
(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, spent %f"
%
(
pass_id
,
iters
,
loss
,
acc
,
time
.
time
()
-
ts
)
)
# The accuracy is the accumulation of batches, but not the current batch.
with
profiler
.
profiler
(
"CPU"
,
'total'
)
as
prof
:
for
batch_id
,
data
in
enumerate
(
train_reader
()):
ts
=
time
.
time
()
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
(
data_shape
),
data
)).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
loss
,
acc
=
exe
.
run
(
trainer_prog
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
},
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
iters
+=
1
num_samples
+=
len
(
data
)
print
(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, spent %f"
%
(
pass_id
,
iters
,
loss
,
acc
,
time
.
time
()
-
ts
)
)
# The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed
=
time
.
time
()
-
start_time
pass_train_acc
=
accuracy
.
eval
(
exe
)
...
...
@@ -211,6 +213,7 @@ def main():
pserver_endpoints
=
","
.
join
(
eplist
)
print
(
"pserver endpoints: "
,
pserver_endpoints
)
trainers
=
int
(
os
.
getenv
(
"TRAINERS"
))
# total trainer count
print
(
"trainers total: "
,
trainers
)
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":6174"
# current pserver endpoint
training_role
=
os
.
getenv
(
...
...
benchmark/cluster/vgg16/vgg16_v2.py
浏览文件 @
bd64719a
...
...
@@ -26,6 +26,7 @@ if BATCH_SIZE:
BATCH_SIZE
=
int
(
BATCH_SIZE
)
else
:
BATCH_SIZE
=
128
print
"batch_size"
,
BATCH_SIZE
NODE_COUNT
=
int
(
os
.
getenv
(
"TRAINERS"
))
ts
=
0
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录