Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bc5d7bb6
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
bc5d7bb6
编写于
1月 22, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Sparse = dense * dense unit test with Daoyuan's Function test
上级
077f936a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
67 addition
and
69 deletion
+67
-69
paddle/function/BufferArg.h
paddle/function/BufferArg.h
+3
-0
paddle/function/FunctionTest.h
paddle/function/FunctionTest.h
+34
-6
paddle/function/MulOp.cpp
paddle/function/MulOp.cpp
+7
-0
paddle/function/MulOpTest.cpp
paddle/function/MulOpTest.cpp
+23
-63
未找到文件。
paddle/function/BufferArg.h
浏览文件 @
bc5d7bb6
...
...
@@ -172,6 +172,7 @@ public:
bool
isTransposed
()
const
{
return
trans_
;
}
bool
isSparseArg
()
const
{
return
TENSOR_SPARSE
==
bufferType_
;
}
bool
isSequenceArg
()
const
{
return
TENSOR_SEQUENCE_DATA
==
bufferType_
;
}
virtual
size_t
numElements
()
const
{
return
shape_
.
getElements
();
}
const
SequenceArg
&
sequence
()
const
;
const
SparseMatrixArg
&
sparse
()
const
;
...
...
@@ -353,6 +354,8 @@ public:
size_t
nnz
()
const
{
return
nnz_
;
}
size_t
numElements
()
const
override
{
return
nnz_
;
}
SparseFormat
dataFormat
()
const
{
return
format_
;
}
SparseValueType
dataType
()
const
{
return
type_
;
}
...
...
paddle/function/FunctionTest.h
浏览文件 @
bc5d7bb6
...
...
@@ -101,6 +101,34 @@ public:
output
.
isTransposed
()));
}
/// add and init output sparse matrix
void
addOutputs
(
const
SparseMatrixArg
&
output
,
ArgType
argType
=
ASSIGN_TO
)
{
cpuSparse_
=
std
::
make_shared
<
CpuSparseMatrix
>
(
output
.
shape
()[
0
],
output
.
shape
()[
1
],
output
.
nnz
(),
output
.
dataType
(),
output
.
dataFormat
(),
output
.
isTransposed
());
gpuSparse_
=
std
::
make_shared
<
GpuSparseMatrix
>
(
output
.
shape
()[
0
],
output
.
shape
()[
1
],
output
.
nnz
(),
output
.
dataType
(),
output
.
dataFormat
(),
output
.
isTransposed
());
/// init sparse matrix
hl_stream_t
stream
(
HPPL_STREAM_1
);
cpuSparse_
->
randomizeUniform
();
gpuSparse_
->
copyFrom
(
*
cpuSparse_
,
stream
);
hl_stream_synchronize
(
stream
);
cpuOutputs_
.
emplace_back
(
std
::
make_shared
<
SparseMatrixArg
>
(
*
cpuSparse_
,
argType
));
gpuOutputs_
.
emplace_back
(
std
::
make_shared
<
SparseMatrixArg
>
(
*
gpuSparse_
,
argType
));
}
void
addInputs
(
const
SequenceArg
&
input
)
{
size_t
batchSize
=
input
.
shape
()[
0
];
size_t
numSeqs
=
batchSize
/
10
+
1
;
...
...
@@ -199,8 +227,7 @@ protected:
void
initOutputs
()
{
for
(
size_t
i
=
0
;
i
<
cpuOutputs_
.
size
();
i
++
)
{
if
(
cpuOutputs_
[
i
]
->
isSparseArg
())
{
LOG
(
INFO
)
<<
"output sparse matrix already init"
;
continue
;
continue
;
/// sparse matrix already init
}
initArg
(
*
cpuOutputs_
[
i
]);
...
...
@@ -218,10 +245,11 @@ protected:
void
compareOutputs
()
{
for
(
size_t
i
=
0
;
i
<
cpuOutputs_
.
size
();
i
++
)
{
// TODO, Need a BufferCheck used to compare the two buffers.
auto
cpu
=
cpuOutputs_
[
i
];
auto
gpu
=
gpuOutputs_
[
i
];
CpuVector
cpuVector
(
cpu
->
shape
().
getElements
(),
(
real
*
)
cpu
->
data
());
GpuVector
gpuVector
(
cpu
->
shape
().
getElements
(),
(
real
*
)
gpu
->
data
());
const
auto
cpu
=
cpuOutputs_
[
i
];
const
auto
gpu
=
gpuOutputs_
[
i
];
CHECK_EQ
(
cpu
->
numElements
(),
gpu
->
numElements
());
CpuVector
cpuVector
(
cpu
->
numElements
(),
(
real
*
)
cpu
->
data
());
GpuVector
gpuVector
(
gpu
->
numElements
(),
(
real
*
)
gpu
->
data
());
autotest
::
TensorCheckErr
(
cpuVector
,
gpuVector
);
}
}
...
...
paddle/function/MulOp.cpp
浏览文件 @
bc5d7bb6
...
...
@@ -319,6 +319,13 @@ public:
auto
outSparseMat
=
outputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
();
if
(
!
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
()
&&
outputs
[
0
].
isSparseArg
())
{
/*
LOG(INFO) << "input0";
inputs[0].matrix<Device>().print(std::cout);
LOG(INFO) << "input1";
inputs[1].matrix<Device>().print(std::cout);
LOG(INFO) << "output sparse matrix";
outSparseMat.print(std::cout); */
MulOp
<
Device
>
(
outSparseMat
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
...
...
paddle/function/MulOpTest.cpp
浏览文件 @
bc5d7bb6
...
...
@@ -183,75 +183,35 @@ TEST(MulOp, DDSparseMul) {
* C += A * B, A sparse, B, C dense
* sparse = dense * dense
*/
void
testSparseDDMatrix
(
void
test
Func
SparseDDMatrix
(
size_t
dimM
,
size_t
dimN
,
size_t
dimK
,
size_t
nnz
,
SparseFormat
FORMAT
)
{
real
alpha
=
1.0
;
real
beta
=
1.0
;
const
auto
cpuFunc
=
FunctionBase
::
funcRegistrar_
.
createByType
(
"MulOp-CPU"
);
cpuFunc
->
init
(
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
const
auto
gpuFunc
=
FunctionBase
::
funcRegistrar_
.
createByType
(
"MulOp-GPU"
);
gpuFunc
->
init
(
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
auto
cpuMatrixA
=
Matrix
::
create
(
dimM
,
dimK
,
false
,
false
);
auto
gpuMatrixA
=
Matrix
::
create
(
dimM
,
dimK
,
false
,
true
);
auto
cpuDenseA
=
Matrix
::
create
(
dimM
,
dimK
,
false
,
false
);
auto
cpuMatrixB
=
Matrix
::
create
(
dimK
,
dimN
,
false
,
false
);
auto
gpuMatrixB
=
Matrix
::
create
(
dimK
,
dimN
,
false
,
true
);
auto
cpuDenseB
=
Matrix
::
create
(
dimK
,
dimN
,
false
,
false
);
CpuSparseMatrix
cpuMatrixC
(
dimM
,
dimN
,
nnz
,
FLOAT_VALUE
,
FORMAT
,
false
);
CpuSparseMatrix
gpuMatrixC_d2h
(
dimM
,
dimN
,
nnz
,
FLOAT_VALUE
,
FORMAT
,
false
);
GpuSparseMatrix
gpuMatrixC
(
dimM
,
dimN
,
nnz
,
FLOAT_VALUE
,
FORMAT
,
false
);
CpuMatrix
cpuDenseC
(
dimM
,
dimN
,
false
);
/*matrix init*/
hl_stream_t
stream
(
HPPL_STREAM_1
);
cpuMatrixA
->
randomizeUniform
();
cpuMatrixB
->
randomizeUniform
();
cpuMatrixC
.
randomizeUniform
();
gpuMatrixA
->
copyFrom
(
*
cpuMatrixA
,
stream
);
gpuMatrixB
->
copyFrom
(
*
cpuMatrixB
,
stream
);
gpuMatrixC
.
copyFrom
(
cpuMatrixC
,
stream
);
cpuDenseA
->
copyFrom
(
*
cpuMatrixA
);
cpuDenseB
->
copyFrom
(
*
cpuMatrixB
);
cpuDenseC
.
copyFrom
(
cpuMatrixC
);
hl_stream_synchronize
(
stream
);
/*matrix mul*/
BufferArgs
cpuInputs
;
BufferArgs
cpuOutputs
;
cpuInputs
.
addArg
(
*
cpuMatrixA
);
cpuInputs
.
addArg
(
*
cpuMatrixB
);
cpuOutputs
.
addArg
(
cpuMatrixC
,
ADD_TO
);
cpuFunc
->
calc
(
cpuInputs
,
cpuOutputs
);
BufferArgs
gpuInputs
;
BufferArgs
gpuOutputs
;
gpuInputs
.
addArg
(
*
gpuMatrixA
);
gpuInputs
.
addArg
(
*
gpuMatrixB
);
gpuOutputs
.
addArg
(
gpuMatrixC
,
ADD_TO
);
gpuFunc
->
calc
(
gpuInputs
,
gpuOutputs
);
BufferArgs
denseInputs
;
BufferArgs
denseOutputs
;
denseInputs
.
addArg
(
*
cpuDenseA
);
denseInputs
.
addArg
(
*
cpuDenseB
);
denseOutputs
.
addArg
(
cpuDenseC
,
ADD_TO
);
cpuFunc
->
calc
(
denseInputs
,
denseOutputs
);
// init Test object
FunctionCompare
test
(
"MulOp"
,
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
// prepare input arguments
/// matrix A : M * K
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimK
}));
gpuMatrixC_d2h
.
copyFrom
(
gpuMatrixC
,
stream
);
hl_stream_synchronize
(
stream
);
/// matrix B: K * N
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimK
,
dimN
})
);
/*check result*/
checkSMatrixEqual
(
cpuMatrixC
,
gpuMatrixC_d2h
);
checkSMatrixEqual2Dense
(
cpuMatrixC
,
cpuDenseC
);
/// output sparse matrix C: M * N
test
.
addOutputs
(
SparseMatrixArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimN
},
nnz
,
FORMAT
,
FLOAT_VALUE
,
UNSPECIFIED
,
false
),
ADD_TO
);
// run Function
test
.
run
();
}
TEST
(
M
atrix
,
SparseDDMul
)
{
LOG
(
INFO
)
<<
"test for sparse = dense * dense matrix"
;
TEST
(
M
ulOp
,
SparseDDMul
)
{
LOG
(
INFO
)
<<
"
function
test for sparse = dense * dense matrix"
;
for
(
const
auto
dimM
:
{
10
,
100
,
1000
})
{
for
(
const
auto
dimN
:
{
10
,
100
})
{
for
(
const
auto
dimK
:
{
3
,
10
})
{
...
...
@@ -263,7 +223,7 @@ TEST(Matrix, SparseDDMul) {
<<
" dimK="
<<
std
::
setw
(
5
)
<<
dimK
<<
" nnz="
<<
std
::
setw
(
5
)
<<
nnz
<<
" format="
<<
std
::
setw
(
5
)
<<
FORMAT
;
testSparseDDMatrix
(
dimM
,
dimN
,
dimK
,
nnz
,
FORMAT
);
test
Func
SparseDDMatrix
(
dimM
,
dimN
,
dimK
,
nnz
,
FORMAT
);
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录