Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b61cf7ac
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b61cf7ac
编写于
8月 24, 2018
作者:
L
luotao1
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into expand
上级
83f4edab
836e1e0b
变更
41
隐藏空白更改
内联
并排
Showing
41 changed file
with
1763 addition
and
210 deletion
+1763
-210
CMakeLists.txt
CMakeLists.txt
+0
-6
cmake/external/mkldnn.cmake
cmake/external/mkldnn.cmake
+1
-1
doc/fluid/design/dist_train/dist_train_nccl2.md
doc/fluid/design/dist_train/dist_train_nccl2.md
+6
-6
doc/fluid/dev/new_op_cn.md
doc/fluid/dev/new_op_cn.md
+5
-5
doc/fluid/howto/cluster/nccl2_rdma_training.md
doc/fluid/howto/cluster/nccl2_rdma_training.md
+10
-10
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/framework/array.h
paddle/fluid/framework/array.h
+48
-0
paddle/fluid/framework/op_proto_maker.cc
paddle/fluid/framework/op_proto_maker.cc
+0
-4
paddle/fluid/framework/op_proto_maker.h
paddle/fluid/framework/op_proto_maker.h
+0
-1
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+15
-46
paddle/fluid/framework/tensor.cc
paddle/fluid/framework/tensor.cc
+5
-4
paddle/fluid/framework/tensor.h
paddle/fluid/framework/tensor.h
+8
-6
paddle/fluid/framework/tensor_impl.h
paddle/fluid/framework/tensor_impl.h
+5
-4
paddle/fluid/operators/attention_lstm_op.cc
paddle/fluid/operators/attention_lstm_op.cc
+422
-0
paddle/fluid/operators/attention_lstm_op.h
paddle/fluid/operators/attention_lstm_op.h
+41
-0
paddle/fluid/operators/batch_norm_op.cc
paddle/fluid/operators/batch_norm_op.cc
+1
-1
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+20
-8
paddle/fluid/operators/fusion_lstm_op.h
paddle/fluid/operators/fusion_lstm_op.h
+0
-1
paddle/fluid/operators/math/blas.h
paddle/fluid/operators/math/blas.h
+33
-0
paddle/fluid/operators/math/blas_impl.h
paddle/fluid/operators/math/blas_impl.h
+126
-63
paddle/fluid/operators/math/cpu_vec.h
paddle/fluid/operators/math/cpu_vec.h
+105
-0
paddle/fluid/operators/math/fc_compute.h
paddle/fluid/operators/math/fc_compute.h
+15
-7
paddle/fluid/operators/stack_op.cc
paddle/fluid/operators/stack_op.cc
+28
-0
paddle/fluid/operators/stack_op.cu
paddle/fluid/operators/stack_op.cu
+25
-0
paddle/fluid/operators/stack_op.h
paddle/fluid/operators/stack_op.h
+278
-0
paddle/fluid/operators/top_k_op.cc
paddle/fluid/operators/top_k_op.cc
+0
-2
paddle/fluid/platform/cpu_info.cc
paddle/fluid/platform/cpu_info.cc
+12
-3
paddle/fluid/platform/cpu_info.h
paddle/fluid/platform/cpu_info.h
+1
-3
paddle/fluid/platform/dynload/mklml.h
paddle/fluid/platform/dynload/mklml.h
+6
-0
paddle/fluid/pybind/const_value.cc
paddle/fluid/pybind/const_value.cc
+0
-3
python/paddle/dataset/common.py
python/paddle/dataset/common.py
+3
-0
python/paddle/dataset/flowers.py
python/paddle/dataset/flowers.py
+9
-5
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+0
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+17
-7
python/paddle/fluid/nets.py
python/paddle/fluid/nets.py
+1
-1
python/paddle/fluid/tests/book/test_image_classification.py
python/paddle/fluid/tests/book/test_image_classification.py
+1
-4
python/paddle/fluid/tests/unittests/test_attention_lstm_op.py
...on/paddle/fluid/tests/unittests/test_attention_lstm_op.py
+208
-0
python/paddle/fluid/tests/unittests/test_operator_desc.py
python/paddle/fluid/tests/unittests/test_operator_desc.py
+1
-4
python/paddle/fluid/tests/unittests/test_program_code.py
python/paddle/fluid/tests/unittests/test_program_code.py
+81
-0
python/paddle/fluid/tests/unittests/test_stack_op.py
python/paddle/fluid/tests/unittests/test_stack_op.py
+92
-0
python/paddle/fluid/transpiler/details/program_utils.py
python/paddle/fluid/transpiler/details/program_utils.py
+133
-0
未找到文件。
CMakeLists.txt
浏览文件 @
b61cf7ac
...
...
@@ -138,12 +138,6 @@ else()
set
(
THIRD_PARTY_BUILD_TYPE Release
)
endif
()
if
(
WITH_MKL
)
option
(
MKL_SPLIT_GEMM
"PaddlePaddle MKL gemm would split to small ones"
OFF
)
if
(
MKL_SPLIT_GEMM
)
add_definitions
(
-DPADDLE_MKL_SPLIT_GEMM
)
endif
()
endif
()
set
(
WITH_MKLML
${
WITH_MKL
}
)
if
(
NOT DEFINED WITH_MKLDNN
)
if
(
WITH_MKL AND AVX2_FOUND
)
...
...
cmake/external/mkldnn.cmake
浏览文件 @
b61cf7ac
...
...
@@ -54,7 +54,7 @@ ExternalProject_Add(
${
EXTERNAL_PROJECT_LOG_ARGS
}
DEPENDS
${
MKLDNN_DEPENDS
}
GIT_REPOSITORY
"https://github.com/01org/mkl-dnn.git"
GIT_TAG
"
a29d8487a63afca3d5b8c5bbdbb473cf8ccc6e51
"
GIT_TAG
"
64e03a1939e0d526aa8e9f2e3f7dc0ad8d372944
"
PREFIX
${
MKLDNN_SOURCES_DIR
}
UPDATE_COMMAND
""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=
${
CMAKE_CXX_COMPILER
}
...
...
doc/fluid/design/dist_train/dist_train_nccl2.md
浏览文件 @
b61cf7ac
# Distributed Training with NCCL2
We design a pattern that can enable training with
`ParallelExecutor`
and
us
ing
[
NCCL2
](
https://developer.nvidia.com/nccl
)
as it's collective
us
e
[
NCCL2
](
https://developer.nvidia.com/nccl
)
as it's collective
communication library.
In
`ParallelExecutor`
we can use
`AllReduce`
or
`Reduce`
and
`Broadcast`
...
...
@@ -9,14 +9,14 @@ to do multi GPU training. And if we initialize NCCL2 communicators as
ranks in a distributed environment, we can simply run the
`ParallelExecutor`
as a distributed program! The only thing that may be different than in
the single node version is that we need to broadcast the NCCL unique ID
to all the nodes
,
and initialize communicators using that ID, so NCCL2
will
know each other as ranks.
to all the nodes and initialize communicators using that ID, so NCCL2
can
know each other as ranks.
To achieve this feature, we introduce a new operator:
`gen_nccl_id`
op,
so we are
***not**
*
"bind to" running NCCL2 with MPI, we can run it in
what
ever platform you like.
whatever platform you like.
It ha
ve
two running modes:
It ha
s
two running modes:
1.
Generate and broadcast mode, which should be used on trainer 0;
1.
Listen and fetch mode, which should be used on trainers other than 0.
...
...
@@ -29,7 +29,7 @@ initialize NCCL communicator objects.
<img
src=
"src/ncc2_design.png"
>
The above figure indicates the general process when training with NCCL2
distributed. Each trainer ha
ve
the number of communicators equal to the
distributed. Each trainer ha
s
the number of communicators equal to the
number of GPUs, but the ranks should match the global ranks number: here
we have total 8 GPUs, so
`nranks==8`
, for each trainer, the ranks should
be from 0 ~ 3 on trainer 0 and 4 ~ 7 on trainer 1.
doc/fluid/dev/new_op_cn.md
浏览文件 @
b61cf7ac
...
...
@@ -36,19 +36,19 @@
<tbody>
<tr>
<td>
OpProtoMake定义
</td>
<td>
`.cc`
文件,Backward Op不需要定义OpProtoMake
</td>
<td>
.cc
文件,Backward Op不需要定义OpProtoMake
</td>
</tr>
<tr>
<td>
Op定义
</td>
<td>
`.cc`
文件
</td>
<td>
.cc
文件
</td>
</tr>
<tr>
<td>
Kernel实现
</td>
<td>
CPU、CUDA共享Kernel实现在
`.h`
文件中,否则,CPU 实现在
`.cc`
文件中,CUDA 实现在
`.cu`
文件中。
</td>
<td>
CPU、CUDA共享Kernel实现在
.h 文件中,否则,CPU 实现在.cc 文件中,CUDA 实现在.cu
文件中。
</td>
</tr>
<tr>
<td>
注册Op
</td>
<td>
Op注册实现在
`.cc`
文件;Kernel注册CPU实现在
`.cc`
文件中,CUDA实现在
`.cu`
文件中
</td>
<td>
Op注册实现在
.cc 文件;Kernel注册CPU实现在.cc 文件中,CUDA实现在.cu
文件中
</td>
</tr>
</tbody>
</table>
...
...
@@ -391,7 +391,7 @@ PADDLE_ENFORCE(ctx->HasInput("X"), "");
```
问题示例2 :提示信息过于简单
```
PADDLE_ENFORCE(i != nullptr, "
I must be set"); // I
是什么?
PADDLE_ENFORCE(i != nullptr, "
i must be set"); // i
是什么?
```
2.
在报错信息中使用开发人员定义的变量缩写,不易理解!
...
...
doc/fluid/howto/cluster/nccl2_rdma_training.md
浏览文件 @
b61cf7ac
# Distributed Training with NCCL2 and RDMA
When doing distributed multi-GPU training, network bandwith often becomes the
bottle
neck. We introduce a way to use NCCL2 to do such training job to
achieve best performace.
When doing distributed multi-GPU training, network bandwi
d
th often becomes the
bottleneck. We introduce a way to use NCCL2 to do such training job to
achieve best performa
n
ce.
## Prepare Hardware
s
with RDMA and Multiple GPUs
## Prepare Hardware with RDMA and Multiple GPUs
I'm using two Linux servers each of them i
s i
nstalled with 8 GPUs and
I'm using two Linux servers each of them installed with 8 GPUs and
one 100Gb RDMA card.
Base environment is:
...
...
@@ -25,7 +25,7 @@ In general, the steps including:
1.
Use docker to run tests and make sure GPUs and RDMA can work inside
the container.
I'll om
mit
section "Install GPU drivers" because we can find it easily
I'll om
it the
section "Install GPU drivers" because we can find it easily
somewhere else.
### Install RDMA drivers
...
...
@@ -33,7 +33,7 @@ somewhere else.
For my case, I've got two machines with device
"Mellanox Technologies MT27700 Family [ConnectX-4]" installed. The OS was
"CentOS 7.4" and I updated the kernel to version 4.4 so that docker can
work with latest overlay2 filesystem.
work with
the
latest overlay2 filesystem.
**
*
NOTE: before you start, make sure you have a way to get a console
of the server other than ssh because we may need to re-configure the
...
...
@@ -45,14 +45,14 @@ network device.***
1.
Run
`./mlnxofedinstall --add-kernel-support`
in the software package.
1.
Run
`/etc/init.d/openibd restart`
to make everything work, note that
this operation may cause the network goes down if you are using this
RDMA device as default network device and use ssh to login the server.
RDMA device as default network device and use ssh to log
in the server.
1.
Re-configure the network interface, for example:
`ifconfig eth2 192.168.16.30/20 up`
, then add routes if needed:
`ip route add default via 192.168.16.1 dev eth2`
.
1.
Do the same thing on the other node.
1.
Use
`ping`
to test if the two nodes have typical ICMP connection.
1.
Use either
`udaddy`
or
`ib_write_bw`
to test the network connection is
ready and have the desired bandwith.
ready and have the desired bandwi
d
th.
### Prepare Docker Image to Run RDMA Programs
...
...
@@ -60,7 +60,7 @@ network device.***
package in it.
1.
Start a docker container and mount GPU driver libs into it (you can
skip this step if you are using nvidia-docker).
1.
Mount RDMA d
ir
vers and libs into the docker image (see below section),
1.
Mount RDMA d
ri
vers and libs into the docker image (see below section),
also
`udaddy`
and
`ib_write_bw`
if needed.
1.
Mount GPU devices and RDMA devices into the container using
`--device`
or just use privileged mode
`--privileged`
.
...
...
paddle/fluid/API.spec
浏览文件 @
b61cf7ac
...
...
@@ -162,6 +162,7 @@ paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.prelu ArgSpec(args=['x', 'mode', 'param_attr', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.flatten ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.stack ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
...
...
paddle/fluid/framework/array.h
0 → 100644
浏览文件 @
b61cf7ac
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cstdint>
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
framework
{
template
<
typename
T
,
size_t
N
>
class
Array
{
static_assert
(
N
>
0
,
"The size of array must be larger than 0"
);
public:
HOSTDEVICE
Array
()
{}
HOSTDEVICE
explicit
Array
(
const
T
&
val
)
{
for
(
size_t
i
=
0
;
i
<
N
;
++
i
)
data_
[
i
]
=
val
;
}
HOSTDEVICE
const
T
*
Get
()
const
{
return
data_
;
}
HOSTDEVICE
T
*
GetMutable
()
{
return
data_
;
}
HOSTDEVICE
T
&
operator
[](
size_t
index
)
{
return
data_
[
index
];
}
HOSTDEVICE
const
T
&
operator
[](
size_t
index
)
const
{
return
data_
[
index
];
}
HOSTDEVICE
constexpr
size_t
size
()
const
{
return
N
;
}
private:
T
data_
[
N
];
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/op_proto_maker.cc
浏览文件 @
b61cf7ac
...
...
@@ -129,10 +129,6 @@ void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto,
"Optimized for variable"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
std
::
string
>>
(
OpCreationCallstackAttrName
(),
"Callstack for Op Creatation."
)
.
SetDefault
({});
Validate
();
}
...
...
paddle/fluid/framework/op_proto_maker.h
浏览文件 @
b61cf7ac
...
...
@@ -39,7 +39,6 @@ class OpProtoAndCheckerMaker {
public:
static
const
char
*
OpRoleAttrName
()
{
return
"op_role"
;
}
static
const
char
*
OpRoleVarAttrName
()
{
return
"op_role_var"
;
}
static
const
char
*
OpCreationCallstackAttrName
()
{
return
"op_callstack"
;
}
void
operator
()(
proto
::
OpProto
*
proto
,
OpAttrChecker
*
attr_checker
);
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
b61cf7ac
...
...
@@ -11,17 +11,15 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/operator.h"
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op
_proto_make
r.h"
#include "paddle/fluid/framework/op
erato
r.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -129,48 +127,19 @@ static LoD GetLoD(const Scope& scope, const std::string& name) {
}
void
OperatorBase
::
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
{
try
{
if
(
VLOG_IS_ON
(
4
))
{
VLOG
(
4
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
}
if
(
platform
::
is_gpu_place
(
place
))
{
VLOG
(
4
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
if
(
platform
::
is_gpu_place
(
place
))
{
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW
(
"Cannot run operator on place %s"
,
place
);
PADDLE_THROW
(
"Cannot run operator on place %s"
,
place
);
#else
auto
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
).
device
;
platform
::
SetDeviceId
(
dev_id
);
auto
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
).
device
;
platform
::
SetDeviceId
(
dev_id
);
#endif
}
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
platform
::
RecordEvent
record_event
(
Type
(),
pool
.
Get
(
place
));
RunImpl
(
scope
,
place
);
if
(
VLOG_IS_ON
(
3
))
{
VLOG
(
3
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
}
}
catch
(
platform
::
EnforceNotMet
exception
)
{
if
(
Attrs
().
count
(
"sub_block"
)
!=
0
)
{
throw
exception
;
}
auto
&
callstack
=
Attr
<
std
::
vector
<
std
::
string
>>
(
OpProtoAndCheckerMaker
::
OpCreationCallstackAttrName
());
if
(
callstack
.
empty
())
{
throw
exception
;
}
std
::
ostringstream
sout
;
sout
<<
"Invoke operator "
<<
Type
()
<<
" error.
\n
"
;
sout
<<
"Python Callstacks:
\n
"
;
for
(
auto
&
line
:
callstack
)
{
sout
<<
line
;
}
sout
<<
"C++ Callstacks:
\n
"
;
sout
<<
exception
.
err_str_
;
exception
.
err_str_
=
sout
.
str
();
throw
exception
;
}
catch
(...)
{
std
::
rethrow_exception
(
std
::
current_exception
());
}
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
platform
::
RecordEvent
record_event
(
Type
(),
pool
.
Get
(
place
));
RunImpl
(
scope
,
place
);
VLOG
(
3
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
}
bool
OperatorBase
::
HasInputs
(
const
std
::
string
&
name
)
const
{
...
...
@@ -198,7 +167,7 @@ const std::vector<std::string>& OperatorBase::Inputs(
}
bool
OperatorBase
::
HasOutputs
(
const
std
::
string
&
name
)
const
{
if
(
outputs_
.
end
()
!=
outputs_
.
find
(
name
))
{
if
(
outputs_
.
find
(
name
)
!=
outputs_
.
end
(
))
{
return
true
;
}
else
{
return
false
;
...
...
paddle/fluid/framework/tensor.cc
浏览文件 @
b61cf7ac
...
...
@@ -31,7 +31,8 @@ size_t Tensor::memory_size() const {
return
holder_
==
nullptr
?
0UL
:
holder_
->
size
()
-
offset_
;
}
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
)
{
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
,
size_t
requested_size
)
{
if
(
holder_
!=
nullptr
)
{
holder_
->
set_type
(
type
);
}
...
...
@@ -39,7 +40,7 @@ void* Tensor::mutable_data(platform::Place place, std::type_index type) {
"When calling this method, the Tensor's numel must be "
"equal or larger than zero. "
"Please check Tensor::Resize has been called first."
);
int64_t
size
=
numel
()
*
SizeOfType
(
type
);
size_t
size
=
requested_size
?
requested_size
:
numel
()
*
SizeOfType
(
type
);
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
holder_
->
size
()
<
size
+
offset_
)
{
...
...
@@ -68,10 +69,10 @@ void* Tensor::mutable_data(platform::Place place, std::type_index type) {
offset_
);
}
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
)
{
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
size_t
requested_size
)
{
PADDLE_ENFORCE
(
this
->
holder_
!=
nullptr
,
"Cannot invoke mutable data if current hold nothing."
);
return
mutable_data
(
place
,
holder_
->
type
());
return
mutable_data
(
place
,
holder_
->
type
()
,
requested_size
);
}
Tensor
&
Tensor
::
ShareDataWith
(
const
Tensor
&
src
)
{
...
...
paddle/fluid/framework/tensor.h
浏览文件 @
b61cf7ac
...
...
@@ -89,22 +89,24 @@ class Tensor {
* @note If not exist, then allocation.
*/
template
<
typename
T
>
T
*
mutable_data
(
platform
::
Place
place
);
T
*
mutable_data
(
platform
::
Place
place
,
size_t
requested_size
=
0
);
void
*
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
);
void
*
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
,
size_t
requested_size
=
0
);
void
*
mutable_data
(
platform
::
Place
place
);
void
*
mutable_data
(
platform
::
Place
place
,
size_t
requested_size
=
0
);
/**
* @brief Return a pointer to mutable memory block.
*
* @param[in] dims The dimensions of the memory block.
* @param[in] place The place of the memory block.
* @param[in] dims The dimensions of the memory block.
* @param[in] place The place of the memory block.
* @param[in] requested_size The size of the block in bytes.
*
* @note If not exist, then allocation.
*/
template
<
typename
T
>
T
*
mutable_data
(
DDim
dims
,
platform
::
Place
place
);
T
*
mutable_data
(
DDim
dims
,
platform
::
Place
place
,
size_t
requested_size
=
0
);
/*! Return the dimensions of the memory block. */
const
DDim
&
dims
()
const
;
...
...
paddle/fluid/framework/tensor_impl.h
浏览文件 @
b61cf7ac
...
...
@@ -46,16 +46,17 @@ inline T* Tensor::data() {
}
template
<
typename
T
>
inline
T
*
Tensor
::
mutable_data
(
DDim
dims
,
platform
::
Place
place
)
{
inline
T
*
Tensor
::
mutable_data
(
DDim
dims
,
platform
::
Place
place
,
size_t
requested_size
)
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
Resize
(
dims
);
return
mutable_data
<
T
>
(
place
);
return
mutable_data
<
T
>
(
place
,
requested_size
);
}
template
<
typename
T
>
inline
T
*
Tensor
::
mutable_data
(
platform
::
Place
place
)
{
inline
T
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
size_t
requested_size
)
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
return
reinterpret_cast
<
T
*>
(
mutable_data
(
place
,
typeid
(
T
)));
return
reinterpret_cast
<
T
*>
(
mutable_data
(
place
,
typeid
(
T
)
,
requested_size
));
}
inline
Tensor
ReshapeToMatrix
(
const
Tensor
&
src
,
int
num_col_dims
)
{
...
...
paddle/fluid/operators/attention_lstm_op.cc
0 → 100644
浏览文件 @
b61cf7ac
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/attention_lstm_op.h"
#include <sys/time.h>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
void
AttentionLSTMOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(C0) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMWeight"
),
"Input(LSTMWeight) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMBias"
),
"Input(LSTMBias) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionWeight"
),
"Input(AttentionWeight) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionedX"
),
"Output(AttentionedX) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionFCOut"
),
"Output(AttentionFCOut) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMX"
),
"Output(LSTMX) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMOUT"
),
"Output(LSTMOUT) of AttentionLSTM should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
M
=
x_dims
[
1
];
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
auto
w_dims
=
ctx
->
GetInputDim
(
"LSTMWeight"
);
const
int
D
=
w_dims
[
1
]
/
4
;
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"Input(LSTMWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
w_dims
[
0
],
D
+
M
,
"LSTMWeight dims should be (%d + %d) * %d."
,
D
+
M
,
4
*
D
);
auto
b_dims
=
ctx
->
GetInputDim
(
"LSTMBias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"Input(LSTMBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
4
*
D
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
"Input(C0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
"C0 dims should be N x %d."
,
D
);
if
(
ctx
->
HasInput
(
"H0"
))
{
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
}
auto
atten_w_dims
=
ctx
->
GetInputDim
(
"AttentionWeight"
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
.
size
(),
2
,
"Input(AttentionWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
0
],
M
+
D
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
1
],
1
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
if
(
ctx
->
HasInput
(
"AttentionBias"
))
{
auto
atten_b_dims
=
ctx
->
GetInputDim
(
"AttentionBias"
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
.
size
(),
2
,
"Input(AttentionBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
0
],
1
,
"AttentionBias shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
1
],
1
,
"AttentionBias shapes must be 1 * 1."
);
}
if
(
ctx
->
HasInput
(
"AttentionScalar"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalar"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalar)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
}
if
(
ctx
->
HasInput
(
"AttentionScalarBias"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalarBias"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionScalar"
),
"AttentionScalar should not be null when have AttentionScalarBias."
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalarBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
D
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"AttentionedX"
,
{
x_dims
[
0
],
1
});
ctx
->
SetOutputDim
(
"LSTMX"
,
{
1
,
M
});
ctx
->
SetOutputDim
(
"LSTMOUT"
,
{
1
,
4
*
D
});
// AttentionFCOut should be reshape as (maxseqlen,1) in runtime
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Cell"
);
}
framework
::
OpKernelType
AttentionLSTMOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
void
AttentionLSTMOpMaker
::
Make
()
{
AddInput
(
"X"
,
"(LoDTensor) the input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x."
);
AddInput
(
"C0"
,
"(Tensor) LSTM C0"
"This is a tensor with shape (N x D), where N is the batch size, D "
"is the gate size."
"C0 is necessary because of attention."
);
AddInput
(
"H0"
,
"(Tensor, optional) LSTM H0"
"This is a tensor with shape (N x D), where N is the "
"batch size and D is the gate size."
)
.
AsDispensable
();
AddInput
(
"AttentionWeight"
,
"(Tensor) the weights of attention fc. Always relu the fc result."
"The shape is ((M+D) x 1), where M is the dim size of x, D is the "
"gate size of LSTM."
);
AddInput
(
"AttentionBias"
,
"(Tensor, optional) the bias of attention fc."
"The shape is (1 x 1)"
)
.
AsDispensable
();
AddInput
(
"AttentionScalar"
,
"(Tensor, optional) the scalar on the result of attentioned fc. "
"Always relu the Scalar."
"The shape is (1 x 1)"
)
.
AsDispensable
();
AddInput
(
"AttentionScalarBias"
,
"(Tensor, optional) the scalar bias of attention fc."
"The shape is (1 x 1)"
)
.
AsDispensable
();
AddInput
(
"LSTMWeight"
,
"(Tensor) the combined weight of LSTM"
" - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
"is the dim size of x"
" - Weight = {W_forget, W_input, W_output, W_cell}"
);
AddInput
(
"LSTMBias"
,
"(Tensor) the combined bias of LSTM, shape (1x4D)."
"Note: we should add the bias of hidden and context accorindg to "
"the same gate: "
"{B_forget, B_input, B_output, B_cell}"
);
AddOutput
(
"Hidden"
,
"(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
"Cell"
,
"(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
"AttentionedX"
,
"(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size."
)
.
AsIntermediate
();
AddOutput
(
"AttentionFCOut"
,
"(Tensor) (max_seq_len, 1), compute at each step."
)
.
AsIntermediate
();
AddOutput
(
"LSTMX"
,
"(Tensor) the input X of LSTM for each step."
"Shape is (1 x M), where M is the x frame size"
)
.
AsIntermediate
();
AddOutput
(
"LSTMOUT"
,
"(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
"Shape is (1 x 4D), where M is the x frame size"
)
.
AsIntermediate
();
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default."
)
.
SetDefault
(
"sigmoid"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"cell_activation"
,
"(string, default: tanh)"
"The activation for cell output, `tanh` by defalut."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"candidate_activation"
,
"(string, default: tanh)"
"The activation for candidate hidden state, "
"`tanh` by default."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddComment
(
R"DOC(
Attention Long-Short Term Memory (LSTM) Operator.
Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))
tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu
fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu
dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M)
LSTM part:
use lstm_x_t as input and compute as standard LSTM.
)DOC"
);
}
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template
<
typename
T
>
inline
void
bias_relu
(
const
int
n
,
const
T
*
x
,
const
T
*
bias
,
T
*
y
)
{
if
(
bias
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
+
bias
[
0
];
}
math
::
vec_relu
<
T
>
(
n
,
y
,
y
);
}
else
{
math
::
vec_relu
<
T
>
(
n
,
x
,
y
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
inline
void
vec_softmax
(
const
math
::
BlasT
<
DeviceContext
,
T
>&
blas
,
const
int
n
,
const
T
*
x
,
T
*
y
)
{
T
scalar
=
x
[
0
];
// max
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
scalar
=
scalar
<
x
[
i
]
?
x
[
i
]
:
scalar
;
}
// sub
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
-
scalar
;
}
// exp
blas
.
VEXP
(
n
,
y
,
y
);
// sum
scalar
=
T
(
0
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
scalar
+=
y
[
i
];
}
// scale
blas
.
SCAL
(
n
,
static_cast
<
T
>
(
1
)
/
scalar
,
y
);
}
template
<
typename
T
>
class
AttentionLSTMKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
atten_w
=
ctx
.
Input
<
Tensor
>
(
"AttentionWeight"
);
auto
*
atten_b
=
ctx
.
Input
<
Tensor
>
(
"AttentionBias"
);
auto
*
atten_scalar
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalar"
);
auto
*
atten_scalar_bias
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalarBias"
);
auto
*
lstm_w
=
ctx
.
Input
<
Tensor
>
(
"LSTMWeight"
);
auto
*
lstm_b
=
ctx
.
Input
<
Tensor
>
(
"LSTMBias"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
auto
*
atted_x
=
ctx
.
Output
<
Tensor
>
(
"AttentionedX"
);
auto
*
fc_out
=
ctx
.
Output
<
Tensor
>
(
"AttentionFCOut"
);
auto
*
lstm_x
=
ctx
.
Output
<
Tensor
>
(
"LSTMX"
);
auto
*
lstm_out
=
ctx
.
Output
<
Tensor
>
(
"LSTMOUT"
);
// some shape should be reshape here since infershape can not get lod info
auto
x_lod
=
x
->
lod
();
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
// batch size
auto
x_dims
=
x
->
dims
();
// T x M
auto
w_dims
=
lstm_w
->
dims
();
// (D+M) x 4D
const
int
total_T
=
x_dims
[
0
];
const
int
M
=
x_dims
[
1
];
// x frame size
const
int
D
=
w_dims
[
1
]
/
4
;
// gate frame size
const
int
D2
=
D
*
2
;
const
int
D3
=
D
*
3
;
const
int
D4
=
w_dims
[
1
];
int
max_seq_len
=
x_lod
[
0
][
1
];
for
(
int
i
=
1
;
i
<
N
;
++
i
)
{
int
len
=
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
];
max_seq_len
=
max_seq_len
<
len
?
len
:
max_seq_len
;
}
PADDLE_ENFORCE_EQ
(
x_lod
.
size
(),
1
,
"Input(X)'s lod size must be 1."
);
PADDLE_ENFORCE_EQ
(
c0
->
dims
()[
0
],
N
,
"C0 dims should be %d x %d."
,
N
,
D
);
fc_out
->
Resize
({
max_seq_len
,
1
});
math
::
VecActivations
<
T
>
act_functor
;
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
act_gate
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
));
act_cell
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
));
act_cand
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
));
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
const
T
*
c0_data
=
c0
->
data
<
T
>
();
const
T
*
lstm_w_data
=
lstm_w
->
data
<
T
>
();
const
T
*
lstm_b_data
=
lstm_b
->
data
<
T
>
();
const
T
*
atten_w_data
=
atten_w
->
data
<
T
>
();
const
T
*
atten_b_data
=
atten_b
?
atten_b
->
data
<
T
>
()
:
NULL
;
const
T
*
atten_scalar_data
=
atten_scalar
?
atten_scalar
->
data
<
T
>
()
:
NULL
;
const
T
*
atten_scalar_bias_data
=
atten_scalar_bias
?
atten_scalar_bias
->
data
<
T
>
()
:
NULL
;
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
cell_out_data
=
cell_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
atted_x_data
=
atted_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
fc_out_data
=
fc_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
lstm_x_data
=
lstm_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
lstm_out_data
=
lstm_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
1
,
M
,
x_data
,
atten_w_data
,
atted_x_data
,
atten_b_data
);
const
T
*
cur_atten_x_data
=
atted_x_data
;
const
T
*
cur_x_data
=
x_data
;
const
T
*
prev_cell_data
=
NULL
;
const
T
*
prev_hidden_data
=
NULL
;
T
*
cur_cell_out_data
=
cell_out_data
;
T
*
cur_hidden_out_data
=
hidden_out_data
;
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
int
seq_len
=
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
];
prev_cell_data
=
c0_data
+
i
*
D
;
prev_hidden_data
=
h0_data
?
h0_data
+
i
*
D
:
NULL
;
for
(
int
step
=
0
;
step
<
seq_len
;
++
step
)
{
/// 1. compute attention vector
// 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
prev_cell_bias
=
blas
.
DOT
(
D
,
prev_cell_data
,
atten_w_data
+
M
);
// 1b. add cell bias and relu
bias_relu
<
T
>
(
seq_len
,
cur_atten_x_data
,
&
prev_cell_bias
,
fc_out_data
);
// 1c. fc scalar
if
(
atten_scalar_data
)
{
blas
.
SCAL
(
seq_len
,
*
atten_scalar_data
,
fc_out_data
);
bias_relu
<
T
>
(
seq_len
,
fc_out_data
,
atten_scalar_bias_data
,
fc_out_data
);
}
// 1d. softmax
vec_softmax
<
DeviceContext
,
T
>
(
blas
,
seq_len
,
fc_out_data
,
fc_out_data
);
// mul x(seq_len*M) and sum pool
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
1
,
M
,
seq_len
,
fc_out_data
,
cur_x_data
,
lstm_x_data
);
/// 2. compute LSTM step
// lstm weight : concat[forget , input , output , tilde]
// shape : (D + M) x (4 * D)
// fc inputX(1xM) * weightX(M*(4D)) => 1 x 4D
blas
.
MatMul
(
1
,
D4
,
M
,
lstm_x_data
,
lstm_w_data
+
D
*
D4
,
lstm_out_data
);
if
(
prev_hidden_data
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D4
,
D
,
static_cast
<
T
>
(
1
),
prev_hidden_data
,
D
,
lstm_w_data
,
D4
,
static_cast
<
T
>
(
1
),
lstm_out_data
,
D4
);
}
// since input is 1xM, so can use add bias
blas
.
VADD
(
D4
,
lstm_b_data
,
lstm_out_data
,
lstm_out_data
);
// gate act: sigmoid
act_gate
(
D3
,
lstm_out_data
,
lstm_out_data
);
// candicate act: tanh
act_cand
(
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D3
);
// a = forget * prev_cell
blas
.
VMUL
(
D
,
lstm_out_data
,
prev_cell_data
,
lstm_out_data
);
// b = input * tilde
blas
.
VMUL
(
D
,
lstm_out_data
+
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D
);
// cell_out = a + b
blas
.
VADD
(
D
,
lstm_out_data
,
lstm_out_data
+
D
,
cur_cell_out_data
);
// state act tanh(cell_out) * output_gate
act_cell
(
D
,
cur_cell_out_data
,
lstm_out_data
);
blas
.
VMUL
(
D
,
lstm_out_data
,
lstm_out_data
+
D2
,
cur_hidden_out_data
);
prev_hidden_data
=
cur_hidden_out_data
;
prev_cell_data
=
cur_cell_out_data
;
cur_cell_out_data
=
cur_cell_out_data
+
D
;
cur_hidden_out_data
=
cur_hidden_out_data
+
D
;
}
cur_x_data
=
cur_x_data
+
seq_len
*
M
;
cur_atten_x_data
=
cur_atten_x_data
+
seq_len
;
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
attention_lstm
,
ops
::
AttentionLSTMOp
,
ops
::
AttentionLSTMOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_CPU_KERNEL
(
attention_lstm
,
ops
::
AttentionLSTMKernel
<
float
>
,
ops
::
AttentionLSTMKernel
<
double
>
);
paddle/fluid/operators/attention_lstm_op.h
0 → 100644
浏览文件 @
b61cf7ac
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
class
AttentionLSTMOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
AttentionLSTMOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/batch_norm_op.cc
浏览文件 @
b61cf7ac
...
...
@@ -135,7 +135,7 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Variance"
,
"The global variance (for training) "
"or estimated Variance (for testing)"
);
AddOutput
(
"Y"
,
"result after normalization"
);
AddOutput
(
"Y"
,
"result after normalization"
)
.
Reuse
(
"X"
)
;
AddOutput
(
"MeanOut"
,
"Share memory with Mean. "
"Store the global mean when training"
)
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
b61cf7ac
...
...
@@ -53,6 +53,18 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
key_
+=
"-BWD"
;
}
size_t
GetDstMemorySize
()
const
{
return
conv_pd_
->
dst_primitive_desc
().
get_size
();
}
size_t
GetDiffWeightsMemorySize
()
const
{
return
conv_bwd_weights_pd_
->
diff_weights_primitive_desc
().
get_size
();
}
size_t
GetDiffSourceMemorySize
()
const
{
return
conv_bwd_data_pd_
->
diff_src_primitive_desc
().
get_size
();
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemoryFromWeightsPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
...
...
@@ -294,7 +306,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
...
...
@@ -354,6 +365,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
T
>
(
filter_data
));
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
// create reorder primitive if the input format is not the preferred one
auto
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
...
...
@@ -476,13 +489,6 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
T
*
input_grad_data
=
nullptr
;
T
*
filter_grad_data
=
nullptr
;
if
(
input_grad
)
{
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
filter_grad
)
{
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
...
...
@@ -568,6 +574,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
handler
.
AcquireDiffDstMemoryFromWeightsPrimitive
(
user_diff_dst_memory_p
,
pipeline
);
const
size_t
size
=
handler
.
GetDiffWeightsMemorySize
();
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
size
);
auto
diff_weights_memory_p
=
handler
.
AcquireDiffWeightsMemoryFromWeightsPrimitive
(
reinterpret_cast
<
void
*>
(
filter_grad_data
));
...
...
@@ -590,6 +599,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
handler
.
AcquireDiffDstMemoryFromDataPrimitive
(
user_diff_dst_memory_p
,
pipeline
);
const
size_t
size
=
handler
.
GetDiffSourceMemorySize
();
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
size
);
auto
diff_src_memory_p
=
handler
.
AcquireDiffSrcMemoryFromDataPrimitive
(
reinterpret_cast
<
void
*>
(
input_grad_data
));
...
...
paddle/fluid/operators/fusion_lstm_op.h
浏览文件 @
b61cf7ac
...
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
// #include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
...
...
paddle/fluid/operators/math/blas.h
浏览文件 @
b61cf7ac
...
...
@@ -90,6 +90,11 @@ class Blas {
void
GEMM
(
bool
transA
,
bool
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
const
;
template
<
typename
T
>
void
GEMM
(
CBLAS_TRANSPOSE
transA
,
CBLAS_TRANSPOSE
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
const
;
#ifdef PADDLE_WITH_MKLML
template
<
typename
T
>
T
*
GEMM_ALLOC
(
const
CBLAS_IDENTIFIER
id
,
const
int
M
,
const
int
N
,
...
...
@@ -109,6 +114,10 @@ class Blas {
void
GEMM_FREE
(
T
*
data
)
const
;
#endif
template
<
typename
T
>
void
MatMul
(
const
int
M
,
const
int
N
,
const
int
K
,
const
T
*
A
,
const
T
*
B
,
T
*
C
)
const
;
template
<
typename
T
>
void
MatMul
(
const
framework
::
Tensor
&
mat_a
,
bool
trans_a
,
const
framework
::
Tensor
&
mat_b
,
bool
trans_b
,
T
alpha
,
...
...
@@ -140,10 +149,19 @@ class Blas {
template
<
typename
T
>
void
VCOPY
(
int
n
,
const
T
*
x
,
T
*
y
)
const
;
template
<
typename
T
>
void
VEXP
(
int
n
,
const
T
*
x
,
T
*
y
)
const
;
template
<
typename
T
>
void
GEMV
(
bool
trans_a
,
int
M
,
int
N
,
T
alpha
,
const
T
*
A
,
const
T
*
B
,
T
beta
,
T
*
C
)
const
;
template
<
typename
T
>
T
DOT
(
int
n
,
const
T
*
x
,
const
T
*
y
)
const
;
template
<
typename
T
>
void
SCAL
(
int
n
,
const
T
a
,
T
*
x
)
const
;
template
<
typename
T
>
void
BatchedGEMM
(
CBLAS_TRANSPOSE
transA
,
CBLAS_TRANSPOSE
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
const
T
*
B
,
T
beta
,
T
*
C
,
...
...
@@ -215,11 +233,26 @@ class BlasT : private Blas<DeviceContext> {
Base
()
->
template
VCOPY
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
VEXP
(
ARGS
...
args
)
const
{
Base
()
->
template
VEXP
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
GEMV
(
ARGS
...
args
)
const
{
Base
()
->
template
GEMV
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
T
DOT
(
ARGS
...
args
)
const
{
return
Base
()
->
template
DOT
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
SCAL
(
ARGS
...
args
)
const
{
Base
()
->
template
SCAL
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
BatchedGEMM
(
ARGS
...
args
)
const
{
Base
()
->
template
BatchedGEMM
<
T
>(
args
...);
...
...
paddle/fluid/operators/math/blas_impl.h
浏览文件 @
b61cf7ac
...
...
@@ -73,6 +73,16 @@ struct CBlas<float> {
platform
::
dynload
::
cblas_sgemv
(
args
...);
}
template
<
typename
...
ARGS
>
static
float
DOT
(
ARGS
...
args
)
{
return
platform
::
dynload
::
cblas_sdot
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
SCAL
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_sscal
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_BATCH
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_sgemm_batch
(
args
...);
...
...
@@ -87,6 +97,11 @@ struct CBlas<float> {
static
void
VMUL
(
ARGS
...
args
)
{
platform
::
dynload
::
vsMul
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
VEXP
(
ARGS
...
args
)
{
platform
::
dynload
::
vsExp
(
args
...);
}
};
template
<
>
...
...
@@ -138,6 +153,16 @@ struct CBlas<double> {
platform
::
dynload
::
cblas_dgemv
(
args
...);
}
template
<
typename
...
ARGS
>
static
double
DOT
(
ARGS
...
args
)
{
return
platform
::
dynload
::
cblas_ddot
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
SCAL
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_dscal
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_BATCH
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_dgemm_batch
(
args
...);
...
...
@@ -152,6 +177,11 @@ struct CBlas<double> {
static
void
VMUL
(
ARGS
...
args
)
{
platform
::
dynload
::
vdMul
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
VEXP
(
ARGS
...
args
)
{
platform
::
dynload
::
vdExp
(
args
...);
}
};
#else
...
...
@@ -210,6 +240,9 @@ struct CBlas<platform::float16> {
PADDLE_THROW
(
"float16 SMM_GEMM not supported on CPU"
);
}
static
void
VMUL
(...)
{
PADDLE_THROW
(
"float16 VMUL not supported on CPU"
);
}
static
void
VEXP
(...)
{
PADDLE_THROW
(
"float16 VEXP not supported on CPU"
);
}
static
void
DOT
(...)
{
PADDLE_THROW
(
"float16 DOT not supported on CPU"
);
};
static
void
SCAL
(...)
{
PADDLE_THROW
(
"float16 SCAL not supported on CPU"
);
};
#ifdef PADDLE_WITH_MKLML
static
void
GEMM_BATCH
(...)
{
PADDLE_THROW
(
"float16 GEMM_BATCH not supported on CPU"
);
...
...
@@ -217,64 +250,6 @@ struct CBlas<platform::float16> {
#endif
};
template
<
typename
T
>
inline
bool
UseXSMM
(
const
int
&
m
,
const
int
&
n
,
const
int
&
k
,
bool
transa
,
bool
transb
,
const
T
&
alpha
,
const
T
&
beta
)
{
#ifdef PADDLE_WITH_LIBXSMM
// Refer to https://github.com/hfp/libxsmm/blob/master/README.md
// But the threshold is custom
constexpr
int
LIBXSMM_THRESHOLD
=
20
*
20
*
20
;
if
(
m
*
n
*
k
>
LIBXSMM_THRESHOLD
||
transa
||
transb
||
std
::
abs
<
T
>
(
alpha
-
static_cast
<
T
>
(
1
)
>
std
::
numeric_limits
<
T
>::
epsilon
())
||
std
::
abs
<
T
>
(
beta
)
>
std
::
numeric_limits
<
T
>::
epsilon
())
{
return
false
;
}
else
{
return
true
;
}
#endif
return
false
;
}
template
<
>
inline
bool
UseXSMM
<
platform
::
float16
>
(
const
int
&
m
,
const
int
&
n
,
const
int
&
k
,
bool
transa
,
bool
transb
,
const
platform
::
float16
&
alpha
,
const
platform
::
float16
&
beta
)
{
return
false
;
}
template
<
typename
T
>
inline
void
GEMM_WARP
(
CBLAS_ORDER
order
,
CBLAS_TRANSPOSE
transA
,
CBLAS_TRANSPOSE
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
{
#ifdef PADDLE_WITH_LIBXSMM
if
(
UseXSMM
<
T
>
(
M
,
N
,
K
,
transA
!=
CblasNoTrans
,
transB
!=
CblasNoTrans
,
alpha
,
beta
))
{
// Note: SMM use ColMajor
const
char
transa
=
'N'
;
const
char
transb
=
'N'
;
CBlas
<
T
>::
SMM_GEMM
(
&
transa
,
&
transb
,
&
N
,
&
M
,
&
K
,
&
alpha
,
B
,
&
ldb
,
A
,
&
lda
,
&
beta
,
C
,
&
ldc
);
return
;
}
#endif
#ifdef PADDLE_MKL_SPLIT_GEMM
constexpr
int
bs
=
2
;
if
(
M
%
bs
==
0
&&
transA
==
CblasNoTrans
&&
transB
==
CblasNoTrans
)
{
for
(
int
off
=
0
;
off
<
M
;
off
+=
bs
)
{
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
CblasNoTrans
,
CblasNoTrans
,
bs
,
N
,
K
,
alpha
,
A
+
off
*
lda
,
lda
,
B
,
ldb
,
beta
,
C
+
off
*
ldb
,
ldc
);
}
return
;
}
#endif
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
transA
,
transB
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
#ifdef PADDLE_WITH_MKLML
template
<
>
template
<
typename
T
>
...
...
@@ -319,8 +294,8 @@ void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
int
lda
=
(
transA
==
CblasNoTrans
)
?
K
:
M
;
int
ldb
=
(
transB
==
CblasNoTrans
)
?
N
:
K
;
int
ldc
=
N
;
GEMM_WARP
<
T
>
(
CblasRowMajor
,
transA
,
transB
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
transA
,
transB
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
template
<
>
...
...
@@ -329,9 +304,20 @@ void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
const
{
GEMM_WARP
<
T
>
(
CblasRowMajor
,
transA
==
false
?
CblasNoTrans
:
CblasTrans
,
transB
==
false
?
CblasNoTrans
:
CblasTrans
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
transA
==
false
?
CblasNoTrans
:
CblasTrans
,
transB
==
false
?
CblasNoTrans
:
CblasTrans
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMM
(
CBLAS_TRANSPOSE
transA
,
CBLAS_TRANSPOSE
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
const
{
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
transA
,
transB
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
template
<
typename
DeviceContext
>
...
...
@@ -399,6 +385,47 @@ void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
#endif
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
VEXP
(
int
n
,
const
T
*
x
,
T
*
y
)
const
{
#ifdef PADDLE_WITH_MKLML
CBlas
<
T
>::
VEXP
(
n
,
x
,
y
);
#else
// try to find if openblas support vexp
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
std
::
exp
(
x
[
i
]);
}
#endif
}
template
<
>
template
<
typename
T
>
T
Blas
<
platform
::
CPUDeviceContext
>::
DOT
(
int
n
,
const
T
*
x
,
const
T
*
y
)
const
{
#ifdef PADDLE_WITH_MKLML
return
CBlas
<
T
>::
DOT
(
n
,
x
,
1
,
y
,
1
);
#else
// try to find if openblas support cblas_dot
T
sum
=
0
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
sum
+=
x
[
i
]
*
y
[
i
];
}
return
sum
;
#endif
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
SCAL
(
int
n
,
const
T
a
,
T
*
x
)
const
{
#ifdef PADDLE_WITH_MKLML
CBlas
<
T
>::
SCAL
(
n
,
a
,
x
,
1
);
#else
// try to find if openblas support cblas_scal
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
x
[
i
]
=
a
*
x
[
i
];
}
#endif
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMV
(
bool
trans_a
,
int
M
,
int
N
,
T
alpha
,
...
...
@@ -440,6 +467,42 @@ void Blas<platform::CPUDeviceContext>::BatchedGEMM(
#endif
}
template
<
typename
DeviceContext
>
template
<
typename
T
>
void
Blas
<
DeviceContext
>::
MatMul
(
const
int
M
,
const
int
N
,
const
int
K
,
const
T
*
A
,
const
T
*
B
,
T
*
C
)
const
{
this
->
template
GEMM
<
T
>(
CblasRowMajor
,
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
A
,
K
,
B
,
N
,
static_cast
<
T
>
(
0
),
C
,
N
);
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
MatMul
(
const
int
M
,
const
int
N
,
const
int
K
,
const
T
*
A
,
const
T
*
B
,
T
*
C
)
const
{
#ifdef PADDLE_WITH_LIBXSMM
// Refer to https://github.com/hfp/libxsmm/blob/master/README.md
// But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;
// Since the matrix is very small,
// so the unit of calculation is already very fast,
// and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
// use xsmm directly.
// Note: SMM use ColMajor
const
char
transa
=
'N'
;
const
char
transb
=
'N'
;
const
T
alpha
=
static_cast
<
T
>
(
1
);
const
T
beta
=
static_cast
<
T
>
(
0
);
CBlas
<
T
>::
SMM_GEMM
(
&
transa
,
&
transb
,
&
N
,
&
M
,
&
K
,
&
alpha
,
B
,
&
N
,
A
,
&
K
,
&
beta
,
C
,
&
N
);
return
;
#endif
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
A
,
K
,
B
,
N
,
static_cast
<
T
>
(
0
),
C
,
N
);
}
template
<
typename
DeviceContext
>
template
<
typename
T
>
void
Blas
<
DeviceContext
>::
MatMul
(
const
framework
::
Tensor
&
mat_a
,
...
...
paddle/fluid/operators/math/cpu_vec.h
0 → 100644
浏览文件 @
b61cf7ac
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
template
<
typename
T
>
inline
T
sigmoid
(
T
x
)
{
return
1.
/
(
1.
+
exp
(
-
x
));
}
template
<
typename
T
>
inline
T
tanh
(
T
x
)
{
return
2.
*
sigmoid
(
2.
*
x
)
-
1.
;
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_identity
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
// do nothing
return
;
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_sigmoid
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
T
tmp
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
1.0
/
(
1.0
+
std
::
exp
(
-
tmp
));
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_tanh
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
tanh
<
T
>
(
x
[
i
]);
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_relu
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
template
<
>
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx2
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): complete me
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
template
<
>
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): complete me
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
class
VecActivations
{
public:
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
operator
()(
const
std
::
string
&
type
)
{
if
(
type
==
"sigmoid"
)
{
return
vec_sigmoid
<
T
,
isa
>
;
}
else
if
(
type
==
"relu"
)
{
return
vec_relu
<
T
,
isa
>
;
}
else
if
(
type
==
"tanh"
)
{
return
vec_tanh
<
T
,
isa
>
;
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
vec_identity
<
T
,
isa
>
;
}
PADDLE_THROW
(
"Not support type %s."
,
type
);
}
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/fc_compute.h
浏览文件 @
b61cf7ac
...
...
@@ -25,17 +25,25 @@ namespace math {
template
<
typename
DeviceContext
,
typename
T
>
inline
void
FCCompute
(
const
BlasT
<
DeviceContext
,
T
>&
blas
,
const
int
M
,
const
int
N
,
const
int
K
,
const
T
*
X
,
const
T
*
W
,
T
*
Y
,
const
T
*
B
=
NULL
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
X
,
W
,
static_cast
<
T
>
(
0
),
Y
);
if
(
B
)
{
const
T
*
B
=
NULL
,
bool
relu
=
false
)
{
blas
.
MatMul
(
M
,
N
,
K
,
X
,
W
,
Y
);
if
(
B
==
NULL
)
{
return
;
}
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for if (FLAGS_paddle_num_threads > 1)
#endif
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
blas
.
AXPY
(
N
,
static_cast
<
T
>
(
1
),
B
,
Y
+
i
*
N
);
}
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
blas
.
AXPY
(
N
,
static_cast
<
T
>
(
1
),
B
,
Y
+
i
*
N
);
}
if
(
!
relu
)
{
return
;
}
// TODO(TJ): fuse relu
LOG
(
FATAL
)
<<
"Not implemented!"
;
}
}
// namespace math
...
...
paddle/fluid/operators/stack_op.cc
0 → 100644
浏览文件 @
b61cf7ac
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/stack_op.h"
namespace
plat
=
paddle
::
platform
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
stack
,
ops
::
StackOp
,
ops
::
StackOpMaker
,
ops
::
StackGradOpDescMaker
);
REGISTER_OPERATOR
(
stack_grad
,
ops
::
StackOpGrad
);
REGISTER_OP_CPU_KERNEL
(
stack
,
ops
::
StackKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
StackKernel
<
plat
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
stack_grad
,
ops
::
StackGradKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
StackGradKernel
<
plat
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/stack_op.cu
0 → 100644
浏览文件 @
b61cf7ac
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/stack_op.h"
namespace
plat
=
paddle
::
platform
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
stack
,
ops
::
StackKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
StackKernel
<
plat
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
stack_grad
,
ops
::
StackGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
StackGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/stack_op.h
0 → 100644
浏览文件 @
b61cf7ac
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
#ifdef __NVCC__
#include <thrust/device_vector.h>
#include "paddle/fluid/framework/array.h"
#endif
namespace
paddle
{
namespace
operators
{
class
StackOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_GT
(
ctx
->
Inputs
(
"X"
).
size
(),
0
,
"Number of Inputs(X) must be larger than 0"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) must exist."
);
auto
input_dims
=
ctx
->
GetInputsDim
(
"X"
);
for
(
size_t
i
=
1
;
i
<
input_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
input_dims
[
i
],
input_dims
[
0
],
"Dims of all Inputs(X) must be the same"
);
}
// Only lod of X[0] would be shared with Y
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
int
rank
=
input_dims
[
0
].
size
();
PADDLE_ENFORCE
(
axis
>=
-
(
rank
+
1
)
&&
axis
<
rank
+
1
,
"Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d"
,
rank
);
if
(
axis
<
0
)
axis
+=
(
rank
+
1
);
auto
vec
=
framework
::
vectorize2int
(
input_dims
[
0
]);
vec
.
insert
(
vec
.
begin
()
+
axis
,
input_dims
.
size
());
ctx
->
SetOutputDim
(
"Y"
,
framework
::
make_ddim
(
vec
));
}
};
class
StackOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input of stack op."
).
AsDuplicable
();
AddOutput
(
"Y"
,
"The output of stack op."
);
AddAttr
<
int
>
(
"axis"
,
"The axis along which all of the Inputs(X) should be stacked."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
Stack Operator.
Stack all of the Inputs(X) into one tensor along Attr(axis). The dims of all Inputs(X) must be the same.
)DOC"
);
}
};
template
<
typename
VecXType
,
typename
T
>
struct
StackFunctor
{
HOSTDEVICE
StackFunctor
(
const
VecXType
&
x
,
T
*
y
,
int
n
,
int
post
)
:
x_
(
x
),
y_
(
y
),
n_
(
n
),
post_
(
post
)
{}
HOSTDEVICE
void
operator
()(
int
idx
)
{
int
i
=
idx
/
(
n_
*
post_
);
int
which_x
=
idx
/
post_
-
i
*
n_
;
int
x_index
=
i
*
post_
+
idx
%
post_
;
y_
[
idx
]
=
x_
[
which_x
][
x_index
];
}
private:
VecXType
x_
;
T
*
y_
;
int
n_
;
int
post_
;
};
template
<
typename
VecDxType
,
typename
T
>
struct
StackGradFunctor
{
HOSTDEVICE
StackGradFunctor
(
const
VecDxType
&
dx
,
const
T
*
dy
,
int
n
,
int
post
)
:
dx_
(
dx
),
dy_
(
dy
),
n_
(
n
),
post_
(
post
)
{}
HOSTDEVICE
void
operator
()(
int
idx
)
{
int
i
=
idx
/
(
n_
*
post_
);
int
which_x
=
idx
/
post_
-
i
*
n_
;
int
x_index
=
i
*
post_
+
idx
%
post_
;
dx_
[
which_x
][
x_index
]
=
dy_
[
idx
];
}
private:
VecDxType
dx_
;
const
T
*
dy_
;
int
n_
;
int
post_
;
};
template
<
typename
DeviceContext
,
typename
VecXType
,
typename
T
>
static
inline
void
StackFunctorForRange
(
const
DeviceContext
&
ctx
,
const
VecXType
&
x
,
T
*
y
,
int
total_num
,
int
n
,
int
post
)
{
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
,
total_num
);
for_range
(
StackFunctor
<
VecXType
,
T
>
(
x
,
y
,
n
,
post
));
}
template
<
typename
DeviceContext
,
typename
VecDxType
,
typename
T
>
static
inline
void
StackGradFunctorForRange
(
const
DeviceContext
&
ctx
,
const
VecDxType
&
dx
,
const
T
*
dy
,
int
total_num
,
int
n
,
int
post
)
{
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
,
total_num
);
for_range
(
StackGradFunctor
<
VecDxType
,
T
>
(
dx
,
dy
,
n
,
post
));
}
template
<
typename
DeviceContext
,
typename
T
>
class
StackKernel
:
public
framework
::
OpKernel
<
T
>
{
using
Tensor
=
framework
::
LoDTensor
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
x
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
axis
+=
(
x
[
0
]
->
dims
().
size
()
+
1
);
int
n
=
static_cast
<
int
>
(
x
.
size
());
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
const
T
*>
x_datas
(
n
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
x_datas
[
i
]
=
x
[
i
]
->
data
<
T
>
();
int
pre
=
1
,
post
=
1
;
auto
&
dim
=
x
[
0
]
->
dims
();
for
(
auto
i
=
0
;
i
<
axis
;
++
i
)
pre
*=
dim
[
i
];
for
(
auto
i
=
axis
;
i
<
dim
.
size
();
++
i
)
post
*=
dim
[
i
];
int
total_num
=
pre
*
n
*
post
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
constexpr
auto
kMaxThreshold
=
16
;
if
(
std
::
is_same
<
DeviceContext
,
platform
::
CPUDeviceContext
>::
value
||
n
>
kMaxThreshold
)
{
#ifdef __NVCC__
VLOG
(
10
)
<<
"Stack more than "
<<
kMaxThreshold
<<
" tensors on GPU may be slow."
;
thrust
::
device_vector
<
const
T
*>
device_x_vec
(
x_datas
);
auto
x_data_arr
=
device_x_vec
.
data
().
get
();
#else
auto
x_data_arr
=
x_datas
.
data
();
#endif
StackFunctorForRange
(
dev_ctx
,
x_data_arr
,
y_data
,
total_num
,
n
,
post
);
#ifdef __NVCC__
// Wait() must be called because device_x_vec may be destructed before
// kernel ends
dev_ctx
.
Wait
();
#endif
}
#ifdef __NVCC__
else
{
// NOLINT
framework
::
Array
<
const
T
*
,
kMaxThreshold
>
x_data_arr
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
x_data_arr
[
i
]
=
x_datas
[
i
];
StackFunctorForRange
(
dev_ctx
,
x_data_arr
,
y_data
,
total_num
,
n
,
post
);
}
#endif
}
};
class
StackOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@Grad) must exist."
);
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
auto
dy_dim
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
int
rank
=
dy_dim
.
size
();
PADDLE_ENFORCE
(
axis
>=
-
rank
&&
axis
<
rank
,
"Attr(axis) must be inside [-rank, rank), where rank = %d"
,
rank
);
if
(
axis
<
0
)
axis
+=
rank
;
PADDLE_ENFORCE_EQ
(
ctx
->
Outputs
(
framework
::
GradVarName
(
"X"
)).
size
(),
static_cast
<
size_t
>
(
dy_dim
[
axis
]),
"Number of Outputs(X@Grad) is wrong"
);
auto
vec
=
framework
::
vectorize2int
(
dy_dim
);
vec
.
erase
(
vec
.
begin
()
+
axis
);
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
std
::
vector
<
framework
::
DDim
>
(
dy_dim
[
axis
],
framework
::
make_ddim
(
vec
)));
}
};
class
StackGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"stack_grad"
);
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
OutputGrad
(
"Y"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
,
false
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
StackGradKernel
:
public
framework
::
OpKernel
<
T
>
{
using
Tensor
=
framework
::
LoDTensor
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
dx
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
axis
+=
dy
->
dims
().
size
();
int
n
=
dy
->
dims
()[
axis
];
std
::
vector
<
T
*>
dx_datas
(
n
);
// NOLINT
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
dx_datas
[
i
]
=
dx
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
auto
dy_data
=
dy
->
data
<
T
>
();
int
pre
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
pre
*=
dy
->
dims
()[
i
];
int
total_num
=
dy
->
numel
();
int
post
=
total_num
/
(
n
*
pre
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
constexpr
auto
kMaxThreshold
=
16
;
if
(
std
::
is_same
<
DeviceContext
,
platform
::
CPUDeviceContext
>::
value
||
n
>
kMaxThreshold
)
{
#ifdef __NVCC__
VLOG
(
10
)
<<
"Stack more than "
<<
kMaxThreshold
<<
" tensors on GPU may be slow."
;
thrust
::
device_vector
<
T
*>
device_dx_vec
(
dx_datas
);
auto
dx_data_arr
=
device_dx_vec
.
data
().
get
();
#else
auto
dx_data_arr
=
dx_datas
.
data
();
#endif
StackGradFunctorForRange
(
dev_ctx
,
dx_data_arr
,
dy_data
,
total_num
,
n
,
post
);
#ifdef __NVCC__
// Wait() must be called because device_dx_vec may be destructed before
// kernel ends
dev_ctx
.
Wait
();
#endif
}
#ifdef __NVCC__
else
{
// NOLINT
framework
::
Array
<
T
*
,
kMaxThreshold
>
dx_data_arr
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
dx_data_arr
[
i
]
=
dx_datas
[
i
];
StackGradFunctorForRange
(
dev_ctx
,
dx_data_arr
,
dy_data
,
total_num
,
n
,
post
);
}
#endif
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/top_k_op.cc
浏览文件 @
b61cf7ac
...
...
@@ -30,8 +30,6 @@ class TopkOp : public framework::OperatorWithKernel {
"Output(Indices) of TopkOp should not be null."
);
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
2
,
"Rank of TopK op's input must be 2."
);
const
int
k
=
static_cast
<
int
>
(
ctx
->
Attrs
().
Get
<
int
>
(
"k"
));
PADDLE_ENFORCE_GE
(
k
,
1
,
"k must >= 1"
);
...
...
paddle/fluid/platform/cpu_info.cc
浏览文件 @
b61cf7ac
...
...
@@ -103,15 +103,16 @@ size_t CUDAPinnedMaxChunkSize() {
return
CUDAPinnedMaxAllocSize
()
/
256
;
}
#ifdef PADDLE_WITH_XBYAK
namespace
jit
{
#ifdef PADDLE_WITH_XBYAK
static
Xbyak
::
util
::
Cpu
cpu
;
bool
MayIUse
(
const
cpu_isa_t
cpu_isa
)
{
using
namespace
Xbyak
::
util
;
// NOLINT
switch
(
cpu_isa
)
{
case
sse42
:
return
cpu
.
has
(
Cpu
::
tSSE42
);
case
avx
:
return
cpu
.
has
(
Cpu
::
tAVX
);
case
avx2
:
return
cpu
.
has
(
Cpu
::
tAVX2
);
case
avx512_common
:
...
...
@@ -134,8 +135,16 @@ bool MayIUse(const cpu_isa_t cpu_isa) {
}
return
false
;
}
#else
bool
MayIUse
(
const
cpu_isa_t
cpu_isa
)
{
if
(
cpu_isa
==
isa_any
)
{
return
true
;
}
else
{
return
false
;
}
}
#endif
}
// namespace jit
#endif
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/cpu_info.h
浏览文件 @
b61cf7ac
...
...
@@ -37,12 +37,11 @@ size_t CUDAPinnedMinChunkSize();
//! Get the maximum chunk size for buddy allocator.
size_t
CUDAPinnedMaxChunkSize
();
#ifdef PADDLE_WITH_XBYAK
namespace
jit
{
typedef
enum
{
isa_any
,
sse42
,
avx
,
avx2
,
avx512_common
,
avx512_core
,
...
...
@@ -55,7 +54,6 @@ typedef enum {
inline
bool
MayIUse
(
const
cpu_isa_t
cpu_isa
);
}
// namespace jit
#endif
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/dynload/mklml.h
浏览文件 @
b61cf7ac
...
...
@@ -66,10 +66,16 @@ extern void* mklml_dso_handle;
__macro(cblas_dgemm_free); \
__macro(cblas_sgemm_batch); \
__macro(cblas_dgemm_batch); \
__macro(cblas_sdot); \
__macro(cblas_ddot); \
__macro(cblas_sscal); \
__macro(cblas_dscal); \
__macro(vsAdd); \
__macro(vdAdd); \
__macro(vsMul); \
__macro(vdMul); \
__macro(vsExp); \
__macro(vdExp); \
__macro(MKL_Set_Num_Threads)
MKLML_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_MKLML_WRAP
);
...
...
paddle/fluid/pybind/const_value.cc
浏览文件 @
b61cf7ac
...
...
@@ -43,9 +43,6 @@ void BindConstValue(pybind11::module* m) {
op_proto_and_checker_maker
.
def
(
"kOpRoleVarAttrName"
,
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
);
op_proto_and_checker_maker
.
def
(
"kOpCreationCallstackAttrName"
,
framework
::
OpProtoAndCheckerMaker
::
OpCreationCallstackAttrName
);
}
}
// namespace pybind
...
...
python/paddle/dataset/common.py
浏览文件 @
b61cf7ac
...
...
@@ -19,6 +19,7 @@ import hashlib
import
os
import
errno
import
shutil
import
six
import
sys
import
importlib
import
paddle.dataset
...
...
@@ -94,6 +95,8 @@ def download(url, module_name, md5sum, save_name=None):
dl
=
0
total_length
=
int
(
total_length
)
for
data
in
r
.
iter_content
(
chunk_size
=
4096
):
if
six
.
PY2
:
data
=
six
.
b
(
data
)
dl
+=
len
(
data
)
f
.
write
(
data
)
done
=
int
(
50
*
dl
/
total_length
)
...
...
python/paddle/dataset/flowers.py
浏览文件 @
b61cf7ac
...
...
@@ -35,6 +35,7 @@ import itertools
import
functools
from
.common
import
download
import
tarfile
import
six
import
scipy.io
as
scio
from
paddle.dataset.image
import
*
from
paddle.reader
import
*
...
...
@@ -45,10 +46,10 @@ from six.moves import cPickle as pickle
from
six.moves
import
zip
__all__
=
[
'train'
,
'test'
,
'valid'
]
DATA_URL
=
'http://
www.robots.ox.ac.uk/~vgg/data/flowers/102
/102flowers.tgz'
LABEL_URL
=
'http://
www.robots.ox.ac.uk/~vgg/data/flowers/102
/imagelabels.mat'
SETID_URL
=
'http://
www.robots.ox.ac.uk/~vgg/data/flowers/102
/setid.mat'
DATA_MD5
=
'
33bfc11892f1e405ca193ae9a9f2a118
'
DATA_URL
=
'http://
paddlemodels.cdn.bcebos.com/flowers
/102flowers.tgz'
LABEL_URL
=
'http://
paddlemodels.cdn.bcebos.com/flowers
/imagelabels.mat'
SETID_URL
=
'http://
paddlemodels.cdn.bcebos.com/flowers
/setid.mat'
DATA_MD5
=
'
52808999861908f626f3c1f4e79d11fa
'
LABEL_MD5
=
'e0620be6f572b9609742df49c70aed4d'
SETID_MD5
=
'a5357ecc9cb78c4bef273ce3793fc85c'
# In official 'readme', tstid is the flag of test data
...
...
@@ -120,7 +121,10 @@ def reader_creator(data_file,
file
=
file
.
strip
()
batch
=
None
with
open
(
file
,
'rb'
)
as
f
:
batch
=
pickle
.
load
(
f
)
if
six
.
PY2
:
batch
=
pickle
.
load
(
f
)
else
:
batch
=
pickle
.
load
(
f
,
encoding
=
'bytes'
)
data
=
batch
[
'data'
]
labels
=
batch
[
'label'
]
for
sample
,
label
in
zip
(
data
,
batch
[
'label'
]):
...
...
python/paddle/fluid/framework.py
浏览文件 @
b61cf7ac
...
...
@@ -18,7 +18,6 @@ import collections
import
contextlib
import
re
import
six
import
traceback
import
numpy
as
np
...
...
@@ -506,10 +505,6 @@ class Operator(object):
if
role_var_name
in
op_attrs
and
len
(
op_attrs
[
role_var_name
])
==
0
:
del
op_attrs
[
role_var_name
]
callstack_var_name
=
op_maker
.
kOpCreationCallstackAttrName
()
op_attrs
[
callstack_var_name
]
=
list
(
reversed
(
traceback
.
format_stack
()))[
1
:]
if
len
(
self
.
desc
.
type
())
!=
0
:
return
if
type
is
None
:
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b61cf7ac
...
...
@@ -27,7 +27,6 @@ from . import utils
import
random
from
..
import
unique_name
from
functools
import
reduce
import
warnings
__all__
=
[
'fc'
,
...
...
@@ -104,6 +103,7 @@ __all__ = [
'rank_loss'
,
'prelu'
,
'flatten'
,
'stack'
,
]
...
...
@@ -2047,7 +2047,7 @@ def batch_norm(input,
param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
data_layout(string, default NCHW): NCHW|NHWC
in_place(bool, Default False):
This argument is deprecated since 0.15.0
.
in_place(bool, Default False):
Make the input and output of batch norm reuse memory
.
use_mkldnn(bool, Default false): ${use_mkldnn_comment}
name(string, Default None): A name for this layer(optional). If set None, the layer
will be named automatically.
...
...
@@ -2069,10 +2069,6 @@ def batch_norm(input,
helper
=
LayerHelper
(
'batch_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
if
in_place
:
raise
warnings
.
warn
(
"The argument in_place is deprecated since 0.15.0, "
"please do not set it True."
)
input_shape
=
input
.
shape
if
data_layout
==
'NCHW'
:
channel_num
=
input_shape
[
1
]
...
...
@@ -2122,7 +2118,7 @@ def batch_norm(input,
saved_mean
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
saved_variance
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
batch_norm_out
=
helper
.
create_tmp_variable
(
dtype
)
batch_norm_out
=
input
if
in_place
else
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"batch_norm"
,
...
...
@@ -5522,3 +5518,17 @@ def flatten(x, axis=1, name=None):
outputs
=
{
'Out'
:
out
},
attrs
=
{
"axis"
:
axis
})
return
out
def
stack
(
x
,
axis
=
0
):
helper
=
LayerHelper
(
'stack'
,
**
locals
())
axis
=
0
if
axis
is
None
else
axis
if
not
isinstance
(
x
,
list
)
and
not
isinstance
(
x
,
tuple
):
x
=
[
x
]
out
=
helper
.
create_tmp_variable
(
x
[
0
].
dtype
)
helper
.
append_op
(
type
=
'stack'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Y'
:
out
},
attrs
=
{
'axis'
:
axis
})
return
out
python/paddle/fluid/nets.py
浏览文件 @
b61cf7ac
...
...
@@ -229,7 +229,7 @@ def img_conv_group(input,
use_mkldnn
=
use_mkldnn
)
if
conv_with_batchnorm
[
i
]:
tmp
=
layers
.
batch_norm
(
input
=
tmp
,
act
=
conv_act
)
tmp
=
layers
.
batch_norm
(
input
=
tmp
,
act
=
conv_act
,
in_place
=
True
)
drop_rate
=
conv_batchnorm_drop_rate
[
i
]
if
abs
(
drop_rate
)
>
1e-5
:
tmp
=
layers
.
dropout
(
x
=
tmp
,
dropout_prob
=
drop_rate
)
...
...
python/paddle/fluid/tests/book/test_image_classification.py
浏览文件 @
b61cf7ac
...
...
@@ -256,10 +256,7 @@ def main(net_type, use_cuda, is_local=True):
save_dirname
=
"image_classification_"
+
net_type
+
".inference.model"
train
(
net_type
,
use_cuda
,
save_dirname
,
is_local
)
# There is bug in fluid.InferenceTranspiler for VGG.
if
net_type
==
"resnet"
:
infer
(
use_cuda
,
save_dirname
)
infer
(
use_cuda
,
save_dirname
)
class
TestImageClassification
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/unittests/test_attention_lstm_op.py
0 → 100644
浏览文件 @
b61cf7ac
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
test_fusion_lstm_op
import
fc
,
ACTIVATION
from
test_softmax_op
import
stable_softmax
def
attention_lstm
(
x
,
# T x M
lod
,
# 1 x N
h0
,
# N x D
c0
,
# N x D
fcws
,
# (M+D) x 1, 1x1
fcbs
,
# 1 x 1, 1x1
w
,
# (M+D) x 4D
b
,
# 1 x 4D
act_gate
,
act_cell
,
act_cand
):
T
=
sum
(
lod
[
0
])
N
=
len
(
lod
[
0
])
M
=
x
.
shape
[
1
]
D
=
b
.
shape
[
1
]
/
4
assert
T
==
x
.
shape
[
0
]
assert
len
(
fcws
)
==
len
(
fcbs
)
hidden
=
[]
cell
=
[]
start_offset
=
0
for
bid
in
range
(
N
):
seq_len
=
lod
[
0
][
bid
]
xi
=
np
.
copy
(
x
[
start_offset
:
start_offset
+
seq_len
,
:]).
reshape
(
seq_len
,
M
)
prev_cell
=
np
.
copy
(
c0
[
bid
]).
reshape
([
1
,
D
])
prev_hidden
=
np
.
copy
(
h0
[
bid
]).
reshape
([
1
,
D
])
for
step
in
range
(
seq_len
):
expanded_cell
=
np
.
repeat
(
prev_cell
,
seq_len
,
axis
=
0
)
tmp
=
np
.
concatenate
((
xi
,
expanded_cell
),
axis
=
1
)
assert
tmp
.
shape
[
0
]
==
seq_len
assert
tmp
.
shape
[
1
]
==
M
+
D
for
fcid
in
range
(
len
(
fcbs
)):
tmp
=
fc
(
tmp
,
fcws
[
fcid
],
fcbs
[
fcid
])
tmp
=
ACTIVATION
[
'relu'
](
tmp
)
tmp
=
np
.
reshape
(
tmp
,
(
1
,
seq_len
))
tmp
=
stable_softmax
(
tmp
).
reshape
(
seq_len
,
1
)
lstmx
=
xi
*
tmp
# seq * M
lstmx
=
np
.
sum
(
lstmx
.
reshape
(
seq_len
,
M
),
axis
=
0
).
reshape
([
1
,
M
])
lstmin
=
np
.
concatenate
((
prev_hidden
,
lstmx
),
axis
=
1
)
lstmout
=
fc
(
lstmin
,
w
,
b
).
reshape
([
1
,
4
*
D
])
g_f
,
g_i
,
g_o
,
cand
=
np
.
split
(
lstmout
,
4
,
axis
=
1
)
g_f
=
act_gate
(
g_f
).
reshape
([
1
,
D
])
g_i
=
act_gate
(
g_i
).
reshape
([
1
,
D
])
g_o
=
act_gate
(
g_o
).
reshape
([
1
,
D
])
cand
=
act_cand
(
cand
).
reshape
([
1
,
D
])
cell_t
=
(
prev_cell
*
g_f
)
+
(
g_i
*
cand
)
hidden_t
=
g_o
*
act_cell
(
cell_t
)
hidden
.
append
(
hidden_t
.
flatten
())
cell
.
append
(
cell_t
.
flatten
())
prev_cell
=
cell_t
.
reshape
([
1
,
D
])
prev_hidden
=
hidden_t
.
reshape
([
1
,
D
])
start_offset
+=
seq_len
hidden
=
np
.
array
(
hidden
).
astype
(
'float32'
).
reshape
([
T
,
D
])
cell
=
np
.
array
(
cell
).
astype
(
'float32'
).
reshape
([
T
,
D
])
return
hidden
,
cell
class
TestAttentionLSTMOp
(
OpTest
):
def
set_conf
(
self
):
pass
def
setUp
(
self
):
self
.
op_type
=
'attention_lstm'
self
.
lod
=
[[
3
]]
self
.
M
=
30
self
.
D
=
15
self
.
has_initial_hidden
=
True
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
set_conf
()
T
=
sum
(
self
.
lod
[
0
])
bs
=
len
(
self
.
lod
[
0
])
x
=
np
.
random
.
normal
(
size
=
(
T
,
self
.
M
)).
astype
(
'float32'
)
c0
=
np
.
random
.
normal
(
size
=
(
bs
,
self
.
D
)).
astype
(
'float32'
)
if
self
.
has_initial_hidden
:
h0
=
np
.
random
.
normal
(
size
=
(
bs
,
self
.
D
)).
astype
(
'float32'
)
else
:
h0
=
np
.
zeros
((
bs
,
self
.
D
)).
astype
(
'float32'
)
fcw1
=
np
.
random
.
normal
(
size
=
(
self
.
M
+
self
.
D
,
1
)).
astype
(
'float32'
)
fcb1
=
np
.
random
.
normal
(
size
=
(
1
,
1
)).
astype
(
'float32'
)
fcw2
=
np
.
random
.
normal
(
size
=
(
1
,
1
)).
astype
(
'float32'
)
fcb2
=
np
.
random
.
normal
(
size
=
(
1
,
1
)).
astype
(
'float32'
)
# lstm weight and bias
w
=
np
.
random
.
normal
(
size
=
(
self
.
M
+
self
.
D
,
self
.
D
*
4
)).
astype
(
'float32'
)
b
=
np
.
random
.
normal
(
size
=
(
1
,
self
.
D
*
4
)).
astype
(
'float32'
)
h
,
c
=
attention_lstm
(
x
,
self
.
lod
,
h0
,
c0
,
[
fcw1
,
fcw2
],
[
fcb1
,
fcb2
],
w
,
b
,
ACTIVATION
[
self
.
act_gate
],
ACTIVATION
[
self
.
act_cell
],
ACTIVATION
[
self
.
act_cand
])
self
.
inputs
=
{
'X'
:
(
x
,
self
.
lod
),
'C0'
:
c0
,
'AttentionWeight'
:
fcw1
,
'AttentionBias'
:
fcb1
,
'AttentionScalar'
:
fcw2
,
'AttentionScalarBias'
:
fcb2
,
'LSTMWeight'
:
w
,
'LSTMBias'
:
b
}
if
self
.
has_initial_hidden
:
self
.
inputs
[
'H0'
]
=
h0
self
.
outputs
=
{
'Hidden'
:
(
h
,
self
.
lod
),
'Cell'
:
(
c
,
self
.
lod
),
}
self
.
attrs
=
{
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
'candidate_activation'
:
self
.
act_cand
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestAttentionOpNonInit
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
has_initial_hidden
=
False
class
TestAttentionOpAct
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
3
self
.
D
=
2
self
.
act_gate
=
'relu'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'sigmoid'
class
TestAttentionOpMD1
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
36
self
.
D
=
8
class
TestAttentionOpMD2
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
8
self
.
D
=
8
class
TestAttentionOpMD3
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
15
self
.
D
=
30
class
TestAttentionOpBS1
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
lod
=
[[
5
]]
self
.
M
=
16
self
.
D
=
32
class
TestAttentionOpBS2
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
lod
=
[[
3
,
6
]]
class
TestAttentionOpBS5
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
lod
=
[[
3
,
2
,
4
,
7
,
5
]]
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_operator_desc.py
浏览文件 @
b61cf7ac
...
...
@@ -67,10 +67,7 @@ class TestOperator(unittest.TestCase):
self
.
assertEqual
(
mul_op
.
output
(
"Out"
),
[
"mul.out"
])
self
.
assertEqual
(
set
(
mul_op
.
attr_names
),
set
([
"x_num_col_dims"
,
"y_num_col_dims"
,
"op_role"
,
"op_role_var"
,
"op_callstack"
]))
set
([
"x_num_col_dims"
,
"y_num_col_dims"
,
"op_role"
,
"op_role_var"
]))
self
.
assertEqual
(
mul_op
.
has_attr
(
"x_num_col_dims"
),
True
)
self
.
assertEqual
(
mul_op
.
attr_type
(
"x_num_col_dims"
),
core
.
AttrType
.
INT
)
self
.
assertEqual
(
mul_op
.
attr
(
"x_num_col_dims"
),
1
)
...
...
python/paddle/fluid/tests/unittests/test_program_code.py
0 → 100644
浏览文件 @
b61cf7ac
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
time
import
unittest
from
multiprocessing
import
Process
import
signal
import
numpy
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
from
paddle.fluid.layers.io
import
ListenAndServ
from
paddle.fluid.layers.io
import
Recv
from
paddle.fluid.layers.io
import
Send
from
paddle.fluid.transpiler.details
import
program_to_code
class
TestProgram2Code
(
unittest
.
TestCase
):
def
test_print
(
self
):
place
=
fluid
.
CPUPlace
()
self
.
init_serv
(
place
)
self
.
init_client
(
place
,
9123
)
def
init_serv
(
self
,
place
):
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
serv
=
ListenAndServ
(
"127.0.0.1:0"
,
[
"X"
],
optimizer_mode
=
False
)
with
serv
.
do
():
out_var
=
main
.
global_block
().
create_var
(
name
=
"scale_0.tmp_0"
,
psersistable
=
True
,
dtype
=
"float32"
,
shape
=
[
32
,
32
])
x
=
layers
.
data
(
shape
=
[
32
,
32
],
dtype
=
'float32'
,
name
=
"X"
,
append_batch_size
=
False
)
fluid
.
initializer
.
Constant
(
value
=
1.0
)(
x
,
main
.
global_block
())
layers
.
scale
(
x
=
x
,
scale
=
10.0
,
out
=
out_var
)
program_to_code
(
main
)
def
init_client
(
self
,
place
,
port
):
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
x
=
layers
.
data
(
shape
=
[
32
,
32
],
dtype
=
'float32'
,
name
=
'X'
,
append_batch_size
=
False
)
fluid
.
initializer
.
Constant
(
value
=
2.3
)(
x
,
main
.
global_block
())
get_var
=
main
.
global_block
().
create_var
(
name
=
"scale_0.tmp_0"
,
# server side var
dtype
=
"float32"
,
persistable
=
False
,
shape
=
[
32
,
32
])
fluid
.
initializer
.
Constant
(
value
=
2.3
)(
get_var
,
main
.
global_block
())
Send
(
"127.0.0.1:%d"
%
port
,
[
x
])
o
=
Recv
(
"127.0.0.1:%d"
%
port
,
[
get_var
])
program_to_code
(
main
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_stack_op.py
0 → 100644
浏览文件 @
b61cf7ac
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
op_test
import
OpTest
import
numpy
as
np
import
unittest
class
TestStackOpBase
(
OpTest
):
def
initDefaultParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
self
.
dtype
=
'float32'
def
initParameters
(
self
):
pass
def
get_x_names
(
self
):
x_names
=
[]
for
i
in
range
(
self
.
num_inputs
):
x_names
.
append
(
'x{}'
.
format
(
i
))
return
x_names
def
setUp
(
self
):
self
.
initDefaultParameters
()
self
.
initParameters
()
self
.
op_type
=
'stack'
self
.
x
=
[]
for
i
in
range
(
self
.
num_inputs
):
self
.
x
.
append
(
np
.
random
.
random
(
size
=
self
.
input_dim
).
astype
(
self
.
dtype
))
tmp
=
[]
x_names
=
self
.
get_x_names
()
for
i
in
range
(
self
.
num_inputs
):
tmp
.
append
((
x_names
[
i
],
self
.
x
[
i
]))
self
.
inputs
=
{
'X'
:
tmp
}
self
.
outputs
=
{
'Y'
:
np
.
stack
(
self
.
x
,
axis
=
self
.
axis
)}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
self
.
get_x_names
(),
'Y'
)
class
TestStackOp1
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
num_inputs
=
16
class
TestStackOp2
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
num_inputs
=
20
class
TestStackOp3
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
1
class
TestStackOp4
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
4
class
TestStackOp5
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
1
class
TestStackOp6
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
3
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/transpiler/details/program_utils.py
浏览文件 @
b61cf7ac
...
...
@@ -16,6 +16,9 @@ from __future__ import print_function
import
six
from
paddle.fluid
import
core
import
paddle
def
delete_ops
(
block
,
ops
):
try
:
...
...
@@ -39,3 +42,133 @@ def find_op_by_output_arg(block, arg_name):
if
arg_name
in
op
.
output_arg_names
:
return
index
return
-
1
def
get_indent_space
(
indent
,
space_num
=
4
):
ret
=
""
for
i
in
range
(
0
,
indent
*
space_num
):
ret
+=
" "
return
ret
def
variable_to_code
(
var
):
"""
Get readable codes of fluid variable.
Args:
var: A fluid operator.
Returns:
string: The formatted string.
"""
var_str
=
"{name} : fluid.{type}.shape{shape}.astype({dtype})"
.
\
format
(
i
=
"{"
,
e
=
"}"
,
name
=
var
.
name
,
type
=
var
.
type
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
)
if
type
(
var
)
==
paddle
.
fluid
.
framework
.
Parameter
:
if
var
.
trainable
:
var_str
=
"trainable parameter "
+
var_str
else
:
var_str
=
"parameter "
+
var_str
else
:
var_str
=
"var "
+
var_str
if
var
.
persistable
:
var_str
=
"persist "
+
var_str
return
var_str
def
op_to_code
(
op
):
"""
Get readable codes of fluid operator.
Args:
op: A fluid operator.
Returns:
string: The foramtted string.
"""
outputs_str
=
"{"
for
i
in
range
(
0
,
len
(
op
.
output_names
)):
outputs_str
+=
"{name}="
.
format
(
name
=
op
.
output_names
[
i
])
o
=
op
.
output
(
op
.
output_names
[
i
])
outputs_str
+=
"{value}"
.
format
(
value
=
o
)
if
i
!=
len
(
op
.
output_names
)
-
1
:
outputs_str
+=
", "
outputs_str
+=
"}"
inputs_str
=
"{"
for
i
in
range
(
0
,
len
(
op
.
input_names
)):
inputs_str
+=
"{name}="
.
format
(
name
=
op
.
input_names
[
i
])
o
=
op
.
input
(
op
.
input_names
[
i
])
inputs_str
+=
"{value}"
.
format
(
value
=
o
)
if
i
!=
len
(
op
.
input_names
)
-
1
:
inputs_str
+=
", "
inputs_str
+=
"}"
attrs_str
=
""
for
i
in
range
(
0
,
len
(
op
.
attr_names
)):
name
=
op
.
attr_names
[
i
]
attr_type
=
op
.
desc
.
attr_type
(
name
)
if
attr_type
==
core
.
AttrType
.
BLOCK
:
a
=
"{name} = block[{value}]"
.
format
(
name
=
name
,
type
=
attr_type
,
value
=
op
.
block_attr_id
(
name
))
attrs_str
+=
a
continue
if
attr_type
==
core
.
AttrType
.
BLOCKS
:
a
=
"{name} = blocks{value}"
.
format
(
name
=
name
,
type
=
attr_type
,
value
=
op
.
blocks_attr_ids
(
name
))
attrs_str
+=
a
continue
a
=
"{name} = {value}"
.
format
(
name
=
name
,
type
=
attr_type
,
value
=
op
.
desc
.
attr
(
name
))
attrs_str
+=
a
if
i
!=
len
(
op
.
attr_names
)
-
1
:
attrs_str
+=
", "
if
outputs_str
!=
"{}"
:
op_str
=
"{outputs} = {op_type}(inputs={inputs}, {attrs})"
.
\
format
(
outputs
=
outputs_str
,
op_type
=
op
.
type
,
inputs
=
inputs_str
,
attrs
=
attrs_str
)
else
:
op_str
=
"{op_type}(inputs={inputs}, {attrs})"
.
\
format
(
op_type
=
op
.
type
,
inputs
=
inputs_str
,
attrs
=
attrs_str
)
return
op_str
def
program_to_code
(
prog
):
"""
Print readable codes of fluid program.
Args:
prog : A fluid program.
An example result like bellow:
https://github.com/PaddlePaddle/Paddle/pull/12673
"""
indent
=
0
block_idx
=
0
for
block
in
prog
.
blocks
:
print
(
"{0}{1} // block {2}"
.
format
(
get_indent_space
(
indent
),
'{'
,
block_idx
))
indent
+=
1
# sort all vars
all_vars
=
sorted
(
block
.
vars
.
iteritems
(),
key
=
lambda
x
:
x
[
0
])
for
var
in
all_vars
:
print
(
"{}{}"
.
format
(
get_indent_space
(
indent
),
variable_to_code
(
var
[
1
])))
if
len
(
all_vars
)
>
0
:
print
(
""
)
for
op
in
block
.
ops
:
print
(
"{}{}"
.
format
(
get_indent_space
(
indent
),
op_to_code
(
op
)))
indent
-=
1
print
(
"{0}{1}"
.
format
(
get_indent_space
(
indent
),
'}'
))
block_idx
+=
1
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录