Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bbece395
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bbece395
编写于
4月 07, 2022
作者:
P
pk_hk
提交者:
GitHub
4月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[pico] openvino demo (#5605)
上级
057ef8bd
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
377 addition
and
15 deletion
+377
-15
deploy/third_engine/demo_openvino/python/README.md
deploy/third_engine/demo_openvino/python/README.md
+11
-3
deploy/third_engine/demo_openvino/python/coco_label.txt
deploy/third_engine/demo_openvino/python/coco_label.txt
+80
-0
deploy/third_engine/demo_openvino/python/openvino_benchmark.py
...y/third_engine/demo_openvino/python/openvino_benchmark.py
+286
-12
未找到文件。
deploy/third_engine/demo_openvino/python/README.md
浏览文件 @
bbece395
...
...
@@ -17,19 +17,27 @@ pip install openvino==2022.1.0
-
准备测试模型:根据
[
PicoDet
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet
)
中【导出及转换模型】步骤,采用不包含后处理的方式导出模型(
`-o export.benchmark=True`
),并生成待测试模型简化后的onnx模型(可在下文链接中可直接下载)。同时在本目录下新建
```out_onnxsim```
文件夹,将导出的onnx模型放在该目录下。
-
准备测试所用图片:本demo默认利用PaddleDetection/demo/
[
000000
570688.jpg
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/demo/000000570688
.jpg
)
-
准备测试所用图片:本demo默认利用PaddleDetection/demo/
[
000000
014439.jpg
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/demo/000000014439
.jpg
)
### Benchmark
-
在本目录下直接运行:
```
shell
# Linux
python openvino_benchmark.py
--img_path
../../../../demo/000000
570688.jpg
--onnx_path
out_onnxsim/picodet_x
s_320_coco_lcnet.onnx
--in_shape
320
python openvino_benchmark.py
--img_path
../../../../demo/000000
014439.jpg
--onnx_path
out_onnxsim/picodet_
s_320_coco_lcnet.onnx
--in_shape
320
# Windows
python openvino_benchmark.py
--img_path
..
\.
.
\.
.
\.
.
\d
emo
\0
00000
570688.jpg
--onnx_path
out_onnxsim
\p
icodet_x
s_320_coco_lcnet.onnx
--in_shape
320
python openvino_benchmark.py
--img_path
..
\.
.
\.
.
\.
.
\d
emo
\0
00000
014439.jpg
--onnx_path
out_onnxsim
\p
icodet_
s_320_coco_lcnet.onnx
--in_shape
320
```
-
注意:
```--in_shape```
为对应模型输入size,默认为320
### Inference images
```
shell
# Linux
python openvino_benchmark.py
--benchmark
0
--img_path
../../../../demo/000000014439.jpg
--onnx_path
out_onnxsim/picodet_s_320_coco_lcnet.onnx
--in_shape
320
# Windows
python openvino_benchmark.py
--benchmark
0
--img_path
..
\.
.
\.
.
\.
.
\d
emo
\0
00000014439.jpg
--onnx_path
out_onnxsim
\p
icodet_s_320_coco_lcnet.onnx
--in_shape
320
```
## 结果
测试结果如下:
...
...
deploy/third_engine/demo_openvino/python/coco_label.txt
0 → 100644
浏览文件 @
bbece395
person
bicycle
car
motorbike
aeroplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
sofa
pottedplant
bed
diningtable
toilet
tvmonitor
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
deploy/third_engine/demo_openvino/python/openvino_benchmark.py
浏览文件 @
bbece395
...
...
@@ -16,6 +16,7 @@ import cv2
import
numpy
as
np
import
time
import
argparse
from
scipy.special
import
softmax
from
openvino.runtime
import
Core
...
...
@@ -33,14 +34,275 @@ def image_preprocess(img_path, re_shape):
return
img
.
astype
(
np
.
float32
)
def
benchmark
(
img_file
,
onnx_file
,
re_shape
):
def
draw_box
(
img
,
results
,
class_label
,
scale_x
,
scale_y
):
ie
=
Core
()
net
=
ie
.
read_model
(
onnx_file
)
label_list
=
list
(
map
(
lambda
x
:
x
.
strip
(),
open
(
class_label
,
'r'
).
readlines
())
)
test_image
=
image_preprocess
(
img_file
,
re_shape
)
for
i
in
range
(
len
(
results
)):
print
(
label_list
[
int
(
results
[
i
][
0
])],
':'
,
results
[
i
][
1
])
bbox
=
results
[
i
,
2
:]
label_id
=
int
(
results
[
i
,
0
])
score
=
results
[
i
,
1
]
if
(
score
>
0.20
):
xmin
,
ymin
,
xmax
,
ymax
=
[
int
(
bbox
[
0
]
*
scale_x
),
int
(
bbox
[
1
]
*
scale_y
),
int
(
bbox
[
2
]
*
scale_x
),
int
(
bbox
[
3
]
*
scale_y
)
]
cv2
.
rectangle
(
img
,
(
xmin
,
ymin
),
(
xmax
,
ymax
),
(
0
,
255
,
0
),
3
)
font
=
cv2
.
FONT_HERSHEY_SIMPLEX
label_text
=
label_list
[
label_id
]
cv2
.
rectangle
(
img
,
(
xmin
,
ymin
),
(
xmax
,
ymin
-
60
),
(
0
,
255
,
0
),
-
1
)
cv2
.
putText
(
img
,
"#"
+
label_text
,
(
xmin
,
ymin
-
10
),
font
,
1
,
(
255
,
255
,
255
),
2
,
cv2
.
LINE_AA
)
cv2
.
putText
(
img
,
str
(
round
(
score
,
3
)),
(
xmin
,
ymin
-
40
),
font
,
0.8
,
(
255
,
255
,
255
),
2
,
cv2
.
LINE_AA
)
return
img
compiled_model
=
ie
.
compile_model
(
net
,
'CPU'
)
def
hard_nms
(
box_scores
,
iou_threshold
,
top_k
=-
1
,
candidate_size
=
200
):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores
=
box_scores
[:,
-
1
]
boxes
=
box_scores
[:,
:
-
1
]
picked
=
[]
indexes
=
np
.
argsort
(
scores
)
indexes
=
indexes
[
-
candidate_size
:]
while
len
(
indexes
)
>
0
:
current
=
indexes
[
-
1
]
picked
.
append
(
current
)
if
0
<
top_k
==
len
(
picked
)
or
len
(
indexes
)
==
1
:
break
current_box
=
boxes
[
current
,
:]
indexes
=
indexes
[:
-
1
]
rest_boxes
=
boxes
[
indexes
,
:]
iou
=
iou_of
(
rest_boxes
,
np
.
expand_dims
(
current_box
,
axis
=
0
),
)
indexes
=
indexes
[
iou
<=
iou_threshold
]
return
box_scores
[
picked
,
:]
def
iou_of
(
boxes0
,
boxes1
,
eps
=
1e-5
):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top
=
np
.
maximum
(
boxes0
[...,
:
2
],
boxes1
[...,
:
2
])
overlap_right_bottom
=
np
.
minimum
(
boxes0
[...,
2
:],
boxes1
[...,
2
:])
overlap_area
=
area_of
(
overlap_left_top
,
overlap_right_bottom
)
area0
=
area_of
(
boxes0
[...,
:
2
],
boxes0
[...,
2
:])
area1
=
area_of
(
boxes1
[...,
:
2
],
boxes1
[...,
2
:])
return
overlap_area
/
(
area0
+
area1
-
overlap_area
+
eps
)
def
area_of
(
left_top
,
right_bottom
):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw
=
np
.
clip
(
right_bottom
-
left_top
,
0.0
,
None
)
return
hw
[...,
0
]
*
hw
[...,
1
]
class
PicoDetPostProcess
(
object
):
"""
Args:
input_shape (int): network input image size
ori_shape (int): ori image shape of before padding
scale_factor (float): scale factor of ori image
enable_mkldnn (bool): whether to open MKLDNN
"""
def
__init__
(
self
,
input_shape
,
ori_shape
,
scale_factor
,
strides
=
[
8
,
16
,
32
,
64
],
score_threshold
=
0.4
,
nms_threshold
=
0.5
,
nms_top_k
=
1000
,
keep_top_k
=
100
):
self
.
ori_shape
=
ori_shape
self
.
input_shape
=
input_shape
self
.
scale_factor
=
scale_factor
self
.
strides
=
strides
self
.
score_threshold
=
score_threshold
self
.
nms_threshold
=
nms_threshold
self
.
nms_top_k
=
nms_top_k
self
.
keep_top_k
=
keep_top_k
def
warp_boxes
(
self
,
boxes
,
ori_shape
):
"""Apply transform to boxes
"""
width
,
height
=
ori_shape
[
1
],
ori_shape
[
0
]
n
=
len
(
boxes
)
if
n
:
# warp points
xy
=
np
.
ones
((
n
*
4
,
3
))
xy
[:,
:
2
]
=
boxes
[:,
[
0
,
1
,
2
,
3
,
0
,
3
,
2
,
1
]].
reshape
(
n
*
4
,
2
)
# x1y1, x2y2, x1y2, x2y1
# xy = xy @ M.T # transform
xy
=
(
xy
[:,
:
2
]
/
xy
[:,
2
:
3
]).
reshape
(
n
,
8
)
# rescale
# create new boxes
x
=
xy
[:,
[
0
,
2
,
4
,
6
]]
y
=
xy
[:,
[
1
,
3
,
5
,
7
]]
xy
=
np
.
concatenate
(
(
x
.
min
(
1
),
y
.
min
(
1
),
x
.
max
(
1
),
y
.
max
(
1
))).
reshape
(
4
,
n
).
T
# clip boxes
xy
[:,
[
0
,
2
]]
=
xy
[:,
[
0
,
2
]].
clip
(
0
,
width
)
xy
[:,
[
1
,
3
]]
=
xy
[:,
[
1
,
3
]].
clip
(
0
,
height
)
return
xy
.
astype
(
np
.
float32
)
else
:
return
boxes
def
__call__
(
self
,
scores
,
raw_boxes
):
batch_size
=
raw_boxes
[
0
].
shape
[
0
]
reg_max
=
int
(
raw_boxes
[
0
].
shape
[
-
1
]
/
4
-
1
)
out_boxes_num
=
[]
out_boxes_list
=
[]
for
batch_id
in
range
(
batch_size
):
# generate centers
decode_boxes
=
[]
select_scores
=
[]
for
stride
,
box_distribute
,
score
in
zip
(
self
.
strides
,
raw_boxes
,
scores
):
box_distribute
=
box_distribute
[
batch_id
]
score
=
score
[
batch_id
]
# centers
fm_h
=
self
.
input_shape
[
0
]
/
stride
fm_w
=
self
.
input_shape
[
1
]
/
stride
h_range
=
np
.
arange
(
fm_h
)
w_range
=
np
.
arange
(
fm_w
)
ww
,
hh
=
np
.
meshgrid
(
w_range
,
h_range
)
ct_row
=
(
hh
.
flatten
()
+
0.5
)
*
stride
ct_col
=
(
ww
.
flatten
()
+
0.5
)
*
stride
center
=
np
.
stack
((
ct_col
,
ct_row
,
ct_col
,
ct_row
),
axis
=
1
)
# box distribution to distance
reg_range
=
np
.
arange
(
reg_max
+
1
)
box_distance
=
box_distribute
.
reshape
((
-
1
,
reg_max
+
1
))
box_distance
=
softmax
(
box_distance
,
axis
=
1
)
box_distance
=
box_distance
*
np
.
expand_dims
(
reg_range
,
axis
=
0
)
box_distance
=
np
.
sum
(
box_distance
,
axis
=
1
).
reshape
((
-
1
,
4
))
box_distance
=
box_distance
*
stride
# top K candidate
topk_idx
=
np
.
argsort
(
score
.
max
(
axis
=
1
))[::
-
1
]
topk_idx
=
topk_idx
[:
self
.
nms_top_k
]
center
=
center
[
topk_idx
]
score
=
score
[
topk_idx
]
box_distance
=
box_distance
[
topk_idx
]
# decode box
decode_box
=
center
+
[
-
1
,
-
1
,
1
,
1
]
*
box_distance
select_scores
.
append
(
score
)
decode_boxes
.
append
(
decode_box
)
# nms
bboxes
=
np
.
concatenate
(
decode_boxes
,
axis
=
0
)
confidences
=
np
.
concatenate
(
select_scores
,
axis
=
0
)
picked_box_probs
=
[]
picked_labels
=
[]
for
class_index
in
range
(
0
,
confidences
.
shape
[
1
]):
probs
=
confidences
[:,
class_index
]
mask
=
probs
>
self
.
score_threshold
probs
=
probs
[
mask
]
if
probs
.
shape
[
0
]
==
0
:
continue
subset_boxes
=
bboxes
[
mask
,
:]
box_probs
=
np
.
concatenate
(
[
subset_boxes
,
probs
.
reshape
(
-
1
,
1
)],
axis
=
1
)
box_probs
=
hard_nms
(
box_probs
,
iou_threshold
=
self
.
nms_threshold
,
top_k
=
self
.
keep_top_k
,
)
picked_box_probs
.
append
(
box_probs
)
picked_labels
.
extend
([
class_index
]
*
box_probs
.
shape
[
0
])
if
len
(
picked_box_probs
)
==
0
:
out_boxes_list
.
append
(
np
.
empty
((
0
,
4
)))
out_boxes_num
.
append
(
0
)
else
:
picked_box_probs
=
np
.
concatenate
(
picked_box_probs
)
# resize output boxes
picked_box_probs
[:,
:
4
]
=
self
.
warp_boxes
(
picked_box_probs
[:,
:
4
],
self
.
ori_shape
[
batch_id
])
im_scale
=
np
.
concatenate
([
self
.
scale_factor
[
batch_id
][::
-
1
],
self
.
scale_factor
[
batch_id
][::
-
1
]
])
picked_box_probs
[:,
:
4
]
/=
im_scale
# clas score box
out_boxes_list
.
append
(
np
.
concatenate
(
[
np
.
expand_dims
(
np
.
array
(
picked_labels
),
axis
=-
1
),
np
.
expand_dims
(
picked_box_probs
[:,
4
],
axis
=-
1
),
picked_box_probs
[:,
:
4
]
],
axis
=
1
))
out_boxes_num
.
append
(
len
(
picked_labels
))
out_boxes_list
=
np
.
concatenate
(
out_boxes_list
,
axis
=
0
)
out_boxes_num
=
np
.
asarray
(
out_boxes_num
).
astype
(
np
.
int32
)
return
out_boxes_list
,
out_boxes_num
def
detect
(
img_file
,
compiled_model
,
re_shape
,
class_label
):
output
=
compiled_model
.
infer_new_request
({
0
:
test_image
})
result_ie
=
list
(
output
.
values
())
#[0]
test_im_shape
=
np
.
array
([[
re_shape
,
re_shape
]]).
astype
(
'float32'
)
test_scale_factor
=
np
.
array
([[
1
,
1
]]).
astype
(
'float32'
)
np_score_list
=
[]
np_boxes_list
=
[]
num_outs
=
int
(
len
(
result_ie
)
/
2
)
for
out_idx
in
range
(
num_outs
):
np_score_list
.
append
(
result_ie
[
out_idx
])
np_boxes_list
.
append
(
result_ie
[
out_idx
+
num_outs
])
postprocess
=
PicoDetPostProcess
(
test_image
.
shape
[
2
:],
test_im_shape
,
test_scale_factor
)
np_boxes
,
np_boxes_num
=
postprocess
(
np_score_list
,
np_boxes_list
)
image
=
cv2
.
imread
(
img_file
,
1
)
scale_x
=
image
.
shape
[
1
]
/
test_image
.
shape
[
3
]
scale_y
=
image
.
shape
[
0
]
/
test_image
.
shape
[
2
]
res_image
=
draw_box
(
image
,
np_boxes
,
class_label
,
scale_x
,
scale_y
)
cv2
.
imwrite
(
'res.jpg'
,
res_image
)
cv2
.
imshow
(
"res"
,
res_image
)
cv2
.
waitKey
()
def
benchmark
(
test_image
,
compiled_model
):
# benchmark
loop_num
=
100
...
...
@@ -71,21 +333,33 @@ def benchmark(img_file, onnx_file, re_shape):
if
__name__
==
'__main__'
:
onnx_path
=
"out_onnx"
onnx_file
=
onnx_path
+
"/picodet_s_320_coco.onnx"
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--benchmark'
,
type
=
int
,
default
=
1
,
help
=
"0:detect; 1:benchmark"
)
parser
.
add_argument
(
'--img_path'
,
type
=
str
,
default
=
'demo/000000
570688
.jpg'
,
default
=
'demo/000000
014439
.jpg'
,
help
=
"image path"
)
parser
.
add_argument
(
'--onnx_path'
,
type
=
str
,
default
=
'out_onnxsim/picodet_
xs_320_coco_lcnet
.onnx'
,
default
=
'out_onnxsim/picodet_
s_320_processed
.onnx'
,
help
=
"onnx filepath"
)
parser
.
add_argument
(
'--in_shape'
,
type
=
int
,
default
=
320
,
help
=
"input_size"
)
parser
.
add_argument
(
'--class_label'
,
type
=
str
,
default
=
'coco_label.txt'
,
help
=
"class label file"
)
args
=
parser
.
parse_args
()
benchmark
(
args
.
img_path
,
args
.
onnx_path
,
args
.
in_shape
)
ie
=
Core
()
net
=
ie
.
read_model
(
args
.
onnx_path
)
test_image
=
image_preprocess
(
args
.
img_path
,
args
.
in_shape
)
compiled_model
=
ie
.
compile_model
(
net
,
'CPU'
)
if
args
.
benchmark
==
0
:
detect
(
args
.
img_path
,
compiled_model
,
args
.
in_shape
,
args
.
class_label
)
if
args
.
benchmark
==
1
:
benchmark
(
test_image
,
compiled_model
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录