未验证 提交 b40f00cb 编写于 作者: S shangliang Xu 提交者: GitHub

fix deprecated api in ssd loss (#3592)

上级 befec463
......@@ -67,18 +67,15 @@ class SSDLoss(nn.Layer):
ious = iou_similarity(gt_bbox.reshape((-1, 4)), prior_boxes).reshape(
(batch_size, -1, num_priors))
# Calculate the number of object per sample.
num_object = (ious.sum(axis=-1) > 0).astype('int64').sum(axis=-1)
# For each prior box, get the max IoU of all GTs.
prior_max_iou, prior_argmax_iou = ious.max(axis=1), ious.argmax(axis=1)
# For each GT, get the max IoU of all prior boxes.
gt_max_iou, gt_argmax_iou = ious.max(axis=2), ious.argmax(axis=2)
# Gather target bbox and label according to 'prior_argmax_iou' index.
batch_ind = paddle.arange(
0, batch_size, dtype='int64').unsqueeze(-1).tile([1, num_priors])
prior_argmax_iou = paddle.stack([batch_ind, prior_argmax_iou], axis=-1)
batch_ind = paddle.arange(end=batch_size, dtype='int64').unsqueeze(-1)
prior_argmax_iou = paddle.stack(
[batch_ind.tile([1, num_priors]), prior_argmax_iou], axis=-1)
targets_bbox = paddle.gather_nd(gt_bbox, prior_argmax_iou)
targets_label = paddle.gather_nd(gt_label, prior_argmax_iou)
# Assign negative
......@@ -89,14 +86,14 @@ class SSDLoss(nn.Layer):
bg_index_tensor, targets_label)
# Ensure each GT can match the max IoU prior box.
for i in range(batch_size):
if num_object[i] > 0:
targets_bbox[i] = paddle.scatter(
targets_bbox[i], gt_argmax_iou[i, :int(num_object[i])],
gt_bbox[i, :int(num_object[i])])
targets_label[i] = paddle.scatter(
targets_label[i], gt_argmax_iou[i, :int(num_object[i])],
gt_label[i, :int(num_object[i])])
batch_ind = (batch_ind * num_priors + gt_argmax_iou).flatten()
targets_bbox = paddle.scatter(
targets_bbox.reshape([-1, 4]), batch_ind,
gt_bbox.reshape([-1, 4])).reshape([batch_size, -1, 4])
targets_label = paddle.scatter(
targets_label.reshape([-1, 1]), batch_ind,
gt_label.reshape([-1, 1])).reshape([batch_size, -1, 1])
targets_label[:, :1] = bg_index
# Encode box
prior_boxes = prior_boxes.unsqueeze(0).tile([batch_size, 1, 1])
......@@ -107,12 +104,16 @@ class SSDLoss(nn.Layer):
return targets_bbox, targets_label
def _mine_hard_example(self, conf_loss, targets_label, bg_index):
def _mine_hard_example(self,
conf_loss,
targets_label,
bg_index,
mine_neg_ratio=0.01):
pos = (targets_label != bg_index).astype(conf_loss.dtype)
num_pos = pos.sum(axis=1, keepdim=True)
neg = (targets_label == bg_index).astype(conf_loss.dtype)
conf_loss = conf_loss.clone() * neg
conf_loss = conf_loss.detach() * neg
loss_idx = conf_loss.argsort(axis=1, descending=True)
idx_rank = loss_idx.argsort(axis=1)
num_negs = []
......@@ -120,9 +121,11 @@ class SSDLoss(nn.Layer):
cur_num_pos = num_pos[i]
num_neg = paddle.clip(
cur_num_pos * self.neg_pos_ratio, max=pos.shape[1])
num_neg = num_neg if num_neg > 0 else paddle.to_tensor(
[pos.shape[1] * mine_neg_ratio])
num_negs.append(num_neg)
num_neg = paddle.stack(num_negs).expand_as(idx_rank)
neg_mask = (idx_rank < num_neg).astype(conf_loss.dtype)
num_negs = paddle.stack(num_negs).expand_as(idx_rank)
neg_mask = (idx_rank < num_negs).astype(conf_loss.dtype)
return (neg_mask + pos).astype('bool')
......@@ -141,22 +144,26 @@ class SSDLoss(nn.Layer):
# Compute regression loss.
# Select positive samples.
bbox_mask = (targets_label != bg_index).astype(boxes.dtype)
loc_loss = bbox_mask * F.smooth_l1_loss(
boxes, targets_bbox, reduction='none')
loc_loss = loc_loss.sum() * self.loc_loss_weight
bbox_mask = paddle.tile(targets_label != bg_index, [1, 1, 4])
if bbox_mask.astype(boxes.dtype).sum() > 0:
location = paddle.masked_select(boxes, bbox_mask)
targets_bbox = paddle.masked_select(targets_bbox, bbox_mask)
loc_loss = F.smooth_l1_loss(location, targets_bbox, reduction='sum')
loc_loss = loc_loss * self.loc_loss_weight
else:
loc_loss = paddle.zeros([1])
# Compute confidence loss.
conf_loss = F.softmax_with_cross_entropy(scores, targets_label)
conf_loss = F.cross_entropy(scores, targets_label, reduction="none")
# Mining hard examples.
label_mask = self._mine_hard_example(
conf_loss.squeeze(-1), targets_label.squeeze(-1), bg_index)
conf_loss = conf_loss * label_mask.unsqueeze(-1).astype(conf_loss.dtype)
conf_loss = paddle.masked_select(conf_loss, label_mask.unsqueeze(-1))
conf_loss = conf_loss.sum() * self.conf_loss_weight
# Compute overall weighted loss.
normalizer = (targets_label != bg_index).astype('float32').sum().clip(
min=1)
loss = (conf_loss + loc_loss) / (normalizer + 1e-9)
loss = (conf_loss + loc_loss) / normalizer
return loss
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册