未验证 提交 b83aab25 编写于 作者: F Feng Ni 提交者: GitHub

[Dygraph] quickstart doc (#2155)

* add quickstart doc, roadsign dataset
上级 942e8f27
metric: VOC
map_type: 11point
num_classes: 4
TrainDataset:
!VOCDataSet
dataset_dir: dataset/roadsign_voc
anno_path: train.txt
label_list: label_list.txt
data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']
EvalDataset:
!VOCDataSet
dataset_dir: dataset/roadsign_voc
anno_path: valid.txt
label_list: label_list.txt
data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']
TestDataset:
!ImageFolder
anno_path: dataset/roadsign_voc/label_list.txt
_BASE_: [
'../datasets/roadsign_voc.yml',
'../runtime.yml',
'_base_/yolov3_mobilenet_v1.yml',
'_base_/yolov3_reader.yml',
]
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/yolov3_mobilenet_v1_270e_coco.pdparams
use_fine_grained_loss: false
load_static_weights: false
norm_type: sync_bn
weights: output/yolov3_mobilenet_v1_roadsign/model_final
YOLOv3Loss:
ignore_thresh: 0.7
label_smooth: true
TrainReader:
inputs_def:
num_max_boxes: 50
sample_transforms:
- DecodeOp: {}
- MixupOp: {alpha: 1.5, beta: 1.5}
- RandomDistortOp: {}
- RandomExpandOp: {fill_value: [123.675, 116.28, 103.53]}
- RandomCropOp: {}
- RandomFlipOp: {}
batch_transforms:
- BatchRandomResizeOp:
target_size: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
random_size: True
random_interp: True
keep_ratio: False
- NormalizeBoxOp: {}
- PadBoxOp: {num_max_boxes: 50}
- BboxXYXY2XYWHOp: {}
- NormalizeImageOp: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- PermuteOp: {}
- Gt2YoloTargetOp:
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]]
downsample_ratios: [32, 16, 8]
num_classes: 4
batch_size: 8
shuffle: true
drop_last: true
snapshot_epoch: 5
epoch: 40
LearningRate:
base_lr: 0.0001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [32, 36]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 100
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os.path as osp
import logging
# add python path of PadleDetection to sys.path
parent_path = osp.abspath(osp.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
sys.path.append(parent_path)
from ppdet.utils.download import download_dataset
logging.basicConfig(level=logging.INFO)
download_path = osp.split(osp.realpath(sys.argv[0]))[0]
download_dataset(download_path, 'roadsign_voc')
speedlimit
crosswalk
trafficlight
stop
\ No newline at end of file
# 快速开始
为了使得用户能够在很短时间内快速产出模型,掌握PaddleDetection的使用方式,这篇教程通过一个预训练检测模型对小数据集进行finetune。在较短时间内即可产出一个效果不错的模型。实际业务中,建议用户根据需要选择合适模型配置文件进行适配。
- **设置显卡**
```bash
export CUDA_VISIBLE_DEVICES=0
```
## 一、快速体验
```
# 用PP-YOLO算法在COCO数据集上预训练模型预测一张图片
python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=demo/000000014439.jpg
```
结果如下图:
![](../images/000000014439.jpg)
## 二、准备数据
数据集参考[Kaggle数据集](https://www.kaggle.com/andrewmvd/road-sign-detection) ,包含877张图像,数据类别4类:crosswalk,speedlimit,stop,trafficlight。
将数据划分为训练集701张图和测试集176张图,[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar).
```
# 注意:可跳过这步下载,后面训练会自动下载
python dataset/roadsign_voc/download_roadsign_voc.py
```
## 三、训练、评估、预测
### 1、训练
```
# 边训练边测试 CPU需要约1小时(use_gpu=false),1080Ti GPU需要约10分钟。
# -c 参数表示指定使用哪个配置文件
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置),这里设置使用gpu,
# --eval 参数表示边训练边评估,会自动保存一个评估结果最的名为model_final.pdmodel的模型
python tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml --eval -o use_gpu=true --weight_type finetune
```
如果想通过VisualDL实时观察loss变化曲线,在训练命令中添加--use_vdl=true,以及通过--vdl_log_dir设置日志保存路径。
**但注意VisualDL需Python>=3.5**
首先安装[VisualDL](https://github.com/PaddlePaddle/VisualDL)
```
python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple
```
```
python -u tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml \
--use_vdl=true \
--vdl_log_dir=vdl_dir/scalar \
--eval
```
通过visualdl命令实时查看变化曲线:
```
visualdl --logdir vdl_dir/scalar/ --host <host_IP> --port <port_num>
```
### 2、评估
```
# 评估 默认使用训练过程中保存的model_final
# -c 参数表示指定使用哪个配置文件
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置),需使用单卡评估
python tools/eval.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true
```
### 3、预测
```
# -c 参数表示指定使用哪个配置文件
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置)
# --infer_img 参数指定预测图像路径
# 预测结束后会在output文件夹中生成一张画有预测结果的同名图像
python tools/infer.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true --infer_img=demo/road554.png
```
结果如下图:
![](../images/road554.png)
......@@ -164,9 +164,16 @@ def load_pretrain_weight(model,
else:
ignore_set = set()
for name, weight in model_dict.items():
if name in param_state_dict:
if weight.shape != param_state_dict[name].shape:
if name in param_state_dict.keys():
if weight.shape != list(param_state_dict[name].shape):
logger.info(
'{} not used, shape {} unmatched with {} in model.'.
format(name,
list(param_state_dict[name].shape),
weight.shape))
param_state_dict.pop(name, None)
else:
logger.info('Lack weight: {}'.format(name))
model.set_dict(param_state_dict)
return
......
......@@ -81,6 +81,12 @@ DATASETS = {
'https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit.tar',
'baa8806617a54ccf3685fa7153388ae6', ), ],
['Annotations', 'JPEGImages']),
'roadsign_voc': ([(
'https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar',
'8d629c0f880dd8b48de9aeff44bf1f3e', ), ], ['annotations', 'images']),
'roadsign_coco': ([(
'https://paddlemodels.bj.bcebos.com/object_detection/roadsign_coco.tar',
'49ce5a9b5ad0d6266163cd01de4b018e', ), ], ['annotations', 'images']),
'objects365': (),
}
......@@ -173,7 +179,7 @@ def get_dataset_path(path, annotation, image_dir):
"https://www.objects365.org/download.html".format(name))
data_dir = osp.join(DATASET_HOME, name)
# For voc, only check dir VOCdevkit/VOC2012, VOCdevkit/VOC2007
if name == 'voc' or name == 'fruit':
if name in ['voc', 'fruit', 'roadsign_voc']:
exists = True
for sub_dir in dataset[1]:
check_dir = osp.join(data_dir, sub_dir)
......@@ -185,7 +191,7 @@ def get_dataset_path(path, annotation, image_dir):
return data_dir
# voc exist is checked above, voc is not exist here
check_exist = name != 'voc' and name != 'fruit'
check_exist = name != 'voc' and name != 'fruit' and name != 'roadsign_voc'
for url, md5sum in dataset[0]:
get_path(url, data_dir, md5sum, check_exist)
......@@ -195,9 +201,10 @@ def get_dataset_path(path, annotation, image_dir):
return data_dir
# not match any dataset in DATASETS
raise ValueError("Dataset {} is not valid and cannot parse dataset type "
raise ValueError(
"Dataset {} is not valid and cannot parse dataset type "
"'{}' for automaticly downloading, which only supports "
"'voc' , 'coco', 'wider_face' and 'fruit' currently".
"'voc' , 'coco', 'wider_face', 'fruit' and 'roadsign_voc' currently".
format(path, osp.split(path)[-1]))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册