[PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 1.8.4(will release in mid-August 202) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev) is required to run this PP-YOLO。
[PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 1.8.4(available on pip now) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev) is required to run this PP-YOLO。
PP-YOLO reached mmAP(IoU=0.5:0.95) as 45.9% on COCO test-dev2017 dataset, and inference speed of FP32 on single V100 is 72.9 FPS, inference speed of FP16 with TensorRT on single V100 is 155.6 FPS.
...
...
@@ -36,24 +36,24 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods:
- PP-YOLO is trained on COCO train2017 datast and evaluated on test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
- PP-YOLO is trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode.
- PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
...
...
@@ -61,16 +61,16 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods:
- YOLOv4(AlexyAB) performance and inference speed is copy from single Tesla V100 testing results in [YOLOv4 github repo](https://github.com/AlexeyAB/darknet), Tesla V100 TensorRT FP16 inference speed is testing with tkDNN configuration and TensorRT 5.1.2.2 on single Tesla V100 based on [AlexyAB/darknet repo](https://github.com/AlexeyAB/darknet).
- Download and configuration of YOLOv4(AlexyAB) is reproduced model of YOLOv4 in PaddleDetection, whose evaluation performance is same as YOLOv4(AlexyAB), and finetune training is supported in PaddleDetection currently, reproducing by training from backbone pretrain weights is on working, see [PaddleDetection YOLOv4](../yolov4/README.md) for details.
- PP-YOLO tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP50<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO tiny used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO tiny inference speeding testing environment and configuration is same as PP-YOLO above.
- PP-YOLO_r18vd is trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,Box AP50<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO_r18vd used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO_r18vd inference speeding testing environment and configuration is same as PP-YOLO above.
## Getting Start
...
...
@@ -165,7 +165,8 @@ Optimizing method and ablation experiments of PP-YOLO compared with YOLOv3.
| G | F + Matrix NMS | 43.5 | - | 43.90 | 44.71 | 74.8 |
| H | G + CoordConv | 44.0 | - | 43.93 | 44.76 | 74.1 |
| I | H + SPP | 44.3 | 45.2 | 44.93 | 45.12 | 72.9 |
**Attention**: Pretrained models whose congigurations are in the directory `generic` just support inference but do not support training and evaluation as now.
本文档步骤,我们同时在`Visual Studio 2015` 和 `Visual Studio 2019 Community` 两个版本进行了测试,我们推荐使用[`Visual Studio 2019`直接编译`CMake`项目](./windows_vs2019_build.md)。
本文档步骤,我们同时在`Visual Studio 2015` 和 `Visual Studio 2019 Community` 两个版本进行了测试,我们推荐使用[`Visual Studio 2019`直接编译`CMake`项目](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/cpp/docs/windows_vs2019_build.md)。
## 前置条件
...
...
@@ -111,4 +111,4 @@ cd /d D:\projects\PaddleDetection\inference\build\release