Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b3f650d1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b3f650d1
编写于
5月 24, 2018
作者:
K
Kexin Zhao
提交者:
GitHub
5月 24, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10889 from kexinzhao/understand_sentiment_lod
Modify understand sentiment example using new LoDTensor API
上级
d4c21642
8cce3304
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
60 addition
and
44 deletion
+60
-44
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py
...pi/understand_sentiment/test_understand_sentiment_conv.py
+15
-11
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py
...rstand_sentiment/test_understand_sentiment_dynamic_rnn.py
+15
-11
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py
...stand_sentiment/test_understand_sentiment_stacked_lstm.py
+15
-11
python/paddle/fluid/tests/book/notest_understand_sentiment.py
...on/paddle/fluid/tests/book/notest_understand_sentiment.py
+15
-11
未找到文件。
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py
浏览文件 @
b3f650d1
...
...
@@ -121,17 +121,21 @@ def infer(use_cuda, inference_program, save_dirname=None):
param_path
=
save_dirname
,
place
=
place
)
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
lod
=
[
0
,
4
,
10
]
tensor_words
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
lod
=
[[
3
,
4
,
2
]]
base_shape
=
[
1
]
# The range of random integers is [low, high]
tensor_words
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
results
=
inferencer
.
infer
({
'words'
:
tensor_words
})
print
(
"infer results: "
,
results
)
...
...
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py
浏览文件 @
b3f650d1
...
...
@@ -136,17 +136,21 @@ def infer(use_cuda, inference_program, save_dirname=None):
param_path
=
save_dirname
,
place
=
place
)
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
lod
=
[
0
,
4
,
10
]
tensor_words
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
lod
=
[[
3
,
4
,
2
]]
base_shape
=
[
1
]
# The range of random integers is [low, high]
tensor_words
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
results
=
inferencer
.
infer
({
'words'
:
tensor_words
})
print
(
"infer results: "
,
results
)
...
...
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py
浏览文件 @
b3f650d1
...
...
@@ -128,17 +128,21 @@ def infer(use_cuda, inference_program, save_dirname=None):
param_path
=
save_dirname
,
place
=
place
)
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
lod
=
[
0
,
4
,
10
]
tensor_words
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
lod
=
[[
3
,
4
,
2
]]
base_shape
=
[
1
]
# The range of random integers is [low, high]
tensor_words
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
results
=
inferencer
.
infer
({
'words'
:
tensor_words
})
print
(
"infer results: "
,
results
)
...
...
python/paddle/fluid/tests/book/notest_understand_sentiment.py
浏览文件 @
b3f650d1
...
...
@@ -125,14 +125,6 @@ def stacked_lstm_net(data,
return
avg_cost
,
accuracy
,
prediction
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
train
(
word_dict
,
net_method
,
use_cuda
,
...
...
@@ -242,9 +234,21 @@ def infer(word_dict, use_cuda, save_dirname=None):
word_dict_len
=
len
(
word_dict
)
lod
=
[
0
,
4
,
10
]
tensor_words
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
lod
=
[[
3
,
4
,
2
]]
base_shape
=
[
1
]
# The range of random integers is [low, high]
tensor_words
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录