未验证 提交 bbece395 编写于 作者: P pk_hk 提交者: GitHub

[pico] openvino demo (#5605)

上级 057ef8bd
......@@ -17,19 +17,27 @@ pip install openvino==2022.1.0
- 准备测试模型:根据[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet)中【导出及转换模型】步骤,采用不包含后处理的方式导出模型(`-o export.benchmark=True` ),并生成待测试模型简化后的onnx模型(可在下文链接中可直接下载)。同时在本目录下新建```out_onnxsim```文件夹,将导出的onnx模型放在该目录下。
- 准备测试所用图片:本demo默认利用PaddleDetection/demo/[000000570688.jpg](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/demo/000000570688.jpg)
- 准备测试所用图片:本demo默认利用PaddleDetection/demo/[000000014439.jpg](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/demo/000000014439.jpg)
### Benchmark
- 在本目录下直接运行:
```shell
# Linux
python openvino_benchmark.py --img_path ../../../../demo/000000570688.jpg --onnx_path out_onnxsim/picodet_xs_320_coco_lcnet.onnx --in_shape 320
python openvino_benchmark.py --img_path ../../../../demo/000000014439.jpg --onnx_path out_onnxsim/picodet_s_320_coco_lcnet.onnx --in_shape 320
# Windows
python openvino_benchmark.py --img_path ..\..\..\..\demo\000000570688.jpg --onnx_path out_onnxsim\picodet_xs_320_coco_lcnet.onnx --in_shape 320
python openvino_benchmark.py --img_path ..\..\..\..\demo\000000014439.jpg --onnx_path out_onnxsim\picodet_s_320_coco_lcnet.onnx --in_shape 320
```
- 注意:```--in_shape```为对应模型输入size,默认为320
### Inference images
```shell
# Linux
python openvino_benchmark.py --benchmark 0 --img_path ../../../../demo/000000014439.jpg --onnx_path out_onnxsim/picodet_s_320_coco_lcnet.onnx --in_shape 320
# Windows
python openvino_benchmark.py --benchmark 0 --img_path ..\..\..\..\demo\000000014439.jpg --onnx_path out_onnxsim\picodet_s_320_coco_lcnet.onnx --in_shape 320
```
## 结果
测试结果如下:
......
person
bicycle
car
motorbike
aeroplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
sofa
pottedplant
bed
diningtable
toilet
tvmonitor
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
......@@ -16,6 +16,7 @@ import cv2
import numpy as np
import time
import argparse
from scipy.special import softmax
from openvino.runtime import Core
......@@ -33,14 +34,275 @@ def image_preprocess(img_path, re_shape):
return img.astype(np.float32)
def benchmark(img_file, onnx_file, re_shape):
def draw_box(img, results, class_label, scale_x, scale_y):
ie = Core()
net = ie.read_model(onnx_file)
label_list = list(
map(lambda x: x.strip(), open(class_label, 'r').readlines()))
test_image = image_preprocess(img_file, re_shape)
for i in range(len(results)):
print(label_list[int(results[i][0])], ':', results[i][1])
bbox = results[i, 2:]
label_id = int(results[i, 0])
score = results[i, 1]
if (score > 0.20):
xmin, ymin, xmax, ymax = [
int(bbox[0] * scale_x), int(bbox[1] * scale_y),
int(bbox[2] * scale_x), int(bbox[3] * scale_y)
]
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 3)
font = cv2.FONT_HERSHEY_SIMPLEX
label_text = label_list[label_id]
cv2.rectangle(img, (xmin, ymin), (xmax, ymin - 60), (0, 255, 0), -1)
cv2.putText(img, "#" + label_text, (xmin, ymin - 10), font, 1,
(255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(img,
str(round(score, 3)), (xmin, ymin - 40), font, 0.8,
(255, 255, 255), 2, cv2.LINE_AA)
return img
compiled_model = ie.compile_model(net, 'CPU')
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
indexes = np.argsort(scores)
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(
current_box, axis=0), )
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def iou_of(boxes0, boxes1, eps=1e-5):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def area_of(left_top, right_bottom):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
class PicoDetPostProcess(object):
"""
Args:
input_shape (int): network input image size
ori_shape (int): ori image shape of before padding
scale_factor (float): scale factor of ori image
enable_mkldnn (bool): whether to open MKLDNN
"""
def __init__(self,
input_shape,
ori_shape,
scale_factor,
strides=[8, 16, 32, 64],
score_threshold=0.4,
nms_threshold=0.5,
nms_top_k=1000,
keep_top_k=100):
self.ori_shape = ori_shape
self.input_shape = input_shape
self.scale_factor = scale_factor
self.strides = strides
self.score_threshold = score_threshold
self.nms_threshold = nms_threshold
self.nms_top_k = nms_top_k
self.keep_top_k = keep_top_k
def warp_boxes(self, boxes, ori_shape):
"""Apply transform to boxes
"""
width, height = ori_shape[1], ori_shape[0]
n = len(boxes)
if n:
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
n * 4, 2) # x1y1, x2y2, x1y2, x2y1
# xy = xy @ M.T # transform
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate(
(x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip boxes
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
return xy.astype(np.float32)
else:
return boxes
def __call__(self, scores, raw_boxes):
batch_size = raw_boxes[0].shape[0]
reg_max = int(raw_boxes[0].shape[-1] / 4 - 1)
out_boxes_num = []
out_boxes_list = []
for batch_id in range(batch_size):
# generate centers
decode_boxes = []
select_scores = []
for stride, box_distribute, score in zip(self.strides, raw_boxes,
scores):
box_distribute = box_distribute[batch_id]
score = score[batch_id]
# centers
fm_h = self.input_shape[0] / stride
fm_w = self.input_shape[1] / stride
h_range = np.arange(fm_h)
w_range = np.arange(fm_w)
ww, hh = np.meshgrid(w_range, h_range)
ct_row = (hh.flatten() + 0.5) * stride
ct_col = (ww.flatten() + 0.5) * stride
center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1)
# box distribution to distance
reg_range = np.arange(reg_max + 1)
box_distance = box_distribute.reshape((-1, reg_max + 1))
box_distance = softmax(box_distance, axis=1)
box_distance = box_distance * np.expand_dims(reg_range, axis=0)
box_distance = np.sum(box_distance, axis=1).reshape((-1, 4))
box_distance = box_distance * stride
# top K candidate
topk_idx = np.argsort(score.max(axis=1))[::-1]
topk_idx = topk_idx[:self.nms_top_k]
center = center[topk_idx]
score = score[topk_idx]
box_distance = box_distance[topk_idx]
# decode box
decode_box = center + [-1, -1, 1, 1] * box_distance
select_scores.append(score)
decode_boxes.append(decode_box)
# nms
bboxes = np.concatenate(decode_boxes, axis=0)
confidences = np.concatenate(select_scores, axis=0)
picked_box_probs = []
picked_labels = []
for class_index in range(0, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > self.score_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = bboxes[mask, :]
box_probs = np.concatenate(
[subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = hard_nms(
box_probs,
iou_threshold=self.nms_threshold,
top_k=self.keep_top_k, )
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if len(picked_box_probs) == 0:
out_boxes_list.append(np.empty((0, 4)))
out_boxes_num.append(0)
else:
picked_box_probs = np.concatenate(picked_box_probs)
# resize output boxes
picked_box_probs[:, :4] = self.warp_boxes(
picked_box_probs[:, :4], self.ori_shape[batch_id])
im_scale = np.concatenate([
self.scale_factor[batch_id][::-1],
self.scale_factor[batch_id][::-1]
])
picked_box_probs[:, :4] /= im_scale
# clas score box
out_boxes_list.append(
np.concatenate(
[
np.expand_dims(
np.array(picked_labels),
axis=-1), np.expand_dims(
picked_box_probs[:, 4], axis=-1),
picked_box_probs[:, :4]
],
axis=1))
out_boxes_num.append(len(picked_labels))
out_boxes_list = np.concatenate(out_boxes_list, axis=0)
out_boxes_num = np.asarray(out_boxes_num).astype(np.int32)
return out_boxes_list, out_boxes_num
def detect(img_file, compiled_model, re_shape, class_label):
output = compiled_model.infer_new_request({0: test_image})
result_ie = list(output.values()) #[0]
test_im_shape = np.array([[re_shape, re_shape]]).astype('float32')
test_scale_factor = np.array([[1, 1]]).astype('float32')
np_score_list = []
np_boxes_list = []
num_outs = int(len(result_ie) / 2)
for out_idx in range(num_outs):
np_score_list.append(result_ie[out_idx])
np_boxes_list.append(result_ie[out_idx + num_outs])
postprocess = PicoDetPostProcess(test_image.shape[2:], test_im_shape,
test_scale_factor)
np_boxes, np_boxes_num = postprocess(np_score_list, np_boxes_list)
image = cv2.imread(img_file, 1)
scale_x = image.shape[1] / test_image.shape[3]
scale_y = image.shape[0] / test_image.shape[2]
res_image = draw_box(image, np_boxes, class_label, scale_x, scale_y)
cv2.imwrite('res.jpg', res_image)
cv2.imshow("res", res_image)
cv2.waitKey()
def benchmark(test_image, compiled_model):
# benchmark
loop_num = 100
......@@ -71,21 +333,33 @@ def benchmark(img_file, onnx_file, re_shape):
if __name__ == '__main__':
onnx_path = "out_onnx"
onnx_file = onnx_path + "/picodet_s_320_coco.onnx"
parser = argparse.ArgumentParser()
parser.add_argument(
'--benchmark', type=int, default=1, help="0:detect; 1:benchmark")
parser.add_argument(
'--img_path',
type=str,
default='demo/000000570688.jpg',
default='demo/000000014439.jpg',
help="image path")
parser.add_argument(
'--onnx_path',
type=str,
default='out_onnxsim/picodet_xs_320_coco_lcnet.onnx',
default='out_onnxsim/picodet_s_320_processed.onnx',
help="onnx filepath")
parser.add_argument('--in_shape', type=int, default=320, help="input_size")
parser.add_argument(
'--class_label',
type=str,
default='coco_label.txt',
help="class label file")
args = parser.parse_args()
benchmark(args.img_path, args.onnx_path, args.in_shape)
ie = Core()
net = ie.read_model(args.onnx_path)
test_image = image_preprocess(args.img_path, args.in_shape)
compiled_model = ie.compile_model(net, 'CPU')
if args.benchmark == 0:
detect(args.img_path, compiled_model, args.in_shape, args.class_label)
if args.benchmark == 1:
benchmark(test_image, compiled_model)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册