提交 bbc818a5 编写于 作者: S sneaxiy

test=develop

......@@ -174,6 +174,7 @@ paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None
paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_grid ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_reverse ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None))
paddle.fluid.layers.hash ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None))
......
......@@ -41,6 +41,7 @@ pass_library(conv_bn_fuse_pass inference)
pass_library(seqconv_eltadd_relu_fuse_pass inference)
if(WITH_MKLDNN)
pass_library(mkldnn_placement_pass base)
pass_library(depthwise_conv_mkldnn_pass base)
pass_library(conv_bias_mkldnn_fuse_pass inference)
pass_library(conv_relu_mkldnn_fuse_pass inference)
pass_library(conv_elementwise_add_mkldnn_fuse_pass inference)
......@@ -59,6 +60,7 @@ cc_test(graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph
cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector)
cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto)
if (WITH_MKLDNN)
cc_test(test_depthwise_conv_mkldnn_pass SRCS depthwise_conv_mkldnn_pass_tester.cc DEPS depthwise_conv_mkldnn_pass)
cc_test(test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass)
cc_test(test_conv_elementwise_add_mkldnn_fuse_pass SRCS conv_elementwise_add_mkldnn_fuse_pass_tester.cc DEPS conv_elementwise_add_mkldnn_fuse_pass)
endif ()
......@@ -31,7 +31,8 @@ class ConvReLUFusePass : public FusePassBase {
virtual ~ConvReLUFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace ir
......
......@@ -15,6 +15,7 @@
#include "paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/op_proto_maker.h"
namespace paddle {
namespace framework {
......@@ -36,6 +37,8 @@ void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
op->SetInput("X", inputs);
}
op->SetOutput("Out", outputs);
op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
static_cast<int>(OpRole::kForward));
}
// a->OP0->b
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace framework {
namespace ir {
#define GET_NODE(id, pattern) \
PADDLE_ENFORCE(subgraph.count(pattern.RetrieveNode(#id)), \
"pattern has no Node called %s", #id); \
auto* id = subgraph.at(pattern.RetrieveNode(#id)); \
PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", #id);
std::unique_ptr<ir::Graph> DepthwiseConvMKLDNNPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
PADDLE_ENFORCE(graph.get());
FusePassBase::Init("depthwise_conv_mkldnn_pass", graph.get());
GraphPatternDetector gpd;
auto* pattern = gpd.mutable_pattern();
pattern->NewNode("depthwise_conv")
->assert_is_op("depthwise_conv2d")
->assert_op_attr("use_mkldnn", true);
int found_depthwise_conv_mkldnn_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(3) << "handle DepthwiseConvMKLDNN fuse";
GET_NODE(depthwise_conv, (*pattern));
depthwise_conv->Op()->SetType("conv2d");
found_depthwise_conv_mkldnn_count++;
};
gpd(graph.get(), handler);
AddStatis(found_depthwise_conv_mkldnn_count);
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(depthwise_conv_mkldnn_pass,
paddle::framework::ir::DepthwiseConvMKLDNNPass);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace paddle {
namespace framework {
namespace ir {
class DepthwiseConvMKLDNNPass : public FusePassBase {
public:
virtual ~DepthwiseConvMKLDNNPass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace ir
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.h"
#include <gtest/gtest.h>
namespace paddle {
namespace framework {
namespace ir {
void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs, bool use_mkldnn = false) {
auto* op = prog->MutableBlock(0)->AppendOp();
op->SetType(type);
op->SetAttr("use_mkldnn", use_mkldnn);
op->SetAttr("name", name);
op->SetInput("Input", {inputs[0]});
op->SetInput("Filter", {inputs[1]});
op->SetInput("Bias", {inputs[2]});
op->SetOutput("Out", outputs);
}
// (a, weights, bias)->depthwise conv mkldnn->b
// (b, weights2, bias2)->depthwise conv no mkldnn->c
// (c, weights3, bias3)->conv mkldnn->d
// (d, weights3, bias3)->conv no mkldnn->e
ProgramDesc BuildProgramDesc() {
ProgramDesc prog;
for (auto& v : std::vector<std::string>(
{"a", "b", "c", "d", "e", "weights", "bias", "weights2", "bias2",
"weights3", "bias3", "weights4", "bias4"})) {
auto* var = prog.MutableBlock(0)->Var(v);
var->SetType(proto::VarType::SELECTED_ROWS);
if (v == "weights" || v == "bias" || v == "weights2" || v == "bias2" ||
v == "weights3" || v == "bias3" || v == "weights4" || v == "bias4") {
var->SetPersistable(true);
}
}
// depthwise conv with MKL-DNN
SetOp(&prog, "depthwise_conv2d", "conv1",
std::vector<std::string>({"a", "weights", "bias"}),
std::vector<std::string>({"b"}), true);
// depthwise conv without MKL-DNN
SetOp(&prog, "depthwise_conv2d", "conv2",
std::vector<std::string>({"b", "weights2", "bias2"}),
std::vector<std::string>({"c"}), false);
// conv with MKL-DNN
SetOp(&prog, "conv2d", "conv3",
std::vector<std::string>({"c", "weights3", "bias3"}),
std::vector<std::string>({"d"}), true);
// conv without MKL-dNN
SetOp(&prog, "conv2d", "conv4",
std::vector<std::string>({"d", "weights4", "bias4"}),
std::vector<std::string>({"e"}), false);
return prog;
}
TEST(DepthwiseConvMKLDNNPass, basic) {
auto prog = BuildProgramDesc();
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
auto pass = PassRegistry::Instance().Get("depthwise_conv_mkldnn_pass");
struct counters {
int mkldnn_depthwise_conv_nodes;
int other_depthwise_conv_nodes;
int mkldnn_conv_nodes;
int other_conv_nodes;
};
counters before{1, 1, 1, 1};
graph = pass->Apply(std::move(graph));
// initialize counters before loop
counters after{0, 0, 0, 0};
for (auto* node : graph->Nodes()) {
if (node->IsOp()) {
auto* op = node->Op();
if (op->Type() == "conv2d") {
if (boost::get<bool>(op->GetAttr("use_mkldnn")))
after.mkldnn_conv_nodes++;
else
after.other_conv_nodes++;
} else if (op->Type() == "depthwise_conv2d") {
if (boost::get<bool>(op->GetAttr("use_mkldnn")))
after.mkldnn_depthwise_conv_nodes++;
else
after.other_depthwise_conv_nodes++;
}
}
}
EXPECT_EQ(after.other_depthwise_conv_nodes,
before.other_depthwise_conv_nodes);
EXPECT_EQ(after.other_conv_nodes, before.other_conv_nodes);
EXPECT_EQ(after.mkldnn_depthwise_conv_nodes,
before.mkldnn_depthwise_conv_nodes - 1);
EXPECT_EQ(after.mkldnn_conv_nodes, before.mkldnn_conv_nodes + 1);
}
} // namespace ir
} // namespace framework
} // namespace paddle
USE_PASS(depthwise_conv_mkldnn_pass);
......@@ -15,6 +15,7 @@
#include "paddle/fluid/framework/ir/fc_fuse_pass.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/op_proto_maker.h"
namespace paddle {
namespace framework {
......@@ -32,6 +33,8 @@ void SetOp(ProgramDesc* prog, const std::string& type,
op->SetInput("X", inputs);
}
op->SetOutput("Out", outputs);
op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
static_cast<int>(OpRole::kForward));
}
// a->OP0->b
......
......@@ -23,8 +23,62 @@ limitations under the License. */
namespace paddle {
namespace framework {
namespace ir {
namespace {
void CheckProgram(const ProgramDesc &program) {
std::map<int, bool> visit;
#define _INT(role) static_cast<int>(role)
for (size_t i = 0; i < program.Size(); ++i) {
for (OpDesc *op : program.Block(i).AllOps()) {
// For backward compatibility, some program doesn't have role added.
if (!op->HasAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) continue;
int role_id = boost::get<int>(
op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName()));
visit[role_id] = true;
switch (role_id) {
case _INT(OpRole::kForward):
PADDLE_ENFORCE(
visit.find(_INT(OpRole::kBackward)) == visit.end(),
"Cannot add forward operator before backward operator.");
break;
case _INT(OpRole::kBackward):
case _INT(OpRole::kBackward) | _INT(OpRole::kLoss):
PADDLE_ENFORCE(
visit.find(_INT(OpRole::kOptimize)) == visit.end(),
"Cannot add backward operator before optimize operator.");
break;
case _INT(OpRole::kForward) | _INT(OpRole::kLoss):
PADDLE_ENFORCE(visit.find(_INT(OpRole::kBackward) |
_INT(OpRole::kLoss)) == visit.end(),
"Cannot add backward|loss operator before "
"forward|loss operator.");
PADDLE_ENFORCE(
visit.find(_INT(OpRole::kOptimize)) == visit.end(),
"Cannot add backward operator before optimize operator.");
break;
case _INT(OpRole::kOptimize):
case _INT(OpRole::kOptimize) | _INT(OpRole::kLRSched):
PADDLE_ENFORCE(visit.find(_INT(OpRole::kBackward)) != visit.end(),
"Optimize operators must follow backward operator.");
break;
case _INT(OpRole::kLRSched):
case _INT(OpRole::kDist):
case _INT(OpRole::kRPC):
case _INT(OpRole::kNotSpecified):
break;
default:
LOG(FATAL) << "Unknown operator role. Don't add new role because "
"you don't know what you are doing.";
}
}
}
#undef _INT
}
} // namespace
Graph::Graph(const ProgramDesc &program) : program_(program) {
CheckProgram(program_);
// Make the nodes id start from 0.
Node::ResetId();
auto var_nodes = InitFromProgram(program_);
......
......@@ -153,6 +153,12 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
} else if (platform::is_cuda_pinned_place(src_place) &&
platform::is_gpu_place(dst_place)) {
auto src_pinned_place = boost::get<platform::CUDAPinnedPlace>(src_place);
auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
nullptr);
}
#endif
}
......
......@@ -79,6 +79,7 @@ class Analyzer : public OrderedRegistry<PassManager> {
"conv_bn_fuse_pass", //
"conv_eltwiseadd_bn_fuse_pass", //
#ifdef PADDLE_WITH_MKLDNN
"depthwise_conv_mkldnn_pass", //
"conv_bias_mkldnn_fuse_pass", //
"conv_relu_mkldnn_fuse_pass", //
"conv_elementwise_add_mkldnn_fuse_pass", //
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
......@@ -130,6 +131,8 @@ void SetOp(framework::ProgramDesc* prog, const std::string& type,
op->SetType(type);
op->SetInput("Xs", inputs);
op->SetOutput("Xs", outputs);
op->SetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName(),
static_cast<int>(framework::OpRole::kForward));
}
TEST(DataFlowGraph, Build_IR_Graph) {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using ScopedSpatialTransformerDescriptor =
platform::ScopedSpatialTransformerDescriptor;
template <typename T>
class CUDNNAffineGridOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use CUDAPlace.");
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle();
auto* theta = ctx.Input<Tensor>("Theta");
auto* output = ctx.Output<Tensor>("Output");
const T* theta_data = theta->data<T>();
int n = theta->dims()[0];
auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
Tensor h_sizes;
int* h_size_data;
if (size_attr.size() == 0) {
auto* output_shape = ctx.Input<Tensor>("OutputShape");
framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
h_size_data = h_sizes.data<int>();
} else {
h_size_data = h_sizes.mutable_data<int>({4}, platform::CPUPlace());
h_size_data[0] = n;
h_size_data[1] = size_attr[1];
h_size_data[2] = size_attr[2];
h_size_data[3] = size_attr[3];
}
T* output_data = output->mutable_data<T>(
{n, h_size_data[2], h_size_data[3], 2}, ctx.GetPlace());
ScopedSpatialTransformerDescriptor st_desc;
cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
st_desc.descriptor<T>(4, h_size_data);
PADDLE_ENFORCE(platform::dynload::cudnnSpatialTfGridGeneratorForward(
handle, cudnn_st_desc, theta_data, output_data));
}
};
template <typename T>
class CUDNNAffineGridGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use CUDAPlace.");
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle();
auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
auto theta_grad = ctx.Output<Tensor>(framework::GradVarName("Theta"));
int n = output_grad->dims()[0];
auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
Tensor h_sizes;
int* h_size_data;
if (size_attr.size() == 0) {
auto* output_shape = ctx.Input<Tensor>("OutputShape");
framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
h_size_data = h_sizes.data<int>();
} else {
h_size_data = h_sizes.mutable_data<int>({4}, platform::CPUPlace());
h_size_data[0] = n;
h_size_data[1] = size_attr[1];
h_size_data[2] = size_attr[2];
h_size_data[3] = size_attr[3];
}
ScopedSpatialTransformerDescriptor st_desc;
cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
st_desc.descriptor<T>(4, h_size_data);
const T* output_grad_data = output_grad->data<T>();
T* theta_grad_data = theta_grad->mutable_data<T>(ctx.GetPlace());
PADDLE_ENFORCE(platform::dynload::cudnnSpatialTfGridGeneratorBackward(
handle, cudnn_st_desc, output_grad_data, theta_grad_data));
}
};
} // namespace operators
} // namespace paddle
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(affine_grid, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNAffineGridOpKernel<float>,
paddle::operators::CUDNNAffineGridOpKernel<double>);
REGISTER_OP_KERNEL(affine_grid_grad, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNAffineGridGradOpKernel<float>,
paddle::operators::CUDNNAffineGridGradOpKernel<double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/affine_grid_op.h"
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
struct Linspace<paddle::platform::CPUDeviceContext, T> {
framework::Tensor operator()(T start, T end, int count,
const framework::ExecutionContext& ctx) {
Tensor numbers;
T* number_data = numbers.mutable_data<T>({count}, platform::CPUPlace());
T slice = (end - start) / (T)(count - 1);
for (int i = 0; i < count; ++i) {
number_data[i] = start + (T)i * slice;
}
return numbers;
}
};
class AffineGridOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Theta"),
"Input(Theta) of AffineGridOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of AffineGridOp should not be null.");
auto theta_dims = ctx->GetInputDim("Theta");
PADDLE_ENFORCE(theta_dims.size() == 3,
"AffineGrid's Input(Theta) should be 3-D tensor.");
auto output_shape = ctx->Attrs().Get<std::vector<int>>("output_shape");
if (output_shape.size() == 0) {
PADDLE_ENFORCE(ctx->HasInput("OutputShape"),
"Input(OutputShape) of AffineGridOp should not be null if "
"attr(output_shape) is not configured.");
auto output_shape_dims = ctx->GetInputDim("OutputShape");
PADDLE_ENFORCE(output_shape_dims.size() == 1,
"AffineGrid's Input(OutputShape) should be 1-D tensor.");
} else {
PADDLE_ENFORCE(output_shape.size() == 4,
"The size of attr(output_shape) should be 4.");
}
PADDLE_ENFORCE(theta_dims[1] == 2, "Input(theta) dims[1] should be 2.");
PADDLE_ENFORCE(theta_dims[2] == 3, "Input(theta) dims[2] should be 3.");
// N * H * W * 2
ctx->SetOutputDim("Output",
framework::make_ddim({theta_dims[0], -1, -1, 2}));
ctx->ShareLoD("Theta", "Output");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
if (platform::CanCUDNNBeUsed(ctx)) {
library = framework::LibraryType::kCUDNN;
}
#endif
auto data_type = framework::ToDataType(ctx.Input<Tensor>("Theta")->type());
return framework::OpKernelType(data_type, ctx.GetPlace(),
framework::DataLayout::kAnyLayout, library);
}
};
class AffineGridOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"Theta",
"(Tensor) A batch of affine transform parameters with shape [N, 2, 3]. "
"It is used to transform coordinate (x_0, y_0) to coordinate (x_1, "
"y_1).");
AddInput("OutputShape",
"(Tensor) The shape of target image with format [N, C, H, W].")
.AsDispensable();
AddOutput("Output", "(Tensor) Output Tensor with shape [N, H, W, 2].");
AddAttr<bool>(
"use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn")
.SetDefault(true);
AddAttr<std::vector<int>>(
"output_shape",
"The target output image shape with format [N, C, H, W].")
.SetDefault(std::vector<int>());
AddComment(R"DOC(
It generates a grid of (x,y) coordinates using the parameters of the
affine transformation that correspond to a set of points where the input
feature map should be sampled to produce the transformed output feature map.
Given:
Theta = [[[x_11, x_12, x_13]
[x_14, x_15, x_16]]
[[x_21, x_22, x_23]
[x_24, x_25, x_26]]]
OutputShape = [2, 3, 5, 5]
Step 1:
Generate relative coordinates according to OutputShape.
The values of relative coordinates are in the interval between -1 and 1.
The shape of the relative coordinates is [2, H, W] as below:
C = [[[-1. -1. -1. -1. -1. ]
[-0.5 -0.5 -0.5 -0.5 -0.5]
[ 0. 0. 0. 0. 0. ]
[ 0.5 0.5 0.5 0.5 0.5]
[ 1. 1. 1. 1. 1. ]]
[[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]]]
C[0] is the coordinates in height axis and C[1] is the coordinates in width axis.
Step2:
Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
C_ = [[-1. -1. 1. ]
[-0.5 -1. 1. ]
[ 0. -1. 1. ]
[ 0.5 -1. 1. ]
[ 1. -1. 1. ]
[-1. -0.5 1. ]
[-0.5 -0.5 1. ]
[ 0. -0.5 1. ]
[ 0.5 -0.5 1. ]
[ 1. -0.5 1. ]
[-1. 0. 1. ]
[-0.5 0. 1. ]
[ 0. 0. 1. ]
[ 0.5 0. 1. ]
[ 1. 0. 1. ]
[-1. 0.5 1. ]
[-0.5 0.5 1. ]
[ 0. 0.5 1. ]
[ 0.5 0.5 1. ]
[ 1. 0.5 1. ]
[-1. 1. 1. ]
[-0.5 1. 1. ]
[ 0. 1. 1. ]
[ 0.5 1. 1. ]
[ 1. 1. 1. ]]
Step3:
Compute output by equation $$Output[i] = C_ * Theta[i]^T$$
)DOC");
}
};
class AffineGridOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
auto theta_dims = ctx->GetInputDim("Theta");
if (ctx->HasOutput(framework::GradVarName("Theta"))) {
ctx->SetOutputDim(framework::GradVarName("Theta"), theta_dims);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
}
#endif
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Theta")->type()),
ctx.GetPlace(), framework::DataLayout::kAnyLayout, library_);
}
};
class AffineGridGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto* op = new framework::OpDesc();
op->SetType("affine_grid_grad");
op->SetInput("Theta", Input("Theta"));
op->SetInput("OutputShape", Input("OutputShape"));
op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));
op->SetAttrMap(Attrs());
op->SetOutput(framework::GradVarName("Theta"), InputGrad("Theta"));
return std::unique_ptr<framework::OpDesc>(op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(affine_grid, ops::AffineGridOp, ops::AffineGridOpMaker,
ops::AffineGridGradMaker);
REGISTER_OPERATOR(affine_grid_grad, ops::AffineGridOpGrad);
REGISTER_OP_CPU_KERNEL(
affine_grid,
ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
affine_grid_grad,
ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Array1 = Eigen::DSizes<int64_t, 1>;
using Array2 = Eigen::DSizes<int64_t, 2>;
using Array3 = Eigen::DSizes<int64_t, 3>;
using Array4 = Eigen::DSizes<int64_t, 4>;
/**
*Return a tensor with evenly spaced numbers over a specified interval.
*/
template <typename DeviceContext, typename T>
struct Linspace {
framework::Tensor operator()(T start, T end, int count,
const framework::ExecutionContext& ctx);
};
template <typename DeviceContext, typename T>
class AffineGridOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
auto* theta = ctx.Input<Tensor>("Theta");
int n = theta->dims()[0];
auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
int h = 0;
int w = 0;
if (size_attr.size() == 0) {
auto* output_shape = ctx.Input<Tensor>("OutputShape");
Tensor h_sizes;
framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
const int* h_size_data = h_sizes.data<int>();
h = h_size_data[2];
w = h_size_data[3];
} else {
h = size_attr[2];
w = size_attr[3];
}
auto* output = ctx.Output<Tensor>("Output");
output->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());
math::SetConstant<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), output,
static_cast<T>(0));
Linspace<DeviceContext, T> linspace;
// Get indexes of height with shape [height, width, 1]
auto h_idx = linspace((T)-1, (T)1, h, ctx);
auto h_idx_t = EigenTensor<T, 1>::From(h_idx);
// Get indexes of width with shape [height, width, 1]
auto w_idx = linspace((T)-1, (T)1, w, ctx);
auto w_idx_t = EigenTensor<T, 1>::From(w_idx);
// Get constant ones tensor with shape [height, width, 1]
Tensor ones;
ones.mutable_data<T>({h, w, 1}, ctx.GetPlace());
auto ones_t = EigenTensor<T, 3>::From(ones).setConstant((T)1);
// Get grid tensor with shape [n, h, w, 3] by concatenating h_idx, w_idx and
// ones
Tensor grid;
grid.mutable_data<T>({n, h, w, 3}, ctx.GetPlace());
auto grid_t = EigenTensor<T, 4>::From(grid);
grid_t.device(place) = w_idx_t.reshape(Array2(1, w))
.broadcast(Array2(h, 1))
.reshape(Array3(h, w, 1))
.concatenate(h_idx_t.reshape(Array2(1, h))
.broadcast(Array2(w, 1))
.shuffle(Array2(1, 0))
.reshape(Array3(h, w, 1)),
2)
.eval()
.concatenate(ones_t, 2)
.reshape(Array4(1, h, w, 3))
.broadcast(Array4(n, 1, 1, 1));
// output = grid * theta.T
// TODO(wanghaoshuang): Refine batched matrix multiply
auto blas = math::GetBlas<DeviceContext, T>(ctx);
for (int i = 0; i < n; ++i) {
Tensor sliced_grid = grid.Slice(i, i + 1).Resize({h * w, 3});
Tensor sliced_theta = theta->Slice(i, i + 1).Resize({2, 3});
Tensor sliced_out = output->Slice(i, i + 1).Resize({h * w, 2});
blas.MatMul(sliced_grid, false, sliced_theta, true, T(1), &sliced_out,
T(0));
}
}
};
template <typename DeviceContext, typename T>
class AffineGridGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
auto theta_grad = ctx.Output<Tensor>(framework::GradVarName("Theta"));
int n = output_grad->dims()[0];
auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
int h = 0;
int w = 0;
if (size_attr.size() == 0) {
auto* output_shape = ctx.Input<Tensor>("OutputShape");
Tensor h_sizes;
framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
const int* h_size_data = h_sizes.data<int>();
h = h_size_data[2];
w = h_size_data[3];
} else {
h = size_attr[2];
w = size_attr[3];
}
theta_grad->mutable_data<T>({n, 2, 3}, ctx.GetPlace());
math::SetConstant<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), theta_grad,
static_cast<T>(0));
Linspace<DeviceContext, T> linspace;
// Get indexes of height with shape [height, width, 1]
auto h_idx = linspace((T)-1, (T)1, h, ctx);
auto h_idx_t = EigenTensor<T, 1>::From(h_idx);
// Get indexes of width with shape [height, width, 1]
auto w_idx = linspace((T)-1, (T)1, w, ctx);
auto w_idx_t = EigenTensor<T, 1>::From(w_idx);
// Get constant ones tensor with shape [height, width, 1]
Tensor ones;
ones.mutable_data<T>({h, w, 1}, ctx.GetPlace());
auto ones_t = EigenTensor<T, 3>::From(ones).setConstant((T)1);
// Get grid tensor with shape [n, h, w, 3] by concatenating h_idx, w_idx and
// ones
Tensor grid;
grid.mutable_data<T>({n, h, w, 3}, ctx.GetPlace());
auto grid_t = EigenTensor<T, 4>::From(grid);
grid_t.device(place) = w_idx_t.reshape(Array2(1, w))
.broadcast(Array2(h, 1))
.reshape(Array3(h, w, 1))
.concatenate(h_idx_t.reshape(Array2(1, h))
.broadcast(Array2(w, 1))
.shuffle(Array2(1, 0))
.reshape(Array3(h, w, 1)),
2)
.eval()
.concatenate(ones_t, 2)
.reshape(Array4(1, h, w, 3))
.broadcast(Array4(n, 1, 1, 1));
// output = grid * theta.T
// TODO(wanghaoshuang): Refine batched matrix multiply
auto blas = math::GetBlas<DeviceContext, T>(ctx);
for (int i = 0; i < n; ++i) {
Tensor sliced_grid = grid.Slice(i, i + 1).Resize({h * w, 3});
Tensor sliced_out_grad = output_grad->Slice(i, i + 1).Resize({h * w, 2});
Tensor sliced_theta_grad = theta_grad->Slice(i, i + 1).Resize({2, 3});
blas.MatMul(sliced_out_grad, true, sliced_grid, false, T(1),
&sliced_theta_grad, T(0));
}
}
};
} // namespace operators
} // namespace paddle
......@@ -32,6 +32,11 @@ class DeleteVarOp : public framework::OperatorBase {
}
};
class DeleteVarOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {}
};
class DeleteVarOpInfoMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
......@@ -48,4 +53,5 @@ It should not be configured by users directly.
REGISTER_OPERATOR(delete_var, paddle::operators::DeleteVarOp,
paddle::framework::EmptyGradOpMaker,
paddle::operators::DeleteVarOpInfoMaker);
paddle::operators::DeleteVarOpInfoMaker,
paddle::operators::DeleteVarOpShapeInference);
......@@ -341,6 +341,28 @@ class ScopedPoolingDescriptor {
DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};
class ScopedSpatialTransformerDescriptor {
public:
ScopedSpatialTransformerDescriptor() {
PADDLE_ENFORCE(dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
}
~ScopedSpatialTransformerDescriptor() {
PADDLE_ENFORCE(dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
}
template <typename T>
inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
const int dimA[]) {
PADDLE_ENFORCE(dynload::cudnnSetSpatialTransformerNdDescriptor(
desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
return desc_;
}
private:
cudnnSpatialTransformerDescriptor_t desc_;
DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
};
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
......
......@@ -65,44 +65,51 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
* include all needed cudnn functions in HPPL
* different cudnn version has different interfaces
**/
#define CUDNN_DNN_ROUTINE_EACH(__macro) \
__macro(cudnnSetTensor4dDescriptor); \
__macro(cudnnSetTensor4dDescriptorEx); \
__macro(cudnnSetTensorNdDescriptor); \
__macro(cudnnGetTensorNdDescriptor); \
__macro(cudnnGetConvolutionNdForwardOutputDim); \
__macro(cudnnGetConvolutionForwardAlgorithm); \
__macro(cudnnCreateTensorDescriptor); \
__macro(cudnnDestroyTensorDescriptor); \
__macro(cudnnCreateFilterDescriptor); \
__macro(cudnnSetFilter4dDescriptor); \
__macro(cudnnSetFilterNdDescriptor); \
__macro(cudnnGetFilterNdDescriptor); \
__macro(cudnnSetPooling2dDescriptor); \
__macro(cudnnSetPoolingNdDescriptor); \
__macro(cudnnGetPoolingNdDescriptor); \
__macro(cudnnDestroyFilterDescriptor); \
__macro(cudnnCreateConvolutionDescriptor); \
__macro(cudnnCreatePoolingDescriptor); \
__macro(cudnnDestroyPoolingDescriptor); \
__macro(cudnnSetConvolution2dDescriptor); \
__macro(cudnnDestroyConvolutionDescriptor); \
__macro(cudnnSetConvolutionNdDescriptor); \
__macro(cudnnGetConvolutionNdDescriptor); \
__macro(cudnnDeriveBNTensorDescriptor); \
__macro(cudnnCreate); \
__macro(cudnnDestroy); \
__macro(cudnnSetStream); \
__macro(cudnnActivationForward); \
__macro(cudnnConvolutionForward); \
__macro(cudnnConvolutionBackwardBias); \
__macro(cudnnGetConvolutionForwardWorkspaceSize); \
__macro(cudnnTransformTensor); \
__macro(cudnnPoolingForward); \
__macro(cudnnPoolingBackward); \
__macro(cudnnSoftmaxBackward); \
__macro(cudnnSoftmaxForward); \
__macro(cudnnGetVersion); \
#define CUDNN_DNN_ROUTINE_EACH(__macro) \
__macro(cudnnSetTensor4dDescriptor); \
__macro(cudnnSetTensor4dDescriptorEx); \
__macro(cudnnSetTensorNdDescriptor); \
__macro(cudnnGetTensorNdDescriptor); \
__macro(cudnnGetConvolutionNdForwardOutputDim); \
__macro(cudnnGetConvolutionForwardAlgorithm); \
__macro(cudnnCreateTensorDescriptor); \
__macro(cudnnDestroyTensorDescriptor); \
__macro(cudnnCreateFilterDescriptor); \
__macro(cudnnSetFilter4dDescriptor); \
__macro(cudnnSetFilterNdDescriptor); \
__macro(cudnnGetFilterNdDescriptor); \
__macro(cudnnSetPooling2dDescriptor); \
__macro(cudnnSetPoolingNdDescriptor); \
__macro(cudnnGetPoolingNdDescriptor); \
__macro(cudnnDestroyFilterDescriptor); \
__macro(cudnnCreateConvolutionDescriptor); \
__macro(cudnnCreatePoolingDescriptor); \
__macro(cudnnDestroyPoolingDescriptor); \
__macro(cudnnSetConvolution2dDescriptor); \
__macro(cudnnDestroyConvolutionDescriptor); \
__macro(cudnnSetConvolutionNdDescriptor); \
__macro(cudnnGetConvolutionNdDescriptor); \
__macro(cudnnDeriveBNTensorDescriptor); \
__macro(cudnnCreateSpatialTransformerDescriptor); \
__macro(cudnnSetSpatialTransformerNdDescriptor); \
__macro(cudnnDestroySpatialTransformerDescriptor); \
__macro(cudnnSpatialTfGridGeneratorForward); \
__macro(cudnnSpatialTfGridGeneratorBackward); \
__macro(cudnnSpatialTfSamplerForward); \
__macro(cudnnSpatialTfSamplerBackward); \
__macro(cudnnCreate); \
__macro(cudnnDestroy); \
__macro(cudnnSetStream); \
__macro(cudnnActivationForward); \
__macro(cudnnConvolutionForward); \
__macro(cudnnConvolutionBackwardBias); \
__macro(cudnnGetConvolutionForwardWorkspaceSize); \
__macro(cudnnTransformTensor); \
__macro(cudnnPoolingForward); \
__macro(cudnnPoolingBackward); \
__macro(cudnnSoftmaxBackward); \
__macro(cudnnSoftmaxForward); \
__macro(cudnnGetVersion); \
__macro(cudnnGetErrorString);
CUDNN_DNN_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP)
......
......@@ -884,12 +884,13 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
load_prog = Program()
load_block = load_prog.global_block()
need_delete_vars = []
for var_tuple in slice_vars_and_attrs:
orig_var = var_tuple[0]
start = var_tuple[1]
slice_var = var_tuple[2]
end = start + reduce(lambda x, y: x * y, slice_var.shape)
end = start + slice_var.shape[0]
clone_orig_var = load_block.create_var(
name=orig_var.name,
......@@ -917,5 +918,8 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
attrs={'axes': [0],
'starts': [start],
'ends': [end]})
need_delete_vars.append(clone_orig_var)
load_block.append_op(
type='delete_var',
inputs={'X': need_delete_vars}, )
executor.run(load_prog)
......@@ -154,6 +154,7 @@ __all__ = [
'mul',
'sigmoid_cross_entropy_with_logits',
'maxout',
'affine_grid',
'sequence_reverse',
'affine_channel',
'hash',
......@@ -710,8 +711,18 @@ def dynamic_gru(input,
The first part are weights of the update gate and reset gate with
shape :math:`(D \\times 2D)`, and the second part are weights for
candidate hidden state with shape :math:`(D \\times D)`.
bias_attr(ParamAttr): The parameter attribute for learnable the
hidden-hidden bias.
If it is set to None or one attribute of ParamAttr, dynamic_gru will
create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
the bias in the update gate, reset gate and candidate calculations.
If it is set to False, no bias will be applied to the update gate,
reset gate and candidate calculations. If it is set to None or one
attribute of ParamAttr, dynamic_gru will create ParamAttr as
bias_attr. If the Initializer of the bias_attr is not set, the bias
is initialized zero. Default: None.
is_reverse(bool): Whether to compute reversed GRU, default
:attr:`False`.
gate_activation(str): The activation for update gate and reset gate.
......@@ -810,10 +821,29 @@ def gru_unit(input,
Args:
input (Variable): The fc transformed input value of current step.
hidden (Variable): The hidden value of lstm unit from previous step.
hidden (Variable): The hidden value of gru unit from previous step.
size (integer): The input dimension value.
param_attr (ParamAttr): The weight parameters for gru unit. Default: None
bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weight matrix. Note:
- The shape of the weight matrix is :math:`(T \\times 3D)`, where
:math:`D` is the hidden size.
- All elements in the weight matrix can be divided into two parts.
The first part are weights of the update gate and reset gate with
shape :math:`(D \\times 2D)`, and the second part are weights for
candidate hidden state with shape :math:`(D \\times D)`.
If it is set to None or one attribute of ParamAttr, gru_unit will
create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
the bias in the update gate, reset gate and candidate calculations.
If it is set to False, no bias will be applied to the update gate,
reset gate and candidate calculations. If it is set to None or one
attribute of ParamAttr, gru_unit will create ParamAttr as
bias_attr. If the Initializer of the bias_attr is not set, the bias
is initialized zero. Default: None.
activation (string): The activation type for cell (actNode).
Default: 'tanh'
gate_activation (string): The activation type for gates (actGate).
......@@ -4443,7 +4473,10 @@ def transpose(x, perm, name=None):
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
# use append_batch_size=False to avoid prepending extra
# batch size in shape
x = fluid.layers.data(name='x', shape=[5, 10, 15],
dtype='float32', append_batch_size=False)
x_transposed = layers.transpose(x, perm=[1, 0, 2])
"""
......@@ -6108,6 +6141,124 @@ def crop(x, shape=None, offsets=None, name=None):
return out
def affine_grid(theta, out_shape, name=None):
"""
It generates a grid of (x,y) coordinates using the parameters of
the affine transformation that correspond to a set of points where
the input feature map should be sampled to produce the transformed
output feature map.
.. code-block:: text
* Case 1:
Given:
theta = [[[x_11, x_12, x_13]
[x_14, x_15, x_16]]
[[x_21, x_22, x_23]
[x_24, x_25, x_26]]]
out_shape = [2, 3, 5, 5]
Step 1:
Generate normalized coordinates according to out_shape.
The values of the normalized coordinates are in the interval between -1 and 1.
The shape of the normalized coordinates is [2, H, W] as below:
C = [[[-1. -1. -1. -1. -1. ]
[-0.5 -0.5 -0.5 -0.5 -0.5]
[ 0. 0. 0. 0. 0. ]
[ 0.5 0.5 0.5 0.5 0.5]
[ 1. 1. 1. 1. 1. ]]
[[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]]]
C[0] is the coordinates in height axis and C[1] is the coordinates in width axis.
Step2:
Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
C_ = [[-1. -1. 1. ]
[-0.5 -1. 1. ]
[ 0. -1. 1. ]
[ 0.5 -1. 1. ]
[ 1. -1. 1. ]
[-1. -0.5 1. ]
[-0.5 -0.5 1. ]
[ 0. -0.5 1. ]
[ 0.5 -0.5 1. ]
[ 1. -0.5 1. ]
[-1. 0. 1. ]
[-0.5 0. 1. ]
[ 0. 0. 1. ]
[ 0.5 0. 1. ]
[ 1. 0. 1. ]
[-1. 0.5 1. ]
[-0.5 0.5 1. ]
[ 0. 0.5 1. ]
[ 0.5 0.5 1. ]
[ 1. 0.5 1. ]
[-1. 1. 1. ]
[-0.5 1. 1. ]
[ 0. 1. 1. ]
[ 0.5 1. 1. ]
[ 1. 1. 1. ]]
Step3:
Compute output by equation $$Output[i] = C_ * Theta[i]^T$$
Args:
theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
out_shape can be a Variable or a list or tuple.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The output with shape [N, H, W, 2].
Raises:
ValueError: If the type of arguments is not supported.
Examples:
.. code-block:: python
theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
data = fluid.layers.affine_grid(theta, out_shape)
# or
data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
"""
helper = LayerHelper('affine_grid')
if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
isinstance(out_shape, Variable)):
raise ValueError("The out_shape should be a list, tuple or Variable.")
if not isinstance(theta, Variable):
raise ValueError("The theta should be a Variable.")
out = helper.create_variable_for_type_inference(theta.dtype)
ipts = {'Theta': theta}
attrs = {}
if isinstance(out_shape, Variable):
ipts['OutputShape'] = out_shape
else:
attrs['output_shape'] = out_shape
helper.append_op(
type='affine_grid',
inputs=ipts,
outputs={'Output': out},
attrs=None if len(attrs) == 0 else attrs)
return out
def rank_loss(label, left, right, name=None):
"""
**Rank loss layer for RankNet**
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import sys
import signal
import subprocess
import argparse
import time
import math
import random
from multiprocessing import Process
from functools import reduce
import numpy as np
import unittest
import six
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import io
from test_dist_base import TestDistRunnerBase, runtime_main, RUN_STEP
from dist_simnet_bow import TestDistSimnetBow2x2, DATA_URL, DATA_MD5
class TestDistSaveLoad2x2(TestDistSimnetBow2x2):
def _load_persistable_vars(self, executor, dirname, program):
def _is_checkpoint_var(var):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
: param var(Variable)
"""
if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
var.desc.type() == core.VarDesc.VarType.RAW:
return False
# @GRAD are named for gradient variables, checkpoint will not save it.
if "@GRAD" in var.name:
return False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if ".trainer_" in var.name:
return False
# .block is named for distribute train variables, checkpoint will not save it.
if ".block" in var.name:
return False
if "tmp_" in var.name:
return False
return var.persistable
io.load_vars(
executor,
dirname=dirname,
main_program=program,
predicate=_is_checkpoint_var,
filename=None)
def run_pserver(self, args):
self.get_model(batch_size=2)
# NOTE: pserver should not call memory optimize
t = self.get_transpiler(args.trainer_id,
fluid.default_main_program(), args.endpoints,
args.trainers, args.sync_mode)
pserver_prog = t.get_pserver_program(args.current_endpoint)
startup_prog = t.get_startup_program(args.current_endpoint,
pserver_prog)
need_load = bool(int(os.getenv("LOAD", "0")))
model_dir = os.getenv("MODEL_DIR", "")
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
if need_load and model_dir:
self._load_persistable_vars(exe, model_dir, startup_prog)
exe.run(pserver_prog)
def run_trainer(self, args):
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
self.get_model(batch_size=2)
if args.mem_opt:
fluid.memory_optimize(fluid.default_main_program(), skip_grads=True)
if args.is_dist:
t = self.get_transpiler(args.trainer_id,
fluid.default_main_program(),
args.endpoints, args.trainers,
args.sync_mode)
trainer_prog = t.get_trainer_program()
else:
trainer_prog = fluid.default_main_program()
if args.use_cuda:
place = fluid.CUDAPlace(0)
else:
place = fluid.CPUPlace()
startup_exe = fluid.Executor(place)
startup_exe.run(fluid.default_startup_program())
strategy = fluid.ExecutionStrategy()
strategy.num_threads = 1
strategy.allow_op_delay = False
build_stra = fluid.BuildStrategy()
if args.use_reduce:
build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
else:
build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
exe = fluid.ParallelExecutor(
args.use_cuda,
loss_name=avg_cost.name,
exec_strategy=strategy,
build_strategy=build_stra)
feed_var_list = [
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
reader_generator = train_reader()
def get_data():
origin_batch = next(reader_generator)
if args.is_dist and args.use_reader_alloc:
new_batch = []
for offset, item in enumerate(origin_batch):
if offset % 2 == args.trainer_id:
new_batch.append(item)
return new_batch
else:
return origin_batch
need_save = bool(int(os.getenv("SAVE", "0")))
model_dir = os.getenv("MODEL_DIR", "")
if need_save:
for _ in six.moves.xrange(RUN_STEP):
loss, = exe.run(fetch_list=[avg_cost.name],
feed=feeder.feed(get_data()))
if need_save and model_dir:
io.save_persistables(startup_exe, model_dir, trainer_prog)
var = np.array(fluid.global_scope().find_var('__fc_b__').get_tensor())
print(np.ravel(var).tolist())
if __name__ == "__main__":
paddle.dataset.common.download(DATA_URL, 'simnet', DATA_MD5, "train")
runtime_main(TestDistSaveLoad2x2)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def AffineGrid(theta, size):
n = size[0]
w = size[3]
h = size[2]
h_idx = np.repeat(
np.linspace(-1, 1, h)[np.newaxis, :], w, axis=0).T[:, :, np.newaxis]
w_idx = np.repeat(
np.linspace(-1, 1, w)[np.newaxis, :], h, axis=0)[:, :, np.newaxis]
grid = np.concatenate(
[w_idx, h_idx, np.ones([h, w, 1])], axis=2) # h * w * 3
grid = np.repeat(grid[np.newaxis, :], size[0], axis=0) # n * h * w *3
ret = np.zeros([n, h * w, 2])
theta = theta.transpose([0, 2, 1])
for i in range(len(theta)):
ret[i] = np.dot(grid[i].reshape([h * w, 3]), theta[i])
# print ret.reshape([h * w, 2]).astype("float32")
return ret.reshape([n, h, w, 2]).astype("float32")
class TestAffineGridOp(OpTest):
def setUp(self):
self.initTestCase()
self.op_type = "affine_grid"
theta = np.random.randint(1, 3, self.theta_shape).astype("float32")
theta = np.ones(self.theta_shape).astype("float32")
self.inputs = {'Theta': theta}
self.attrs = {"use_cudnn": True}
if self.dynamic_shape:
self.inputs['OutputShape'] = self.output_shape
else:
self.attrs['output_shape'] = self.output_shape
self.outputs = {'Output': AffineGrid(theta, self.output_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(
['Theta'],
'Output',
no_grad_set=['OutputShape'],
max_relative_error=0.006)
def initTestCase(self):
self.theta_shape = (3, 2, 3)
self.output_shape = np.array([3, 2, 5, 7]).astype("int32")
self.dynamic_shape = False
class TestAffineGridOpCase1(TestAffineGridOp):
def initTestCase(self):
self.theta_shape = (3, 2, 3)
self.output_shape = np.array([3, 2, 5, 7]).astype("int32")
self.dynamic_shape = True
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import shutil
import unittest
import tempfile
import numpy as np
from test_dist_base import TestDistBase, RUN_STEP
class TestDistSaveLoadDense2x2(TestDistBase):
def _setup_config(self):
self._sync_mode = True
self._enforce_place = "CPU"
def check_with_place(self,
model_file,
delta=1e-3,
check_error_log=False,
need_envs={}):
required_envs = {
"PATH": os.getenv("PATH", ""),
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
"http_proxy": ""
}
required_envs.update(need_envs)
if check_error_log:
required_envs["GLOG_v"] = "7"
required_envs["GLOG_logtostderr"] = "1"
model_dir = tempfile.mkdtemp()
local_env = {}
local_env["SAVE"] = "1"
local_env["MODEL_DIR"] = model_dir
local_env.update(required_envs)
cluster_env = {}
cluster_env["LOAD"] = "1"
cluster_env["MODEL_DIR"] = model_dir
cluster_env.update(required_envs)
local_var = self._run_local(model_file, local_env, check_error_log)
tr0_var, tr1_var = self._run_cluster(model_file, cluster_env,
check_error_log)
shutil.rmtree(model_dir)
local_np = np.array(eval(local_var[0]))
train0_np = np.array(eval(tr0_var[0]))
train1_np = np.array(eval(tr1_var[0]))
self.assertAlmostEqual(local_np.all(), train0_np.all(), delta=delta)
self.assertAlmostEqual(local_np.all(), train1_np.all(), delta=delta)
self.assertAlmostEqual(train0_np.all(), train1_np.all(), delta=delta)
@unittest.skip(reason="CI fail")
def test_dist(self):
need_envs = {
"IS_DISTRIBUTED": '0',
"IS_SPARSE": '0',
'IS_SELF_CONTAINED_LR': '1'
}
self.check_with_place(
"dist_save_load.py",
delta=0,
check_error_log=False,
need_envs=need_envs)
if __name__ == "__main__":
unittest.main()
......@@ -865,6 +865,22 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(out)
print(str(program))
def test_affine_grid(self):
program = Program()
with program_guard(program):
data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
out, ids = layers.argsort(input=data, axis=1)
theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
out_shape = layers.data(
name="out_shape", shape=[-1], dtype="float32")
data_0 = layers.affine_grid(theta, out_shape)
data_1 = layers.affine_grid(theta, [5, 3, 28, 28])
self.assertIsNotNone(data_0)
self.assertIsNotNone(data_1)
print(str(program))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
from threading import Thread
def user_reader(inputs):
def _reader():
for d in inputs:
yield d
return _reader
def batch_feeder(batch_reader, pin_memory=False, img_dtype="float32"):
def _feeder():
for batch_data in batch_reader():
sample_batch = []
label_batch = []
for sample, label in batch_data:
sample_batch.append(sample)
label_batch.append([label])
tensor = core.LoDTensor()
label = core.LoDTensor()
place = core.CUDAPinnedPlace() if pin_memory else core.CPUPlace()
tensor.set(np.array(sample_batch, dtype=img_dtype), place)
label.set(np.array(label_batch, dtype="int64"), place)
yield [tensor, label]
return _feeder
class TestPyReader(unittest.TestCase):
def setUp(self):
self.capacity = 10
self.shapes = [(-1, 3, 2, 1), (-1, 1)]
self.lod_levels = [0, 0]
self.dtypes = ['float32', 'int64']
def test_pin_memory_pyreader(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
executor = fluid.Executor(place)
data_file = fluid.layers.py_reader(
capacity=self.capacity,
dtypes=self.dtypes,
lod_levels=self.lod_levels,
shapes=self.shapes)
# feed_queue = data_file.queue
read_out_data = fluid.layers.read_file(data_file)
self.inputs = []
for _ in range(10):
sample = np.random.uniform(
low=0, high=1, size=[3, 2, 1]).astype("float32")
label = np.random.uniform(
low=0, high=10, size=[1]).astype("int64")
self.inputs.append((sample, label))
self.input_tensors = []
for d, l in batch_feeder(
paddle.batch(
user_reader(self.inputs), batch_size=2),
pin_memory=True
if fluid.core.is_compiled_with_cuda() else False)():
ta = fluid.LoDTensorArray()
ta.append(d)
ta.append(l)
self.input_tensors.append(ta)
self.batched_inputs = []
for batch in paddle.batch(user_reader(self.inputs), batch_size=2)():
feed_d = []
feed_l = []
for d, l in batch:
feed_d.append(d)
feed_l.append([l])
self.batched_inputs.append([feed_d, feed_l])
data_file.decorate_tensor_provider(
batch_feeder(
paddle.batch(
user_reader(self.inputs), batch_size=2),
pin_memory=True
if fluid.core.is_compiled_with_cuda() else False))
executor.run(fluid.default_startup_program())
self.outputs = []
data_file.start()
for _ in self.input_tensors:
self.outputs.append(
executor.run(fetch_list=list(read_out_data)))
data_file.reset()
self.validate()
def validate(self):
self.assertEqual(len(self.batched_inputs), len(self.outputs))
for in_data_list, out_data_list in zip(self.batched_inputs,
self.outputs):
self.assertEqual(len(in_data_list), len(out_data_list))
in_data_list_np = [
np.array(in_lod_tensor) for in_lod_tensor in in_data_list
]
for in_data, out_data in zip(in_data_list_np, out_data_list):
self.assertTrue((in_data == out_data).all())
if __name__ == '__main__':
unittest.main()
......@@ -920,11 +920,11 @@ to transpile() call.")
block_idx = int(block_name.split(block_suffix)[1])
orig_var = self.origin_program.global_block().vars[orig_var_name]
skip_numel = 0
skip_dim0 = 0
slice_vars = self.param_var_mapping[orig_var_name]
for slice_var in slice_vars[:block_idx]:
skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
slice_vars_and_attrs.append([orig_var, skip_numel, param])
skip_dim0 += slice_var.shape[0]
slice_vars_and_attrs.append([orig_var, skip_dim0, param])
return slice_vars_and_attrs
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册