Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b2b359c3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b2b359c3
编写于
8月 06, 2019
作者:
Y
Yuan Gao
提交者:
qingqing01
8月 06, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add norm to fpn's conv (#2990)
上级
d5a67d38
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
146 addition
and
36 deletion
+146
-36
ppdet/modeling/backbones/fpn.py
ppdet/modeling/backbones/fpn.py
+73
-35
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+73
-1
未找到文件。
ppdet/modeling/backbones/fpn.py
浏览文件 @
b2b359c3
...
...
@@ -24,6 +24,7 @@ from paddle.fluid.initializer import Xavier
from
paddle.fluid.regularizer
import
L2Decay
from
ppdet.core.workspace
import
register
from
ppdet.modeling.ops
import
ConvNorm
__all__
=
[
'FPN'
]
...
...
@@ -39,6 +40,7 @@ class FPN(object):
max_level (int): highest level of the backbone feature map to use
spatial_scale (list): feature map scaling factor
has_extra_convs (bool): whether has extral convolutions in higher levels
norm_type (str|None): normalization type, 'bn'/'sync_bn'/'affine_channel'
"""
def
__init__
(
self
,
...
...
@@ -46,28 +48,41 @@ class FPN(object):
min_level
=
2
,
max_level
=
6
,
spatial_scale
=
[
1.
/
32.
,
1.
/
16.
,
1.
/
8.
,
1.
/
4.
],
has_extra_convs
=
False
):
has_extra_convs
=
False
,
norm_type
=
None
):
self
.
num_chan
=
num_chan
self
.
min_level
=
min_level
self
.
max_level
=
max_level
self
.
spatial_scale
=
spatial_scale
self
.
has_extra_convs
=
has_extra_convs
self
.
norm_type
=
norm_type
def
_add_topdown_lateral
(
self
,
body_name
,
body_input
,
upper_output
):
lateral_name
=
'fpn_inner_'
+
body_name
+
'_lateral'
topdown_name
=
'fpn_topdown_'
+
body_name
fan
=
body_input
.
shape
[
1
]
lateral
=
fluid
.
layers
.
conv2d
(
body_input
,
self
.
num_chan
,
1
,
param_attr
=
ParamAttr
(
name
=
lateral_name
+
"_w"
,
initializer
=
Xavier
(
fan_out
=
fan
)),
bias_attr
=
ParamAttr
(
name
=
lateral_name
+
"_b"
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)),
name
=
lateral_name
)
if
self
.
norm_type
:
initializer
=
Xavier
(
fan_out
=
fan
)
lateral
=
ConvNorm
(
body_input
,
self
.
num_chan
,
1
,
initializer
=
initializer
,
norm_type
=
self
.
norm_type
,
name
=
lateral_name
,
bn_name
=
lateral_name
)
else
:
lateral
=
fluid
.
layers
.
conv2d
(
body_input
,
self
.
num_chan
,
1
,
param_attr
=
ParamAttr
(
name
=
lateral_name
+
"_w"
,
initializer
=
Xavier
(
fan_out
=
fan
)),
bias_attr
=
ParamAttr
(
name
=
lateral_name
+
"_b"
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)),
name
=
lateral_name
)
shape
=
fluid
.
layers
.
shape
(
upper_output
)
shape_hw
=
fluid
.
layers
.
slice
(
shape
,
axes
=
[
0
],
starts
=
[
2
],
ends
=
[
4
])
out_shape_
=
shape_hw
*
2
...
...
@@ -97,17 +112,29 @@ class FPN(object):
fpn_inner_name
=
'fpn_inner_'
+
body_name_list
[
0
]
body_input
=
body_dict
[
body_name_list
[
0
]]
fan
=
body_input
.
shape
[
1
]
self
.
fpn_inner_output
[
0
]
=
fluid
.
layers
.
conv2d
(
body_input
,
self
.
num_chan
,
1
,
param_attr
=
ParamAttr
(
name
=
fpn_inner_name
+
"_w"
,
initializer
=
Xavier
(
fan_out
=
fan
)),
bias_attr
=
ParamAttr
(
name
=
fpn_inner_name
+
"_b"
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)),
name
=
fpn_inner_name
)
if
self
.
norm_type
:
initializer
=
Xavier
(
fan_out
=
fan
)
self
.
fpn_inner_output
[
0
]
=
ConvNorm
(
body_input
,
self
.
num_chan
,
1
,
initializer
=
initializer
,
norm_type
=
self
.
norm_type
,
name
=
fpn_inner_name
,
bn_name
=
fpn_inner_name
)
else
:
self
.
fpn_inner_output
[
0
]
=
fluid
.
layers
.
conv2d
(
body_input
,
self
.
num_chan
,
1
,
param_attr
=
ParamAttr
(
name
=
fpn_inner_name
+
"_w"
,
initializer
=
Xavier
(
fan_out
=
fan
)),
bias_attr
=
ParamAttr
(
name
=
fpn_inner_name
+
"_b"
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)),
name
=
fpn_inner_name
)
for
i
in
range
(
1
,
num_backbone_stages
):
body_name
=
body_name_list
[
i
]
body_input
=
body_dict
[
body_name
]
...
...
@@ -120,18 +147,29 @@ class FPN(object):
for
i
in
range
(
num_backbone_stages
):
fpn_name
=
'fpn_'
+
body_name_list
[
i
]
fan
=
self
.
fpn_inner_output
[
i
].
shape
[
1
]
*
3
*
3
fpn_output
=
fluid
.
layers
.
conv2d
(
self
.
fpn_inner_output
[
i
],
self
.
num_chan
,
filter_size
=
3
,
padding
=
1
,
param_attr
=
ParamAttr
(
name
=
fpn_name
+
"_w"
,
initializer
=
Xavier
(
fan_out
=
fan
)),
bias_attr
=
ParamAttr
(
name
=
fpn_name
+
"_b"
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)),
name
=
fpn_name
)
if
self
.
norm_type
:
initializer
=
Xavier
(
fan_out
=
fan
)
fpn_output
=
ConvNorm
(
self
.
fpn_inner_output
[
i
],
self
.
num_chan
,
3
,
initializer
=
initializer
,
norm_type
=
self
.
norm_type
,
name
=
fpn_name
,
bn_name
=
fpn_name
)
else
:
fpn_output
=
fluid
.
layers
.
conv2d
(
self
.
fpn_inner_output
[
i
],
self
.
num_chan
,
filter_size
=
3
,
padding
=
1
,
param_attr
=
ParamAttr
(
name
=
fpn_name
+
"_w"
,
initializer
=
Xavier
(
fan_out
=
fan
)),
bias_attr
=
ParamAttr
(
name
=
fpn_name
+
"_b"
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)),
name
=
fpn_name
)
fpn_dict
[
fpn_name
]
=
fpn_output
fpn_name_list
.
append
(
fpn_name
)
if
not
self
.
has_extra_convs
and
self
.
max_level
-
self
.
min_level
==
len
(
...
...
ppdet/modeling/ops.py
浏览文件 @
b2b359c3
...
...
@@ -15,15 +15,87 @@
from
numbers
import
Integral
from
paddle
import
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.regularizer
import
L2Decay
from
ppdet.core.workspace
import
register
,
serializable
__all__
=
[
'AnchorGenerator'
,
'RPNTargetAssign'
,
'GenerateProposals'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiBoxHead'
,
'SSDOutputDecoder'
,
'SSDMetric'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
'SSDOutputDecoder'
,
'SSDMetric'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
]
def
ConvNorm
(
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
norm_decay
=
0.
,
norm_type
=
'affine_channel'
,
freeze_norm
=
False
,
act
=
None
,
bn_name
=
None
,
initializer
=
None
,
name
=
None
):
fan
=
num_filters
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
,
initializer
=
initializer
),
bias_attr
=
False
,
name
=
name
+
'.conv2d.output.1'
)
norm_lr
=
0.
if
freeze_norm
else
1.
pattr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
,
learning_rate
=
norm_lr
,
regularizer
=
L2Decay
(
norm_decay
))
battr
=
ParamAttr
(
name
=
bn_name
+
'_offset'
,
learning_rate
=
norm_lr
,
regularizer
=
L2Decay
(
norm_decay
))
if
norm_type
in
[
'bn'
,
'sync_bn'
]:
global_stats
=
True
if
freeze_norm
else
False
out
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
name
=
bn_name
+
'.output.1'
,
param_attr
=
pattr
,
bias_attr
=
battr
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
,
use_global_stats
=
global_stats
)
scale
=
fluid
.
framework
.
_get_var
(
pattr
.
name
)
bias
=
fluid
.
framework
.
_get_var
(
battr
.
name
)
elif
norm_type
==
'affine_channel'
:
scale
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
pattr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
1.
))
bias
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
battr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
0.
))
out
=
fluid
.
layers
.
affine_channel
(
x
=
conv
,
scale
=
scale
,
bias
=
bias
,
act
=
act
)
if
freeze_norm
:
scale
.
stop_gradient
=
True
bias
.
stop_gradient
=
True
return
out
@
register
@
serializable
class
AnchorGenerator
(
object
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录