未验证 提交 b5f4d5ed 编写于 作者: C chengduo 提交者: GitHub

Add broadcast operators (#17503)

* This PR adds broadcast for multi-process. And it could be used in dynamic graph to broadcast parameters.
上级 2280f185
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <ostream>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
class BroadcastOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of BroadcastOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Output) of ConvOp should not be null.");
}
};
class BroadcastOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "(Tensor), tensor to be broadcast.");
AddOutput("Out", "(Tensor) the result of broadcast.");
AddAttr<bool>(
"sync_mode",
"(bool) whether to synchronize the CUDA stream after nccl call.")
.SetDefault(false);
AddAttr<int>("root", "(int).").SetDefault(0).EqualGreaterThan(0);
AddComment(R"DOC(
***Broadcast Operator***
Call NCCL Broadcast internally. Note that this op must be used when one
thread is managing one GPU device.
)DOC");
}
};
template <typename T>
class BroadcastOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_THROW("Broadcast op can run on gpu place only for now.");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_WITHOUT_GRADIENT(broadcast, ops::BroadcastOp,
ops::BroadcastOpMaker);
REGISTER_OP_CPU_KERNEL(broadcast, ops::BroadcastOpKernel<float>,
ops::BroadcastOpKernel<double>,
ops::BroadcastOpKernel<int>,
ops::BroadcastOpKernel<int64_t>,
ops::BroadcastOpKernel<plat::float16>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace ops = paddle::operators;
namespace plat = paddle::platform;
namespace paddle {
namespace operators {
template <typename T>
class NCCLBroadcastOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"The place of ExecutionContext should be CUDAPlace.");
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
int dev_id = boost::get<platform::CUDAPlace>(ctx.GetPlace()).device;
int root_dev_id = ctx.Attr<int>("root");
auto in = ctx.Input<framework::Tensor>("X");
auto out = ctx.Output<framework::Tensor>("Out");
PADDLE_ENFORCE(out->IsInitialized(),
"Currently, the output of broadcast op must be initialized, "
"because this op can only be an In-Place operation.");
void* send_recv_buffer = out->mutable_data<T>(ctx.GetPlace());
PADDLE_ENFORCE_EQ(
send_recv_buffer, in->data<void>(),
"Currently, the broadcast op can only be an In-Place operation.");
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto comm = dev_ctx.nccl_comm();
auto stream = dev_ctx.stream();
PADDLE_ENFORCE(platform::dynload::ncclBcast(
send_recv_buffer, static_cast<size_t>(in->numel()),
platform::ToNCCLDataType(in->type()), root_dev_id, comm, stream));
VLOG(3) << "Bcast " << ctx.Inputs("X")[0] << ", (" << in->numel() << ")"
<< " From " << root_dev_id << " to " << dev_id;
if (ctx.Attr<bool>("sync_mode")) {
PADDLE_ENFORCE(cudaStreamSynchronize(stream));
}
#else
PADDLE_THROW("PaddlePaddle should compile with GPU.");
#endif
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(broadcast, ops::NCCLBroadcastOpKernel<float>,
ops::NCCLBroadcastOpKernel<double>,
ops::NCCLBroadcastOpKernel<int>,
ops::NCCLBroadcastOpKernel<int64_t>,
ops::NCCLBroadcastOpKernel<plat::float16>);
......@@ -18,6 +18,7 @@ import sys
import numpy as np
import collections
import six
from . import parallel_helper
from .. import unique_name
from paddle.fluid import core
from .layer_object_helper import LayerObjectHelper
......@@ -154,6 +155,8 @@ class Layer(core.Layer):
def __call__(self, *inputs):
if not self._built:
self.build_once(*inputs)
if parallel_helper._is_data_parallel_mode():
parallel_helper._broadcast_parameters(self._parameters.values())
outputs = self.forward(*inputs)
self._built = True
......
......@@ -17,8 +17,8 @@ import numpy as np
from .. import core
from . import layers
from . import parallel_helper
from .. import framework
from ..layers import collective
from . import to_variable
......@@ -26,24 +26,29 @@ __all__ = ["prepare_context"]
ParallelStrategy = core.ParallelStrategy
__parallel_ctx__clz__ = None
def prepare_context(parallel_strategy):
global __parallel_ctx__clz__
assert __parallel_ctx__clz__ is None, "ParallelContext can only be initialized once."
assert framework.in_dygraph_mode(
) is True, "dygraph.parallel.prepare_context should be used with dygrahp mode."
def prepare_context(strategy=None):
if strategy is None:
strategy = ParallelStrategy()
strategy.nranks = Env().nranks
strategy.local_rank = Env().local_rank
strategy.trainer_endpoints = Env().trainer_endpoints
strategy.current_endpoint = Env().current_endpoint
if strategy.nranks < 2:
return
assert framework.in_dygraph_mode() is True,\
"dygraph.parallel.prepare_context should be used with dygrahp mode."
place = framework._current_expected_place()
assert place is not None, "dygraph.parallel.prepare_context should be used in fluid.dygraph.guard(place) guard."
assert place is not None, \
"dygraph.parallel.prepare_context should be used in fluid.dygraph.guard(place) guard."
if isinstance(place, core.CUDAPlace):
__parallel_ctx__clz__ = core.NCCLParallelContext(parallel_strategy,
place)
parallel_helper._set_parallel_ctx(
core.NCCLParallelContext(strategy, place))
else:
# TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
assert ("Only support CUDAPlace for now.")
__parallel_ctx__clz__.init()
parallel_helper._init_parallel_ctx()
return strategy
class Env(object):
......@@ -77,9 +82,65 @@ class Env(object):
class DataParallel(layers.Layer):
"""
Runs the module with data parallelism.
Currently, DataParallel only supports to run the dynamic graph
with multi-process. The usage is:
`python -m paddle.distributed.launch --gpus 2 dynamic_graph_test.py`.
And the content of `dynamic_graph_test.py` is the code of examples.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid.optimizer import AdamOptimizer
from paddle.fluid.dygraph.nn import FC
from paddle.fluid.dygraph.base import to_variable
place = fluid.CUDAPlace(0)
with fluid.dygraph.guard(place=place):
# prepare the data parallel context
strategy=dygraph.parallel.prepare_context()
fc_layer = FC("FC", 10, act="softmax")
adam = fluid.optimizer.AdamOptimizer()
# make the module become the data parallelism module
fc_layer = dygraph.parallel.DataParallel(fc_layer, strategy)
x_data = np.random.random(size=[10, 1]).astype(np.float32)
data = to_variable(x_data)
hidden = fc_layer(data)
avg_loss = fluid.layers.mean(hidden)
# scale the loss according to the number of trainers.
avg_loss = fc_layer.scale_loss(avg_loss)
avg_loss.backward()
# collect the gradients of trainers.
fc_layer.apply_collective_grads()
adam.minimize(avg_loss)
fc_layer.clear_gradients()
Args:
layers(Layer): The module that should be executed by data parallel.
strategy(ParallelStrategy): The strategy of data parallelism.
Returns:
Layer: The data paralleled module.
"""
def __init__(self, layers, strategy):
super(DataParallel,
self).__init__(layers.full_name() + "_data_parallel")
self._layers = layers
self._strategy = strategy
......@@ -87,8 +148,20 @@ class DataParallel(layers.Layer):
return self._layers(*inputs, **kwargs)
def scale_loss(self, loss):
if self._strategy.nranks < 2:
"""
Scale the loss. In data parallel mode, the loss should be scale with
the number of trainers. If not in data parallel mode, return the loss
directly.
Args:
loss(Layer): The loss of the current Model.
Returns:
Layer: the scaled loss.
"""
if not self._is_data_parallel_mode():
return loss
loss_scale = to_variable(
np.array([self._strategy.nranks]).astype("float32"))
loss_scale.stop_gradient = True
......@@ -96,10 +169,14 @@ class DataParallel(layers.Layer):
return loss
def apply_collective_grads(self):
if self._strategy.nranks < 2:
"""
AllReduce the Parameters' gradient.
"""
if not self._is_data_parallel_mode():
return
for param in self._layers.parameters():
# NOTE(zcd): The grad_ivar maybe no generated.
if param.trainable and param._ivar._grad_ivar():
g_var = framework.Variable(
block=self._helper.main_program.current_block(),
......@@ -107,3 +184,6 @@ class DataParallel(layers.Layer):
stop_gradient=True,
ivar=param._ivar._grad_ivar())
collective._allreduce(g_var, g_var, sync_mode=True)
def _is_data_parallel_mode(self):
return self._strategy.nranks > 1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from ..layers import collective
__parallel_ctx__clz__ = None
def _is_data_parallel_mode():
global __parallel_ctx__clz__
return __parallel_ctx__clz__ is not None and int(
os.getenv("PADDLE_TRAINERS_NUM", "1")) > 1
def _set_parallel_ctx(nccl_parallel_context):
global __parallel_ctx__clz__
assert __parallel_ctx__clz__ is None, \
"ParallelContext can only be initialized once."
__parallel_ctx__clz__ = nccl_parallel_context
def _init_parallel_ctx():
global __parallel_ctx__clz__
assert __parallel_ctx__clz__ is not None, \
"ParallelContext should be initialized."
__parallel_ctx__clz__.init()
def _broadcast_parameters(parameters):
for param in parameters:
if param.trainable:
collective._broadcast(param, 0, sync_mode=True)
......@@ -46,3 +46,14 @@ def _allreduce(x, out=None, reduce_type="sum", sync_mode=False):
attrs={"reduce_type": red_typ_int,
"sync_mode": sync_mode})
return out
def _broadcast(x, root, sync_mode=False):
helper = LayerHelper("broadcast", **locals())
helper.append_op(
type='broadcast',
inputs={'X': [x]},
outputs={'Out': [x]},
attrs={"sync_mode": sync_mode,
"root": root})
return x
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册