Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b41f8b9d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b41f8b9d
编写于
7月 23, 2018
作者:
Q
Qiao Longfei
提交者:
GitHub
7月 23, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12295 from jacquesqiao/speedup-reduce-sum-grad-op
Speedup reduce sum grad op
上级
eec412b2
273f7375
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
137 addition
and
32 deletion
+137
-32
paddle/fluid/operators/reduce_sum_op.cc
paddle/fluid/operators/reduce_sum_op.cc
+10
-9
paddle/fluid/operators/reduce_sum_op.h
paddle/fluid/operators/reduce_sum_op.h
+59
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+2
-2
python/paddle/fluid/tests/unittests/test_reduce_op.py
python/paddle/fluid/tests/unittests/test_reduce_op.py
+66
-20
未找到文件。
paddle/fluid/operators/reduce_sum_op.cc
浏览文件 @
b41f8b9d
...
...
@@ -23,12 +23,13 @@ REGISTER_OP_CPU_KERNEL(
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
,
ops
::
SumFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
,
ops
::
SumFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
ops
::
SumGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
SumGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
,
ops
::
SumGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
,
ops
::
SumGradFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceSumGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
ops
::
SumGradFunctor
>
,
ops
::
ReduceSumGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
SumGradFunctor
>
,
ops
::
ReduceSumGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
,
ops
::
SumGradFunctor
>
,
ops
::
ReduceSumGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
,
ops
::
SumGradFunctor
>
);
paddle/fluid/operators/reduce_sum_op.h
浏览文件 @
b41f8b9d
...
...
@@ -14,11 +14,69 @@
#pragma once
#include <vector>
#include "paddle/fluid/operators/reduce_op.h"
namespace
paddle
{
namespace
operators
{
// use for loop to speed up Eigen broadcast. 4 timer faster then broadcast
template
<
typename
DeviceContext
,
typename
T
,
typename
Functor
>
class
ReduceSumGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
if
(
context
.
GetPlace
().
type
()
==
typeid
(
platform
::
CPUPlace
)
&&
dims
.
size
()
==
1
)
{
auto
*
input0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
auto
*
input2_d
=
input2
->
data
<
T
>
();
auto
*
output_d
=
output
->
data
<
T
>
();
// handle reduce_all
if
(
input2
->
dims
().
size
()
==
1
&&
input2
->
dims
()[
0
]
==
1
)
{
for
(
int64_t
i
=
0
;
i
<
framework
::
product
(
input0
->
dims
());
++
i
)
{
output_d
[
i
]
=
input2_d
[
0
];
}
return
;
}
// handle reduce by one dimension
int
reduce_dim_index
=
dims
[
0
];
if
(
reduce_dim_index
<
0
)
{
reduce_dim_index
+=
input0
->
dims
().
size
();
}
auto
&
input_dim
=
input0
->
dims
();
int64_t
before_dim
=
1
;
for
(
int
i
=
0
;
i
<
reduce_dim_index
;
++
i
)
{
before_dim
*=
input_dim
[
i
];
}
int64_t
reduce_dim
=
input_dim
[
reduce_dim_index
];
int64_t
after_dim
=
1
;
for
(
int
i
=
reduce_dim_index
+
1
;
i
<
input_dim
.
size
();
++
i
)
{
after_dim
*=
input_dim
[
i
];
}
for
(
int64_t
i
=
0
;
i
<
before_dim
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
reduce_dim
;
++
j
)
{
for
(
int64_t
k
=
0
;
k
<
after_dim
;
++
k
)
{
output_d
[
i
*
reduce_dim
*
after_dim
+
j
*
after_dim
+
k
]
=
input2_d
[
i
*
after_dim
+
k
];
}
}
}
return
;
}
// default use Eigen broadcast
ReduceGradKernel
<
DeviceContext
,
T
,
Functor
>
kernel
;
kernel
.
Compute
(
context
);
}
};
struct
SumFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
const
Dim
&
dim
)
{
...
...
@@ -31,7 +89,7 @@ struct SumGradFunctor {
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
);
dx
->
device
(
place
)
=
dy
->
eval
().
broadcast
(
dim
);
}
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b41f8b9d
...
...
@@ -2961,7 +2961,7 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None):
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresp
e
nding output tensor.
# Each example is followed by the corresp
o
nding output tensor.
fluid.layers.reduce_sum(x) # [3.5]
fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6]
fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6]
...
...
@@ -2970,7 +2970,7 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None):
# x is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1, 2], [3, 4]],
# [[5, 6], [7, 8]]]
# Each example is followed by the corresp
e
nding output tensor.
# Each example is followed by the corresp
o
nding output tensor.
fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]
...
...
python/paddle/fluid/tests/unittests/test_reduce_op.py
浏览文件 @
b41f8b9d
...
...
@@ -89,15 +89,11 @@ class TestProdOp(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
class
Test
KeepDim
Reduce
(
OpTest
):
class
Test
1D
Reduce
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'dim'
:
[
-
2
],
'keep_dim'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
True
)
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
20
).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -106,32 +102,82 @@ class TestKeepDimReduce(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
class
Test
1DReduce
(
OpTest
):
class
Test
2DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
20
).
astype
(
"float64"
)}
self
.
attrs
=
{
'dim'
:
[
0
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
Test2DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
TestReduceAll
(
OpTest
):
class
Test3DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
2
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce2
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
-
2
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce3
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
,
2
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
TestKeepDimReduce
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'dim'
:
[
1
],
'keep_dim'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
class
TestReduceAll
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
2
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'reduce_all'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
()}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
## reduction in multi dims
class
TestReduceMeanOpMultiAxises
(
OpTest
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录