Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b530cd12
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b530cd12
编写于
6月 09, 2022
作者:
F
Feng Ni
提交者:
GitHub
6月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove collect_fpn_proposals and bipartite_match (#6156)
上级
fdda2ecc
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
0 addition
and
365 deletion
+0
-365
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+0
-219
ppdet/modeling/tests/test_ops.py
ppdet/modeling/tests/test_ops.py
+0
-146
未找到文件。
ppdet/modeling/ops.py
浏览文件 @
b530cd12
...
@@ -34,7 +34,6 @@ __all__ = [
...
@@ -34,7 +34,6 @@ __all__ = [
'yolo_box'
,
'yolo_box'
,
'multiclass_nms'
,
'multiclass_nms'
,
'distribute_fpn_proposals'
,
'distribute_fpn_proposals'
,
'collect_fpn_proposals'
,
'matrix_nms'
,
'matrix_nms'
,
'batch_norm'
,
'batch_norm'
,
'mish'
,
'mish'
,
...
@@ -395,119 +394,6 @@ def iou_similarity(x, y, box_normalized=True, name=None):
...
@@ -395,119 +394,6 @@ def iou_similarity(x, y, box_normalized=True, name=None):
return
out
return
out
@
paddle
.
jit
.
not_to_static
def
collect_fpn_proposals
(
multi_rois
,
multi_scores
,
min_level
,
max_level
,
post_nms_top_n
,
rois_num_per_level
=
None
,
name
=
None
):
"""
**This OP only supports LoDTensor as input**. Concat multi-level RoIs
(Region of Interest) and select N RoIs with respect to multi_scores.
This operation performs the following steps:
1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
2. Concat multi-level RoIs and scores
3. Sort scores and select post_nms_top_n scores
4. Gather RoIs by selected indices from scores
5. Re-sort RoIs by corresponding batch_id
Args:
multi_rois(list): List of RoIs to collect. Element in list is 2-D
LoDTensor with shape [N, 4] and data type is float32 or float64,
N is the number of RoIs.
multi_scores(list): List of scores of RoIs to collect. Element in list
is 2-D LoDTensor with shape [N, 1] and data type is float32 or
float64, N is the number of RoIs.
min_level(int): The lowest level of FPN layer to collect
max_level(int): The highest level of FPN layer to collect
post_nms_top_n(int): The number of selected RoIs
rois_num_per_level(list, optional): The List of RoIs' numbers.
Each element is 1-D Tensor which contains the RoIs' number of each
image on each level and the shape is [B] and data type is
int32, B is the number of images. If it is not None then return
a 1-D Tensor contains the output RoIs' number of each image and
the shape is [B]. Default: None
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
Variable:
fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is
float32 or float64. Selected RoIs.
rois_num(Tensor): 1-D Tensor contains the RoIs's number of each
image. The shape is [B] and data type is int32. B is the number of
images.
Examples:
.. code-block:: python
import paddle
from ppdet.modeling import ops
paddle.enable_static()
multi_rois = []
multi_scores = []
for i in range(4):
multi_rois.append(paddle.static.data(
name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
for i in range(4):
multi_scores.append(paddle.static.data(
name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
fpn_rois = ops.collect_fpn_proposals(
multi_rois=multi_rois,
multi_scores=multi_scores,
min_level=2,
max_level=5,
post_nms_top_n=2000)
"""
check_type
(
multi_rois
,
'multi_rois'
,
list
,
'collect_fpn_proposals'
)
check_type
(
multi_scores
,
'multi_scores'
,
list
,
'collect_fpn_proposals'
)
num_lvl
=
max_level
-
min_level
+
1
input_rois
=
multi_rois
[:
num_lvl
]
input_scores
=
multi_scores
[:
num_lvl
]
if
in_dygraph_mode
():
assert
rois_num_per_level
is
not
None
,
"rois_num_per_level should not be None in dygraph mode."
attrs
=
(
'post_nms_topN'
,
post_nms_top_n
)
output_rois
,
rois_num
=
core
.
ops
.
collect_fpn_proposals
(
input_rois
,
input_scores
,
rois_num_per_level
,
*
attrs
)
return
output_rois
,
rois_num
else
:
helper
=
LayerHelper
(
'collect_fpn_proposals'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
'multi_rois'
)
check_dtype
(
dtype
,
'multi_rois'
,
[
'float32'
,
'float64'
],
'collect_fpn_proposals'
)
output_rois
=
helper
.
create_variable_for_type_inference
(
dtype
)
output_rois
.
stop_gradient
=
True
inputs
=
{
'MultiLevelRois'
:
input_rois
,
'MultiLevelScores'
:
input_scores
,
}
outputs
=
{
'FpnRois'
:
output_rois
}
if
rois_num_per_level
is
not
None
:
inputs
[
'MultiLevelRoIsNum'
]
=
rois_num_per_level
rois_num
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
rois_num
.
stop_gradient
=
True
outputs
[
'RoisNum'
]
=
rois_num
else
:
rois_num
=
None
helper
.
append_op
(
type
=
'collect_fpn_proposals'
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
{
'post_nms_topN'
:
post_nms_top_n
})
return
output_rois
,
rois_num
@
paddle
.
jit
.
not_to_static
@
paddle
.
jit
.
not_to_static
def
distribute_fpn_proposals
(
fpn_rois
,
def
distribute_fpn_proposals
(
fpn_rois
,
min_level
,
min_level
,
...
@@ -1207,111 +1093,6 @@ def matrix_nms(bboxes,
...
@@ -1207,111 +1093,6 @@ def matrix_nms(bboxes,
return
output
,
rois_num
,
index
return
output
,
rois_num
,
index
def
bipartite_match
(
dist_matrix
,
match_type
=
None
,
dist_threshold
=
None
,
name
=
None
):
"""
This operator implements a greedy bipartite matching algorithm, which is
used to obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row (matched means the largest distance),
also can find the matched row for each column. And this operator only
calculate matched indices from column to row. For each instance,
the number of matched indices is the column number of the input distance
matrix. **The OP only supports CPU**.
There are two outputs, matched indices and distance.
A simple description, this algorithm matched the best (maximum distance)
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.
NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.
NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
layer. Please consider to use :code:`ssd_loss` instead.
Args:
dist_matrix(Tensor): This input is a 2-D LoDTensor with shape
[K, M]. The data type is float32 or float64. It is pair-wise
distance matrix between the entities represented by each row and
each column. For example, assumed one entity is A with shape [K],
another entity is B with shape [M]. The dist_matrix[i][j] is the
distance between A[i] and B[j]. The bigger the distance is, the
better matching the pairs are. NOTE: This tensor can contain LoD
information to represent a batch of inputs. One instance of this
batch can contain different numbers of entities.
match_type(str, optional): The type of matching method, should be
'bipartite' or 'per_prediction'. None ('bipartite') by default.
dist_threshold(float32, optional): If `match_type` is 'per_prediction',
this threshold is to determine the extra matching bboxes based
on the maximum distance, 0.5 by default.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
Tuple:
matched_indices(Tensor): A 2-D Tensor with shape [N, M]. The data
type is int32. N is the batch size. If match_indices[i][j] is -1, it
means B[j] does not match any entity in i-th instance.
Otherwise, it means B[j] is matched to row
match_indices[i][j] in i-th instance. The row number of
i-th instance is saved in match_indices[i][j].
matched_distance(Tensor): A 2-D Tensor with shape [N, M]. The data
type is float32. N is batch size. If match_indices[i][j] is -1,
match_distance[i][j] is also -1.0. Otherwise, assumed
match_distance[i][j] = d, and the row offsets of each instance
are called LoD. Then match_distance[i][j] =
dist_matrix[d+LoD[i]][j].
Examples:
.. code-block:: python
import paddle
from ppdet.modeling import ops
from ppdet.modeling.utils import iou_similarity
paddle.enable_static()
x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
iou = iou_similarity(x=x, y=y)
matched_indices, matched_dist = ops.bipartite_match(iou)
"""
check_variable_and_dtype
(
dist_matrix
,
'dist_matrix'
,
[
'float32'
,
'float64'
],
'bipartite_match'
)
if
in_dygraph_mode
():
match_indices
,
match_distance
=
core
.
ops
.
bipartite_match
(
dist_matrix
,
"match_type"
,
match_type
,
"dist_threshold"
,
dist_threshold
)
return
match_indices
,
match_distance
helper
=
LayerHelper
(
'bipartite_match'
,
**
locals
())
match_indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
match_distance
=
helper
.
create_variable_for_type_inference
(
dtype
=
dist_matrix
.
dtype
)
helper
.
append_op
(
type
=
'bipartite_match'
,
inputs
=
{
'DistMat'
:
dist_matrix
},
attrs
=
{
'match_type'
:
match_type
,
'dist_threshold'
:
dist_threshold
,
},
outputs
=
{
'ColToRowMatchIndices'
:
match_indices
,
'ColToRowMatchDist'
:
match_distance
})
return
match_indices
,
match_distance
@
paddle
.
jit
.
not_to_static
@
paddle
.
jit
.
not_to_static
def
box_coder
(
prior_box
,
def
box_coder
(
prior_box
,
prior_box_var
,
prior_box_var
,
...
...
ppdet/modeling/tests/test_ops.py
浏览文件 @
b530cd12
...
@@ -50,127 +50,6 @@ def softmax(x):
...
@@ -50,127 +50,6 @@ def softmax(x):
return
exps
/
np
.
sum
(
exps
)
return
exps
/
np
.
sum
(
exps
)
class
TestCollectFpnProposals
(
LayerTest
):
def
test_collect_fpn_proposals
(
self
):
multi_bboxes_np
=
[]
multi_scores_np
=
[]
rois_num_per_level_np
=
[]
for
i
in
range
(
4
):
bboxes_np
=
np
.
random
.
rand
(
5
,
4
).
astype
(
'float32'
)
scores_np
=
np
.
random
.
rand
(
5
,
1
).
astype
(
'float32'
)
rois_num
=
np
.
array
([
2
,
3
]).
astype
(
'int32'
)
multi_bboxes_np
.
append
(
bboxes_np
)
multi_scores_np
.
append
(
scores_np
)
rois_num_per_level_np
.
append
(
rois_num
)
with
self
.
static_graph
():
multi_bboxes
=
[]
multi_scores
=
[]
rois_num_per_level
=
[]
for
i
in
range
(
4
):
bboxes
=
paddle
.
static
.
data
(
name
=
'rois'
+
str
(
i
),
shape
=
[
5
,
4
],
dtype
=
'float32'
,
lod_level
=
1
)
scores
=
paddle
.
static
.
data
(
name
=
'scores'
+
str
(
i
),
shape
=
[
5
,
1
],
dtype
=
'float32'
,
lod_level
=
1
)
rois_num
=
paddle
.
static
.
data
(
name
=
'rois_num'
+
str
(
i
),
shape
=
[
None
],
dtype
=
'int32'
)
multi_bboxes
.
append
(
bboxes
)
multi_scores
.
append
(
scores
)
rois_num_per_level
.
append
(
rois_num
)
fpn_rois
,
rois_num
=
ops
.
collect_fpn_proposals
(
multi_bboxes
,
multi_scores
,
2
,
5
,
10
,
rois_num_per_level
=
rois_num_per_level
)
feed
=
{}
for
i
in
range
(
4
):
feed
[
'rois'
+
str
(
i
)]
=
multi_bboxes_np
[
i
]
feed
[
'scores'
+
str
(
i
)]
=
multi_scores_np
[
i
]
feed
[
'rois_num'
+
str
(
i
)]
=
rois_num_per_level_np
[
i
]
fpn_rois_stat
,
rois_num_stat
=
self
.
get_static_graph_result
(
feed
=
feed
,
fetch_list
=
[
fpn_rois
,
rois_num
],
with_lod
=
True
)
fpn_rois_stat
=
np
.
array
(
fpn_rois_stat
)
rois_num_stat
=
np
.
array
(
rois_num_stat
)
with
self
.
dynamic_graph
():
multi_bboxes_dy
=
[]
multi_scores_dy
=
[]
rois_num_per_level_dy
=
[]
for
i
in
range
(
4
):
bboxes_dy
=
base
.
to_variable
(
multi_bboxes_np
[
i
])
scores_dy
=
base
.
to_variable
(
multi_scores_np
[
i
])
rois_num_dy
=
base
.
to_variable
(
rois_num_per_level_np
[
i
])
multi_bboxes_dy
.
append
(
bboxes_dy
)
multi_scores_dy
.
append
(
scores_dy
)
rois_num_per_level_dy
.
append
(
rois_num_dy
)
fpn_rois_dy
,
rois_num_dy
=
ops
.
collect_fpn_proposals
(
multi_bboxes_dy
,
multi_scores_dy
,
2
,
5
,
10
,
rois_num_per_level
=
rois_num_per_level_dy
)
fpn_rois_dy
=
fpn_rois_dy
.
numpy
()
rois_num_dy
=
rois_num_dy
.
numpy
()
self
.
assertTrue
(
np
.
array_equal
(
fpn_rois_stat
,
fpn_rois_dy
))
self
.
assertTrue
(
np
.
array_equal
(
rois_num_stat
,
rois_num_dy
))
def
test_collect_fpn_proposals_error
(
self
):
def
generate_input
(
bbox_type
,
score_type
,
name
):
multi_bboxes
=
[]
multi_scores
=
[]
for
i
in
range
(
4
):
bboxes
=
paddle
.
static
.
data
(
name
=
'rois'
+
name
+
str
(
i
),
shape
=
[
10
,
4
],
dtype
=
bbox_type
,
lod_level
=
1
)
scores
=
paddle
.
static
.
data
(
name
=
'scores'
+
name
+
str
(
i
),
shape
=
[
10
,
1
],
dtype
=
score_type
,
lod_level
=
1
)
multi_bboxes
.
append
(
bboxes
)
multi_scores
.
append
(
scores
)
return
multi_bboxes
,
multi_scores
with
self
.
static_graph
():
bbox1
=
paddle
.
static
.
data
(
name
=
'rois'
,
shape
=
[
5
,
10
,
4
],
dtype
=
'float32'
,
lod_level
=
1
)
score1
=
paddle
.
static
.
data
(
name
=
'scores'
,
shape
=
[
5
,
10
,
1
],
dtype
=
'float32'
,
lod_level
=
1
)
bbox2
,
score2
=
generate_input
(
'int32'
,
'float32'
,
'2'
)
self
.
assertRaises
(
TypeError
,
ops
.
collect_fpn_proposals
,
multi_rois
=
bbox1
,
multi_scores
=
score1
,
min_level
=
2
,
max_level
=
5
,
post_nms_top_n
=
2000
)
self
.
assertRaises
(
TypeError
,
ops
.
collect_fpn_proposals
,
multi_rois
=
bbox2
,
multi_scores
=
score2
,
min_level
=
2
,
max_level
=
5
,
post_nms_top_n
=
2000
)
paddle
.
disable_static
()
class
TestDistributeFpnProposals
(
LayerTest
):
class
TestDistributeFpnProposals
(
LayerTest
):
def
test_distribute_fpn_proposals
(
self
):
def
test_distribute_fpn_proposals
(
self
):
rois_np
=
np
.
random
.
rand
(
10
,
4
).
astype
(
'float32'
)
rois_np
=
np
.
random
.
rand
(
10
,
4
).
astype
(
'float32'
)
...
@@ -383,31 +262,6 @@ class TestIoUSimilarity(LayerTest):
...
@@ -383,31 +262,6 @@ class TestIoUSimilarity(LayerTest):
self
.
assertTrue
(
np
.
array_equal
(
iou_np
,
iou_dy_np
))
self
.
assertTrue
(
np
.
array_equal
(
iou_np
,
iou_dy_np
))
class
TestBipartiteMatch
(
LayerTest
):
def
test_bipartite_match
(
self
):
distance
=
np
.
random
.
random
((
20
,
10
)).
astype
(
'float32'
)
with
self
.
static_graph
():
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
20
,
10
],
dtype
=
'float32'
)
match_indices
,
match_dist
=
ops
.
bipartite_match
(
x
,
match_type
=
'per_prediction'
,
dist_threshold
=
0.5
)
match_indices_np
,
match_dist_np
=
self
.
get_static_graph_result
(
feed
=
{
'x'
:
distance
,
},
fetch_list
=
[
match_indices
,
match_dist
],
with_lod
=
False
)
with
self
.
dynamic_graph
():
x_dy
=
base
.
to_variable
(
distance
)
match_indices_dy
,
match_dist_dy
=
ops
.
bipartite_match
(
x_dy
,
match_type
=
'per_prediction'
,
dist_threshold
=
0.5
)
match_indices_dy_np
=
match_indices_dy
.
numpy
()
match_dist_dy_np
=
match_dist_dy
.
numpy
()
self
.
assertTrue
(
np
.
array_equal
(
match_indices_np
,
match_indices_dy_np
))
self
.
assertTrue
(
np
.
array_equal
(
match_dist_np
,
match_dist_dy_np
))
class
TestYoloBox
(
LayerTest
):
class
TestYoloBox
(
LayerTest
):
def
test_yolo_box
(
self
):
def
test_yolo_box
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录