Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b40f00cb
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b40f00cb
编写于
7月 08, 2021
作者:
S
shangliang Xu
提交者:
GitHub
7月 08, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix deprecated api in ssd loss (#3592)
上级
befec463
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
32 addition
and
25 deletion
+32
-25
ppdet/modeling/losses/ssd_loss.py
ppdet/modeling/losses/ssd_loss.py
+32
-25
未找到文件。
ppdet/modeling/losses/ssd_loss.py
浏览文件 @
b40f00cb
...
...
@@ -67,18 +67,15 @@ class SSDLoss(nn.Layer):
ious
=
iou_similarity
(
gt_bbox
.
reshape
((
-
1
,
4
)),
prior_boxes
).
reshape
(
(
batch_size
,
-
1
,
num_priors
))
# Calculate the number of object per sample.
num_object
=
(
ious
.
sum
(
axis
=-
1
)
>
0
).
astype
(
'int64'
).
sum
(
axis
=-
1
)
# For each prior box, get the max IoU of all GTs.
prior_max_iou
,
prior_argmax_iou
=
ious
.
max
(
axis
=
1
),
ious
.
argmax
(
axis
=
1
)
# For each GT, get the max IoU of all prior boxes.
gt_max_iou
,
gt_argmax_iou
=
ious
.
max
(
axis
=
2
),
ious
.
argmax
(
axis
=
2
)
# Gather target bbox and label according to 'prior_argmax_iou' index.
batch_ind
=
paddle
.
arange
(
0
,
batch_size
,
dtype
=
'int64'
).
unsqueeze
(
-
1
).
tile
([
1
,
num_priors
])
prior_argmax_iou
=
paddle
.
stack
([
batch_ind
,
prior_argmax_iou
],
axis
=-
1
)
batch_ind
=
paddle
.
arange
(
end
=
batch_size
,
dtype
=
'int64'
).
unsqueeze
(
-
1
)
prior_argmax_iou
=
paddle
.
stack
(
[
batch_ind
.
tile
([
1
,
num_priors
])
,
prior_argmax_iou
],
axis
=-
1
)
targets_bbox
=
paddle
.
gather_nd
(
gt_bbox
,
prior_argmax_iou
)
targets_label
=
paddle
.
gather_nd
(
gt_label
,
prior_argmax_iou
)
# Assign negative
...
...
@@ -89,14 +86,14 @@ class SSDLoss(nn.Layer):
bg_index_tensor
,
targets_label
)
# Ensure each GT can match the max IoU prior box.
for
i
in
range
(
batch_size
):
if
num_object
[
i
]
>
0
:
targets_bbox
[
i
]
=
paddle
.
scatter
(
targets_bbox
[
i
],
gt_argmax_iou
[
i
,
:
int
(
num_object
[
i
])],
gt_bbox
[
i
,
:
int
(
num_object
[
i
])])
targets_label
[
i
]
=
paddle
.
scatter
(
targets_label
[
i
],
gt_argmax_iou
[
i
,
:
int
(
num_object
[
i
])],
gt_label
[
i
,
:
int
(
num_object
[
i
])])
batch_ind
=
(
batch_ind
*
num_priors
+
gt_argmax_iou
).
flatten
()
targets_bbox
=
paddle
.
scatter
(
targets_bbox
.
reshape
([
-
1
,
4
]),
batch_ind
,
gt_bbox
.
reshape
([
-
1
,
4
])).
reshape
([
batch_size
,
-
1
,
4
])
targets_label
=
paddle
.
scatter
(
targets_label
.
reshape
([
-
1
,
1
]),
batch_ind
,
gt_label
.
reshape
([
-
1
,
1
])).
reshape
([
batch_size
,
-
1
,
1
])
targets_label
[:,
:
1
]
=
bg_index
# Encode box
prior_boxes
=
prior_boxes
.
unsqueeze
(
0
).
tile
([
batch_size
,
1
,
1
])
...
...
@@ -107,12 +104,16 @@ class SSDLoss(nn.Layer):
return
targets_bbox
,
targets_label
def
_mine_hard_example
(
self
,
conf_loss
,
targets_label
,
bg_index
):
def
_mine_hard_example
(
self
,
conf_loss
,
targets_label
,
bg_index
,
mine_neg_ratio
=
0.01
):
pos
=
(
targets_label
!=
bg_index
).
astype
(
conf_loss
.
dtype
)
num_pos
=
pos
.
sum
(
axis
=
1
,
keepdim
=
True
)
neg
=
(
targets_label
==
bg_index
).
astype
(
conf_loss
.
dtype
)
conf_loss
=
conf_loss
.
clone
()
*
neg
conf_loss
=
conf_loss
.
detach
()
*
neg
loss_idx
=
conf_loss
.
argsort
(
axis
=
1
,
descending
=
True
)
idx_rank
=
loss_idx
.
argsort
(
axis
=
1
)
num_negs
=
[]
...
...
@@ -120,9 +121,11 @@ class SSDLoss(nn.Layer):
cur_num_pos
=
num_pos
[
i
]
num_neg
=
paddle
.
clip
(
cur_num_pos
*
self
.
neg_pos_ratio
,
max
=
pos
.
shape
[
1
])
num_neg
=
num_neg
if
num_neg
>
0
else
paddle
.
to_tensor
(
[
pos
.
shape
[
1
]
*
mine_neg_ratio
])
num_negs
.
append
(
num_neg
)
num_neg
=
paddle
.
stack
(
num_negs
).
expand_as
(
idx_rank
)
neg_mask
=
(
idx_rank
<
num_neg
).
astype
(
conf_loss
.
dtype
)
num_neg
s
=
paddle
.
stack
(
num_negs
).
expand_as
(
idx_rank
)
neg_mask
=
(
idx_rank
<
num_neg
s
).
astype
(
conf_loss
.
dtype
)
return
(
neg_mask
+
pos
).
astype
(
'bool'
)
...
...
@@ -141,22 +144,26 @@ class SSDLoss(nn.Layer):
# Compute regression loss.
# Select positive samples.
bbox_mask
=
(
targets_label
!=
bg_index
).
astype
(
boxes
.
dtype
)
loc_loss
=
bbox_mask
*
F
.
smooth_l1_loss
(
boxes
,
targets_bbox
,
reduction
=
'none'
)
loc_loss
=
loc_loss
.
sum
()
*
self
.
loc_loss_weight
bbox_mask
=
paddle
.
tile
(
targets_label
!=
bg_index
,
[
1
,
1
,
4
])
if
bbox_mask
.
astype
(
boxes
.
dtype
).
sum
()
>
0
:
location
=
paddle
.
masked_select
(
boxes
,
bbox_mask
)
targets_bbox
=
paddle
.
masked_select
(
targets_bbox
,
bbox_mask
)
loc_loss
=
F
.
smooth_l1_loss
(
location
,
targets_bbox
,
reduction
=
'sum'
)
loc_loss
=
loc_loss
*
self
.
loc_loss_weight
else
:
loc_loss
=
paddle
.
zeros
([
1
])
# Compute confidence loss.
conf_loss
=
F
.
softmax_with_cross_entropy
(
scores
,
targets_label
)
conf_loss
=
F
.
cross_entropy
(
scores
,
targets_label
,
reduction
=
"none"
)
# Mining hard examples.
label_mask
=
self
.
_mine_hard_example
(
conf_loss
.
squeeze
(
-
1
),
targets_label
.
squeeze
(
-
1
),
bg_index
)
conf_loss
=
conf_loss
*
label_mask
.
unsqueeze
(
-
1
).
astype
(
conf_loss
.
dtype
)
conf_loss
=
paddle
.
masked_select
(
conf_loss
,
label_mask
.
unsqueeze
(
-
1
)
)
conf_loss
=
conf_loss
.
sum
()
*
self
.
conf_loss_weight
# Compute overall weighted loss.
normalizer
=
(
targets_label
!=
bg_index
).
astype
(
'float32'
).
sum
().
clip
(
min
=
1
)
loss
=
(
conf_loss
+
loc_loss
)
/
(
normalizer
+
1e-9
)
loss
=
(
conf_loss
+
loc_loss
)
/
normalizer
return
loss
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录