Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bad3d4b6
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bad3d4b6
编写于
12月 25, 2017
作者:
Y
Yang Yu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Grad Check For RNN
上级
ea5d6eae
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
240 addition
and
1 deletion
+240
-1
paddle/operators/tensor_array_read_write_op.cc
paddle/operators/tensor_array_read_write_op.cc
+11
-0
paddle/operators/while_op.cc
paddle/operators/while_op.cc
+14
-1
python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py
python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py
+215
-0
未找到文件。
paddle/operators/tensor_array_read_write_op.cc
浏览文件 @
bad3d4b6
...
...
@@ -136,6 +136,17 @@ class ReadFromArrayOp : public ArrayOp {
auto
&
dev_ctx
=
*
pool
.
Borrow
(
place
);
framework
::
CopyFrom
(
x_array
[
offset
],
place
,
dev_ctx
,
out_tensor
);
out_tensor
->
set_lod
(
x_array
[
offset
].
lod
());
if
(
Input
(
"X"
)
==
"dynamic_rnn_0_output_array_fc_0.tmp_0_0@GRAD"
)
{
VLOG
(
10
)
<<
"Offset = "
<<
offset
;
if
(
x_array
[
offset
].
numel
()
!=
0
)
{
auto
d
=
x_array
[
offset
].
dims
();
std
::
ostringstream
sout
;
for
(
int64_t
i
=
0
;
i
<
d
[
0
];
++
i
)
{
sout
<<
x_array
[
offset
].
data
<
float
>
()[
0
*
d
[
1
]]
<<
", "
;
}
VLOG
(
10
)
<<
"Grad = "
<<
sout
.
str
();
}
}
}
else
{
VLOG
(
10
)
<<
"offset "
<<
offset
<<
" >= "
<<
x_array
.
size
();
}
...
...
paddle/operators/while_op.cc
浏览文件 @
bad3d4b6
...
...
@@ -129,6 +129,9 @@ class WhileGradOp : public framework::OperatorBase {
auto
&
og_inside
=
detail
::
Ref
(
cur_scope
.
Var
(
inside_og_name
),
"Cannot find inside gradient %s"
,
inside_og_name
);
VLOG
(
10
)
<<
"OG "
<<
outside_og_name
<<
" Type is "
<<
og_outside
.
Type
().
name
();
if
(
og_outside
.
Type
().
hash_code
()
==
typeid
(
framework
::
LoDTensor
).
hash_code
())
{
auto
&
outside_tensor
=
og_outside
.
Get
<
framework
::
LoDTensor
>
();
...
...
@@ -145,7 +148,6 @@ class WhileGradOp : public framework::OperatorBase {
inside_array
.
resize
(
outside_array
.
size
());
for
(
size_t
j
=
0
;
j
<
inside_array
.
size
();
++
j
)
{
VLOG
(
10
)
<<
j
<<
" "
<<
outside_array
[
j
].
numel
();
if
(
outside_array
[
j
].
numel
()
!=
0
)
{
inside_array
[
j
].
set_lod
(
outside_array
[
j
].
lod
());
inside_array
[
j
].
ShareDataWith
(
outside_array
[
j
]);
...
...
@@ -198,6 +200,17 @@ class WhileGradOp : public framework::OperatorBase {
auto
sum_op
=
framework
::
OpRegistry
::
CreateOp
(
"sum"
,
{{
"X"
,
{
pg_names
[
param_id
],
new_inside_name
}}},
{{
"Out"
,
{
pg_names
[
param_id
]}}},
framework
::
AttributeMap
{});
VLOG
(
10
)
<<
"Accumulate the gradient of "
<<
pg_names
[
param_id
];
if
(
pg_names
[
param_id
]
==
"W@GRAD"
)
{
auto
&
w_g
=
detail
::
Ref
(
cur_scope
.
FindVar
(
new_inside_name
))
.
Get
<
framework
::
LoDTensor
>
();
VLOG
(
10
)
<<
"W_G is"
<<
w_g
.
data
<
float
>
()[
0
];
}
else
{
VLOG
(
10
)
<<
pg_names
[
param_id
];
}
sum_op
->
Run
(
cur_scope
,
dev_place
);
cur_scope
.
Rename
(
new_inside_name
,
inside_grad_name
);
}
...
...
python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py
0 → 100644
浏览文件 @
bad3d4b6
import
numpy
import
random
import
collections
import
paddle.v2.fluid
as
fluid
import
unittest
import
copy
class
Memory
(
object
):
def
__init__
(
self
,
shape
,
dtype
=
'float32'
):
self
.
ex
=
numpy
.
zeros
(
shape
=
shape
,
dtype
=
dtype
)
self
.
cur
=
None
def
update
(
self
,
val
):
assert
val
.
shape
==
self
.
ex
.
shape
assert
val
.
dtype
==
self
.
ex
.
dtype
self
.
cur
=
val
def
ex
(
self
):
return
self
.
ex
def
next
(
self
):
self
.
ex
=
self
.
cur
self
.
cur
=
None
def
__next__
(
self
):
self
.
next
()
def
reset
(
self
):
self
.
ex
=
numpy
.
zeros
(
shape
=
self
.
ex
.
shape
,
dtype
=
self
.
ex
.
dtype
)
self
.
cur
=
None
class
Output
(
object
):
def
__init__
(
self
):
self
.
outs
=
[]
def
next_sequence
(
self
):
self
.
outs
.
append
([])
def
out
(
self
,
val
):
self
.
outs
[
-
1
].
append
(
val
)
def
last
(
self
):
return
self
.
outs
[
-
1
][
-
1
]
class
BaseRNN
(
object
):
def
__init__
(
self
,
ins
,
mems
,
params
,
outs
,
num_seq
=
5
,
max_seq_len
=
15
):
self
.
num_seq
=
num_seq
self
.
inputs
=
collections
.
defaultdict
(
list
)
for
_
in
xrange
(
num_seq
):
seq_len
=
random
.
randint
(
1
,
max_seq_len
-
1
)
for
iname
in
ins
:
ishape
=
ins
[
iname
].
get
(
'shape'
,
None
)
idtype
=
ins
[
iname
].
get
(
'dtype'
,
'float32'
)
lst
=
[]
for
_
in
xrange
(
seq_len
):
lst
.
append
(
numpy
.
random
.
random
(
size
=
ishape
).
astype
(
idtype
))
self
.
inputs
[
iname
].
append
(
lst
)
self
.
mems
=
dict
()
for
mname
in
mems
:
mshape
=
mems
[
mname
].
get
(
'shape'
,
None
)
mdtype
=
mems
[
mname
].
get
(
'dtype'
,
'float32'
)
self
.
mems
[
mname
]
=
Memory
(
shape
=
mshape
,
dtype
=
mdtype
)
self
.
params
=
dict
()
for
pname
in
params
:
pshape
=
params
[
pname
].
get
(
'shape'
,
None
)
pdtype
=
params
[
pname
].
get
(
'dtype'
,
'float32'
)
self
.
params
[
pname
]
=
numpy
.
random
.
random
(
size
=
pshape
).
astype
(
pdtype
)
self
.
outputs
=
dict
()
for
oname
in
outs
:
self
.
outputs
[
oname
]
=
Output
()
def
step
(
self
,
**
kwargs
):
pass
def
exe
(
self
):
retv
=
dict
()
for
out
in
self
.
outputs
:
retv
[
out
]
=
[]
for
seq_id
in
xrange
(
self
.
num_seq
):
for
mname
in
self
.
mems
:
self
.
mems
[
mname
].
reset
()
for
out
in
self
.
outputs
:
self
.
outputs
[
out
].
next_sequence
()
iname0
=
self
.
inputs
.
keys
()[
0
]
seq_len
=
len
(
self
.
inputs
[
iname0
][
seq_id
])
for
step_id
in
xrange
(
seq_len
):
xargs
=
dict
()
for
iname
in
self
.
inputs
:
xargs
[
iname
]
=
self
.
inputs
[
iname
][
seq_id
][
step_id
]
for
mname
in
self
.
mems
:
xargs
[
mname
]
=
self
.
mems
[
mname
]
for
pname
in
self
.
params
:
xargs
[
pname
]
=
self
.
params
[
pname
]
for
out
in
self
.
outputs
:
xargs
[
out
]
=
self
.
outputs
[
out
]
self
.
step
(
**
xargs
)
for
mname
in
self
.
mems
:
next
(
self
.
mems
[
mname
])
for
out
in
self
.
outputs
:
retv
[
out
].
append
(
self
.
outputs
[
out
].
last
())
for
out
in
retv
:
retv
[
out
]
=
numpy
.
array
(
retv
[
out
])
return
retv
def
to_feed
(
self
,
place
):
feed_dict
=
dict
()
for
iname
in
self
.
inputs
:
lod
=
[
0
]
np_flatten
=
[]
for
seq_id
in
xrange
(
len
(
self
.
inputs
[
iname
])):
seq_len
=
len
(
self
.
inputs
[
iname
][
seq_id
])
lod
.
append
(
lod
[
-
1
]
+
seq_len
)
np_flatten
.
extend
(
self
.
inputs
[
iname
][
seq_id
])
t
=
fluid
.
Tensor
()
t
.
set
(
numpy
.
array
(
np_flatten
),
place
)
t
.
set_lod
([
lod
])
feed_dict
[
iname
]
=
t
for
pname
in
self
.
params
:
feed_dict
[
pname
]
=
self
.
params
[
pname
]
return
feed_dict
def
get_numeric_gradient_of_param
(
self
,
param_name
,
delta
=
0.01
):
p
=
self
.
params
[
param_name
]
g
=
numpy
.
zeros
(
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p_it
,
g_it
in
numpy
.
nditer
([
p
,
g
],
op_flags
=
[
'readwrite'
]):
o
=
float
(
p_it
)
p_it
[...]
=
o
+
delta
pos
=
self
.
_exe_mean_out_
()
p_it
[...]
=
o
-
delta
neg
=
self
.
_exe_mean_out_
()
p_it
[...]
=
o
g
[:]
=
(
pos
-
neg
)
/
(
delta
*
2
)
return
g
def
_exe_mean_out_
(
self
):
outs
=
self
.
exe
()
return
numpy
.
array
([
o
.
mean
()
for
o
in
outs
.
itervalues
()]).
mean
()
class
SimpleMul
(
BaseRNN
):
def
__init__
(
self
):
super
(
SimpleMul
,
self
).
__init__
({
'X'
:
{
'shape'
:
[
32
]
}
},
{},
{
'W'
:
{
'shape'
:
[
32
,
10
]
}},
[
'Out'
])
def
step
(
self
,
X
,
W
,
Out
):
Out
.
out
(
numpy
.
matmul
(
X
,
W
))
class
TestSimpleMul
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
python_impl
=
SimpleMul
()
def
test_forward
(
self
):
program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
,
startup_program
):
dat
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
[
32
],
lod_level
=
1
)
rnn
=
fluid
.
layers
.
DynamicRNN
()
with
rnn
.
block
():
d
=
rnn
.
step_input
(
dat
)
o
=
fluid
.
layers
.
fc
(
input
=
d
,
param_attr
=
'W'
,
bias_attr
=
False
,
size
=
10
,
act
=
None
)
rnn
.
output
(
o
)
out
=
rnn
()
out
=
fluid
.
layers
.
sequence_pool
(
out
,
pool_type
=
'last'
)
loss
=
fluid
.
layers
.
mean
(
x
=
out
)
fluid
.
backward
.
append_backward_ops
(
loss
)
cpu
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
cpu
)
out
,
w_g
=
exe
.
run
(
program
,
feed
=
self
.
python_impl
.
to_feed
(
cpu
),
fetch_list
=
[
out
,
"W@GRAD"
])
out_by_python
=
self
.
python_impl
.
exe
()[
'Out'
]
self
.
assertTrue
(
numpy
.
allclose
(
out
,
out_by_python
))
w_g_num
=
self
.
python_impl
.
get_numeric_gradient_of_param
(
"W"
)
print
w_g_num
[
0
][
0
]
print
w_g_num
-
w_g
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录