Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b5e67fce
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b5e67fce
编写于
9月 20, 2017
作者:
Y
Yan Chunwei
提交者:
GitHub
9月 20, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
RNNOp remove alias (#4274)
* remove alias
上级
686f3b88
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
44 addition
and
79 deletion
+44
-79
paddle/framework/scope.h
paddle/framework/scope.h
+2
-0
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+10
-13
paddle/operators/rnn/recurrent_op_utils.cc
paddle/operators/rnn/recurrent_op_utils.cc
+20
-41
paddle/operators/rnn/recurrent_op_utils.h
paddle/operators/rnn/recurrent_op_utils.h
+6
-15
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+6
-10
未找到文件。
paddle/framework/scope.h
浏览文件 @
b5e67fce
...
...
@@ -58,6 +58,8 @@ class Scope {
/// nullptr if cannot find.
Variable
*
FindVar
(
const
std
::
string
&
name
)
const
;
const
Scope
&
parent
()
const
{
return
*
parent_
;
}
/// Find the scope or an ancestor scope that contains the given variable.
const
Scope
*
FindScope
(
const
Variable
*
var
)
const
;
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
b5e67fce
...
...
@@ -29,9 +29,11 @@ using Tensor = framework::Tensor;
using
LoDTensor
=
framework
::
LoDTensor
;
void
RecurrentAlgorithm
::
InferShape
(
const
Scope
&
scope
)
const
{
seq_len_
=
scope
.
FindVar
((
arg_
->
inlinks
[
0
]).
external
)
->
GetMutable
<
LoDTensor
>
()
->
dims
()[
0
];
auto
*
input0
=
scope
.
FindVar
(
arg_
->
inlinks
[
0
]);
PADDLE_ENFORCE_NOT_NULL
(
input0
);
seq_len_
=
input0
->
GetMutable
<
LoDTensor
>
()
->
dims
()[
0
];
PADDLE_ENFORCE_GT
(
seq_len_
,
0
);
CreateScopes
(
scope
);
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
...
...
@@ -123,14 +125,12 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope,
}
const
rnn
::
ArgumentName
RecurrentOp
::
kArgName
{
"step_net"
,
"step_scopes"
,
"inlinks"
,
"outlinks"
,
"inlink_alias"
,
"outlink_alias"
,
"step_net"
,
"step_scopes"
,
"inlinks"
,
"outlinks"
,
"memories"
,
"pre_memories"
,
"boot_memories"
};
const
rnn
::
ArgumentName
RecurrentGradientOp
::
kArgName
{
"step_net"
,
"step_scopes"
,
"outlink@grad"
,
"inlink@grad"
,
"inlink_alias"
,
"outlink_alias"
,
"memories"
,
"pre_memories"
,
"boot_memories@grad"
};
"step_net"
,
"step_scopes"
,
"outlink@grad"
,
"inlink@grad"
,
"memories"
,
"pre_memories"
,
"boot_memories@grad"
};
RecurrentOp
::
RecurrentOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
...
...
@@ -160,8 +160,6 @@ class RecurrentAlgorithmProtoAndCheckerMaker
AddOutput
(
name
.
step_scopes
,
"step scopes"
);
// Attributes stored in AttributeMap
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
inlink_alias
,
"alias of inlinks"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
outlink_alias
,
"alias of outlinks"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memories
,
"names of pre-memories"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
memories
,
"names of memories"
);
...
...
@@ -206,9 +204,8 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
}
void
RecurrentGradientAlgorithm
::
InferShape
(
const
Scope
&
scope
)
const
{
seq_len_
=
scope
.
FindVar
((
arg_
->
inlinks
[
0
]).
external
)
->
GetMutable
<
LoDTensor
>
()
->
dims
()[
0
];
seq_len_
=
scope
.
FindVar
(
arg_
->
inlinks
[
0
])
->
GetMutable
<
LoDTensor
>
()
->
dims
()[
0
];
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
...
...
paddle/operators/rnn/recurrent_op_utils.cc
浏览文件 @
b5e67fce
...
...
@@ -24,22 +24,23 @@ using Tensor = framework::Tensor;
using
LoDTensor
=
framework
::
LoDTensor
;
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
const
std
::
vector
<
std
::
string
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
PADDLE_ENFORCE
(
!
inlinks
.
empty
(),
"no in links are provided."
);
for
(
size_t
i
=
0
;
i
<
inlinks
.
size
();
++
i
)
{
auto
input_var
=
step_scopes
[
0
]
->
FindVar
(
inlinks
[
i
].
external
);
PADDLE_ENFORCE
(
input_var
!=
nullptr
,
"input link [%s] is not in scope."
,
inlinks
[
i
].
external
);
// global inputs
auto
input_var
=
step_scopes
[
0
]
->
parent
().
FindVar
(
inlinks
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
input_var
,
"input link [%s] is not in scope."
,
inlinks
[
i
]);
LoDTensor
*
input
=
input_var
->
GetMutable
<
LoDTensor
>
();
f
::
DDim
dims
=
input
->
dims
();
PADDLE_ENFORCE
(
static_cast
<
size_t
>
(
dims
[
0
])
==
seq_len
,
"all the inlinks must hav
e same length"
);
PADDLE_ENFORCE
_EQ
(
static_cast
<
size_t
>
(
dims
[
0
]),
seq_len
,
"all the inlinks be th
e same length"
);
f
::
DDim
step_dims
=
slice_ddim
(
dims
,
1
,
dims
.
size
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_input
=
step_scopes
[
j
]
->
NewVar
(
inlinks
[
i
]
.
internal
)
->
GetMutable
<
Tensor
>
();
step_scopes
[
j
]
->
NewVar
(
inlinks
[
i
])
->
GetMutable
<
Tensor
>
();
if
(
!
infer_shape_mode
)
{
// The input of operators of each step is Tensor here.
// Maybe need to modify Slice function.
...
...
@@ -51,18 +52,17 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
}
void
ConcatOutputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
const
std
::
vector
<
std
::
string
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
auto
output_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
external
);
PADDLE_ENFORCE
(
output_var
!=
nullpt
r
,
"output link [%s] is not in scope."
,
outlinks
[
i
].
external
);
auto
output_var
=
step_scopes
[
0
]
->
parent
().
FindVar
(
outlinks
[
i
]
);
PADDLE_ENFORCE
_NOT_NULL
(
output_va
r
,
"output link [%s] is not in scope."
,
outlinks
[
i
]
);
LoDTensor
*
output
=
output_var
->
GetMutable
<
LoDTensor
>
();
if
(
infer_shape_mode
)
{
auto
step_scope_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
internal
);
PADDLE_ENFORCE
(
step_scope_var
!=
nullptr
,
"%s not in scope"
,
outlinks
[
i
].
internal
);
auto
step_scope_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
step_scope_var
,
"%s not in scope"
,
outlinks
[
i
]);
f
::
DDim
step_dims
=
step_scope_var
->
template
GetMutable
<
LoDTensor
>()
->
dims
();
std
::
vector
<
int64_t
>
dims_vec
=
vectorize
(
step_dims
);
...
...
@@ -71,9 +71,8 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
}
else
{
output
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
LoDTensor
*
step_output
=
step_scopes
[
j
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
LoDTensor
>
();
LoDTensor
*
step_output
=
step_scopes
[
j
]
->
FindVar
(
outlinks
[
i
])
->
GetMutable
<
LoDTensor
>
();
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(
output
->
Slice
<
float
>
(
j
,
j
+
1
))
...
...
@@ -113,29 +112,9 @@ void InitArgument(const ArgumentName& name, Argument* arg,
const
framework
::
OperatorBase
&
op
)
{
arg
->
step_scopes
=
op
.
Output
(
name
.
step_scopes
);
auto
inlinks
=
op
.
Inputs
(
name
.
inlinks
);
auto
inlink_alias
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
inlink_alias
);
PADDLE_ENFORCE
(
inlinks
.
size
()
==
inlink_alias
.
size
(),
"the size of inlinks and inlink_alias don't match:%d,%d"
,
inlinks
.
size
(),
inlink_alias
.
size
());
for
(
size_t
i
=
0
;
i
<
inlinks
.
size
();
++
i
)
{
rnn
::
Link
link
;
link
.
external
=
inlinks
[
i
];
link
.
internal
=
inlink_alias
[
i
];
(
arg
->
inlinks
).
push_back
(
link
);
}
arg
->
inlinks
=
op
.
Inputs
(
name
.
inlinks
);
auto
outlinks
=
op
.
Outputs
(
name
.
outlinks
);
auto
outlink_alias
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
outlink_alias
);
PADDLE_ENFORCE
(
outlinks
.
size
()
==
outlink_alias
.
size
(),
"the size of outlinks and outlink_alias don't match:%d,%d"
,
outlinks
.
size
(),
outlink_alias
.
size
());
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
++
i
)
{
rnn
::
Link
link
;
link
.
external
=
outlinks
[
i
];
link
.
internal
=
outlink_alias
[
i
];
(
arg
->
outlinks
).
push_back
(
link
);
}
arg
->
outlinks
=
op
.
Outputs
(
name
.
outlinks
);
auto
boot_memories
=
op
.
Inputs
(
name
.
boot_memories
);
...
...
paddle/operators/rnn/recurrent_op_utils.h
浏览文件 @
b5e67fce
...
...
@@ -41,18 +41,11 @@ struct MemoryAttr {
std
::
string
boot_var
;
};
struct
Link
{
// input or output links name.
std
::
string
internal
;
// alias to avoid duplicate keys in scopes.
std
::
string
external
;
};
struct
Argument
{
std
::
string
step_net
;
std
::
string
step_scopes
;
std
::
vector
<
Link
>
inlinks
;
std
::
vector
<
Link
>
outlinks
;
std
::
vector
<
std
::
string
>
inlinks
;
std
::
vector
<
std
::
string
>
outlinks
;
std
::
vector
<
rnn
::
MemoryAttr
>
memories
;
};
...
...
@@ -61,8 +54,6 @@ struct ArgumentName {
std
::
string
step_scopes
;
std
::
string
inlinks
;
std
::
string
outlinks
;
std
::
string
inlink_alias
;
// the alias of inlinks in step net.
std
::
string
outlink_alias
;
// the alias of outlinks in step net.
std
::
string
memories
;
// the memory name
std
::
string
pre_memories
;
// the previous memory name
std
::
string
boot_memories
;
// the boot memory name
...
...
@@ -72,15 +63,15 @@ struct ArgumentName {
* Prepare inputs for each step net.
*/
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
const
std
::
vector
<
std
::
string
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
/**
* Process outputs of step nets and merge to variables.
*/
void
ConcatOutputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
const
std
::
vector
<
std
::
string
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
MemoryAttr
>&
memories
,
const
size_t
step_id
,
...
...
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
b5e67fce
...
...
@@ -59,7 +59,6 @@ class PySimpleRNNTest(unittest.TestCase):
def
test_forward
(
self
):
output
=
self
.
rnn
.
forward
()
print
'output'
,
output
def
create_tensor
(
scope
,
name
,
shape
,
np_data
):
...
...
@@ -103,7 +102,7 @@ class TestRecurrentOp(unittest.TestCase):
ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
self
.
rnnop
.
infer_shape
(
self
.
scope
)
self
.
rnnop
.
run
(
self
.
scope
,
ctx
)
return
np
.
array
(
self
.
scope
.
find_var
(
"h"
).
get_tensor
())
return
np
.
array
(
self
.
scope
.
find_var
(
"h
@mem
"
).
get_tensor
())
def
create_global_variables
(
self
):
# create inlink
...
...
@@ -123,8 +122,7 @@ class TestRecurrentOp(unittest.TestCase):
create_tensor
(
self
.
scope
,
"h_boot"
,
[
self
.
batch_size
,
self
.
input_dim
],
h_boot_np_data
)
self
.
scope
.
new_var
(
"step_scopes"
)
self
.
scope
.
new_var
(
"h@alias"
)
self
.
scope
.
new_var
(
"h"
)
self
.
scope
.
new_var
(
"h@mem"
)
def
create_rnn_op
(
self
):
# create RNNOp
...
...
@@ -134,20 +132,18 @@ class TestRecurrentOp(unittest.TestCase):
boot_memories
=
[
"h_boot"
],
step_net
=
"stepnet"
,
# outputs
outlinks
=
[
"h"
],
outlinks
=
[
"h
@mem
"
],
step_scopes
=
"step_scopes"
,
# attributes
inlink_alias
=
[
"x@alias"
],
outlink_alias
=
[
"h@alias"
],
pre_memories
=
[
"h@pre"
],
memories
=
[
"h@
alias
"
])
memories
=
[
"h@
mem
"
])
def
create_step_net
(
self
):
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x
@alias
"
,
Y
=
"W"
,
Out
=
"Wx"
)
x_fc_op
=
Operator
(
"mul"
,
X
=
"x"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"add"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@
alias
"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@
mem
"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
append_op
(
op
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录