Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b77f9fbf
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b77f9fbf
编写于
10月 31, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
deconv2d cudnn
上级
a349bee6
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
63 addition
and
103 deletion
+63
-103
paddle/operators/conv2dtranspose_cudnn_op.cu
paddle/operators/conv2dtranspose_cudnn_op.cu
+42
-78
python/paddle/v2/framework/tests/test_conv2dtranspose_op.py
python/paddle/v2/framework/tests/test_conv2dtranspose_op.py
+21
-25
未找到文件。
paddle/operators/conv2dtranspose_cudnn_op.cu
浏览文件 @
b77f9fbf
...
@@ -12,7 +12,6 @@
...
@@ -12,7 +12,6 @@
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "glog/logging.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memory.h"
#include "paddle/memory/memory.h"
...
@@ -69,13 +68,6 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel<T> {
...
@@ -69,13 +68,6 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel<T> {
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
int
input_channels
=
input
->
dims
()[
1
];
// M
int
input_height
=
input
->
dims
()[
2
];
// H
int
input_width
=
input
->
dims
()[
3
];
// W
int
output_channels
=
output
->
dims
()[
1
];
// C
int
output_height
=
output
->
dims
()[
2
];
// O_H
int
output_width
=
output
->
dims
()[
3
];
// O_W
// ------------------- cudnn conv workspace ---------------------
// ------------------- cudnn conv workspace ---------------------
void
*
cudnn_workspace
=
nullptr
;
void
*
cudnn_workspace
=
nullptr
;
size_t
workspace_size_in_bytes
;
// final workspace to allocate.
size_t
workspace_size_in_bytes
;
// final workspace to allocate.
...
@@ -118,7 +110,6 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel<T> {
...
@@ -118,7 +110,6 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel<T> {
}
}
};
};
/*
template
<
typename
T
>
template
<
typename
T
>
class
CudnnConvTransposeGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CudnnConvTransposeGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -130,7 +121,6 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -130,7 +121,6 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
auto
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
filter_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
auto
filter_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
...
@@ -138,47 +128,33 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -138,47 +128,33 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
int groups = ctx.Attr<int>("groups");
int
user_workspace_size
=
ctx
.
Attr
<
int
>
(
"workspace_size_MB"
);
int
user_workspace_size
=
ctx
.
Attr
<
int
>
(
"workspace_size_MB"
);
// ------------------- cudnn descriptors ---------------------
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor output_grad_desc;
ScopedTensorDescriptor
output_desc
;
ScopedTensorDescriptor input_grad_desc;
ScopedFilterDescriptor
filter_desc
;
ScopedFilterDescriptor
filter_desc
;
ScopedFilterDescriptor filter_grad_desc;
ScopedConvolutionDescriptor
conv_desc
;
ScopedConvolutionDescriptor
conv_desc
;
DataLayout
layout
=
DataLayout
::
kNCHW
;
DataLayout
layout
=
DataLayout
::
kNCHW
;
// Input: (N, M, H, W)
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout, framework::vectorize2int(input->dims()), groups);
layout
,
framework
::
vectorize2int
(
input
->
dims
()));
cudnnTensorDescriptor_t cudnn_output_grad_desc =
// Output: (N, C, O_H, O_W)
output_grad_desc.descriptor<T>(
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout, framework::vectorize2int(output_grad->dims()), groups);
layout
,
framework
::
vectorize2int
(
output_grad
->
dims
()));
// Filter (M, C, K_H, K_W)
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
layout, framework::vectorize2int(filter->dims()), groups);
layout
,
framework
::
vectorize2int
(
filter
->
dims
()));
cudnnTensorDescriptor_t cudnn_input_grad_desc = nullptr;
cudnnFilterDescriptor_t cudnn_filter_grad_desc = nullptr;
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
int input_channels = input->dims()[1];
int input_height = input->dims()[2];
int input_width = input->dims()[3];
int output_grad_channels = filter->dims()[0];
int output_grad_height = output_grad->dims()[2];
int output_grad_width = output_grad->dims()[3];
int group_offset_in = input_channels / groups * input_height * input_width;
int group_offset_out =
output_grad_channels / groups * output_grad_height * output_grad_width;
int group_offset_filter = filter->numel() / groups;
// ------------------- cudnn backward algorithm ---------------------
// ------------------- cudnn backward algorithm ---------------------
cudnnConvolution
BwdData
Algo_t data_algo;
cudnnConvolution
Fwd
Algo_t
data_algo
;
cudnnConvolutionBwdFilterAlgo_t
filter_algo
;
cudnnConvolutionBwdFilterAlgo_t
filter_algo
;
size_t workspace_size_in_bytes = 0, tmp_size = 0;
size_t
bwd_filter_ws_size
,
fwd_ws_size
;
size_t
workspace_size_in_bytes
=
0
;
size_t
workspace_size_limit
=
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES
;
size_t
workspace_size_limit
=
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES
;
if
(
user_workspace_size
>
0
)
{
if
(
user_workspace_size
>
0
)
{
workspace_size_limit
=
user_workspace_size
*
1024
*
1024
;
workspace_size_limit
=
user_workspace_size
*
1024
*
1024
;
...
@@ -186,42 +162,35 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -186,42 +162,35 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
auto
handle
=
ctx
.
cuda_device_context
().
cudnn_handle
();
auto
handle
=
ctx
.
cuda_device_context
().
cudnn_handle
();
if
(
input_grad
)
{
if
(
input_grad
)
{
cudnn_input_grad_desc = input_grad_desc.descriptor<T>(
// choose backward algorithm for data
layout, framework::vectorize2int(input_grad->dims()), groups);
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
PADDLE_ENFORCE(
handle
,
cudnn_output_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
cudnn_input_desc
,
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT
,
handle, cudnn_filter_desc,
workspace_size_limit
,
&
data_algo
));
// dyDesc: Handle to the previously initialized input differential
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
// tensor descriptor.
handle
,
cudnn_output_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_output_grad_desc, cudnn_conv_desc,
cudnn_input_desc
,
data_algo
,
&
fwd_ws_size
));
// dxDesc: Handle to the previously initialized output tensor
workspace_size_in_bytes
=
std
::
max
(
workspace_size_in_bytes
,
fwd_ws_size
);
// descriptor.
cudnn_input_grad_desc,
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &data_algo));
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
handle, cudnn_filter_desc, cudnn_output_grad_desc,
cudnn_conv_desc, cudnn_input_grad_desc, data_algo, &tmp_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
}
}
if
(
filter_grad
)
{
if
(
filter_grad
)
{
cudnn_filter_grad_desc = filter_grad_desc.descriptor<T>(
// choose backward algorithm for filter
layout, framework::vectorize2int(filter_grad->dims()), groups);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterAlgorithm
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterAlgorithm
(
handle, cudnn_
input_desc, cudnn_output_grad
_desc, cudnn_conv_desc,
handle
,
cudnn_
output_desc
,
cudnn_input
_desc
,
cudnn_conv_desc
,
cudnn_filter_desc
,
cudnn_filter_desc
,
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT
,
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT
,
workspace_size_limit
,
&
filter_algo
));
workspace_size_limit
,
&
filter_algo
));
// get workspace for backwards filter algorithm
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterWorkspaceSize
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterWorkspaceSize
(
handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
handle
,
cudnn_output_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
cudnn_filter_desc, filter_algo, &tmp_size));
cudnn_filter_desc
,
filter_algo
,
&
bwd_filter_ws_size
));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
workspace_size_in_bytes
=
std
::
max
(
workspace_size_in_bytes
,
bwd_filter_ws_size
);
}
}
// ------------------- cudnn conv workspace ---------------------
// ------------------- cudnn conv workspace ---------------------
// Already on GPU
// Already on GPU
void
*
cudnn_workspace
=
nullptr
;
void
*
cudnn_workspace
=
nullptr
;
...
@@ -235,35 +204,30 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -235,35 +204,30 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
t
.
device
(
ctx
.
GetEigenDevice
<
platform
::
GPUPlace
>
())
=
t
.
device
(
ctx
.
GetEigenDevice
<
platform
::
GPUPlace
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
t
.
constant
(
static_cast
<
T
>
(
0
));
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle, &alpha, cudnn_filter_desc,
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
,
filter_data + i * group_offset_filter, cudnn_output_grad_desc,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
data_algo
,
output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_input_desc
,
cudnn_workspace, workspace_size_in_bytes, &beta,
input_grad_data
));
cudnn_input_grad_desc, input_grad_data + i * group_offset_in));
}
}
}
// ------------------- cudnn conv backward filter ---------------------
// ------------------- cudnn conv backward filter ---------------------
if
(
filter_grad
)
{
if
(
filter_grad
)
{
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
filter_grad
);
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
filter_grad
);
t
.
device
(
ctx
.
GetEigenDevice
<
platform
::
GPUPlace
>
())
=
t
.
device
(
ctx
.
GetEigenDevice
<
platform
::
GPUPlace
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
t
.
constant
(
static_cast
<
T
>
(
0
));
for (int i = 0; i < groups; i++) {
// Gradient with respect to the filter
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
,
cudnn_input_desc
,
cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
input_data
,
cudnn_conv_desc
,
filter_algo
,
cudnn_workspace
,
cudnn_conv_desc, filter_algo, cudnn_workspace,
workspace_size_in_bytes
,
&
beta
,
cudnn_filter_desc
,
filter_grad_data
));
workspace_size_in_bytes, &beta, cudnn_filter_grad_desc,
filter_grad_data + i * group_offset_filter));
}
}
}
// Release the cudnn workspace
// Release the cudnn workspace
paddle
::
memory
::
Free
(
gpu
,
cudnn_workspace
);
paddle
::
memory
::
Free
(
gpu
,
cudnn_workspace
);
}
}
};
};
*/
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
@@ -272,5 +236,5 @@ namespace ops = paddle::operators;
...
@@ -272,5 +236,5 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL
(
conv2dtranspose_cudnn
,
REGISTER_OP_GPU_KERNEL
(
conv2dtranspose_cudnn
,
ops
::
CudnnConvTransposeOpKernel
<
float
>
);
ops
::
CudnnConvTransposeOpKernel
<
float
>
);
//
REGISTER_OP_GPU_KERNEL(conv2dtranspose_cudnn_grad,
REGISTER_OP_GPU_KERNEL
(
conv2dtranspose_cudnn_grad
,
//
ops::CudnnConvTransposeGradOpKernel<float>);
ops
::
CudnnConvTransposeGradOpKernel
<
float
>
);
python/paddle/v2/framework/tests/test_conv2dtranspose_op.py
浏览文件 @
b77f9fbf
...
@@ -56,27 +56,9 @@ class TestConv2dTransposeOp(OpTest):
...
@@ -56,27 +56,9 @@ class TestConv2dTransposeOp(OpTest):
self
.
outputs
=
{
'Output'
:
output
}
self
.
outputs
=
{
'Output'
:
output
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
print
'check output here
'
print
'check output here
for'
,
self
.
op_type
self
.
check_output
()
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.05
)
def
test_check_grad_no_filter
(
self
):
self
.
check_grad
(
[
'Input'
],
'Output'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad_no_input
(
self
):
self
.
check_grad
(
[
'Filter'
],
'Output'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
([
'Input'
]))
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
...
@@ -88,15 +70,29 @@ class TestConv2dTransposeOp(OpTest):
...
@@ -88,15 +70,29 @@ class TestConv2dTransposeOp(OpTest):
def
init_op_type
(
self
):
def
init_op_type
(
self
):
self
.
op_type
=
"conv2dtranspose"
self
.
op_type
=
"conv2dtranspose"
def
test_check_grad_no_input
(
self
):
self
.
check_grad
(
[
'Filter'
],
'Output'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
([
'Input'
]))
def
test_check_grad_no_filter
(
self
):
self
.
check_grad
(
[
'Input'
],
'Output'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
([
'Filter'
]))
"""
def
test_check_grad
(
self
):
class TestCudnn(TestConv2dOp):
self
.
check_grad
(
def init_group(self):
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.05
)
self.groups = 1
class
TestCudnn
(
TestConv2dTransposeOp
):
def
init_op_type
(
self
):
def
init_op_type
(
self
):
self.op_type = "conv_cudnn"
self
.
op_type
=
"conv
2dtranspose
_cudnn"
"""
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录