Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b24afd81
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b24afd81
编写于
11月 14, 2017
作者:
W
wanghaox
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update the sub_sequence_op to sequence_slice_op code.
上级
f23d6cc4
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
140 addition
and
113 deletion
+140
-113
paddle/operators/sequence_slice_op.cc
paddle/operators/sequence_slice_op.cc
+58
-40
paddle/operators/sequence_slice_op.cu
paddle/operators/sequence_slice_op.cu
+5
-7
paddle/operators/sequence_slice_op.h
paddle/operators/sequence_slice_op.h
+66
-53
python/paddle/v2/framework/tests/test_sequence_slice_op.py
python/paddle/v2/framework/tests/test_sequence_slice_op.py
+11
-13
未找到文件。
paddle/operators/sequence_slice_op.cc
浏览文件 @
b24afd81
...
...
@@ -12,37 +12,39 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/s
ub_sequen
ce_op.h"
#include "paddle/operators/s
equence_sli
ce_op.h"
namespace
paddle
{
namespace
operators
{
class
S
ubSequen
ceOp
:
public
framework
::
OperatorWithKernel
{
class
S
equenceSli
ceOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SubSequenceOp should not be null."
);
"Input(X) of SequenceSliceOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Offset"
),
"Input(Offset) of SequenceSliceOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Length"
),
"Input(Length) of SequenceSliceOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of S
ubSequen
ceOp should not be null."
);
"Output(Out) of S
equenceSli
ceOp should not be null."
);
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
offsets
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"offset"
);
auto
sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"size"
);
auto
dim_0
=
0
;
for
(
size_t
i
=
0
;
i
<
sizes
.
size
();
++
i
)
{
dim_0
+=
sizes
[
i
];
ctx
->
SetOutputDim
(
"Out"
,
input_dims
);
}
framework
::
DDim
out_dims
=
input_dims
;
out_dims
[
0
]
=
dim_0
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
S
ubSequen
ceGradOp
:
public
framework
::
OperatorWithKernel
{
class
S
equenceSli
ceGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -53,34 +55,50 @@ class SubSequenceGradOp : public framework::OperatorWithKernel {
"The gradient of X should not be null."
);
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputsDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
S
ubSequen
ceOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
S
equenceSli
ceOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
S
ubSequen
ceOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
S
equenceSli
ceOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(LoDTensor), "
"the variable-length input of SubSequenceOp"
);
AddAttr
<
std
::
vector
<
int
>>
(
"offset"
,
"A list<int> to describes offset for sub sequence item."
);
AddAttr
<
std
::
vector
<
int
>>
(
"size"
,
"A list<int> to describes size for sub sequence item."
);
AddInput
(
"X"
,
"(LoDTensor), "
"the input of SequenceSliceOp."
);
AddInput
(
"Offset"
,
"(Tensor), "
"A vector<int> to describes offset for sub sequence item."
);
AddInput
(
"Length"
,
"(Tensor), "
"A vector<int> to describes length for sub sequence item."
);
AddOutput
(
"Out"
,
"(Tensor), Variable-length output of "
"sequence_concat Op."
);
"(LoDTensor), output of sequence slice Op."
);
AddComment
(
R"DOC(
Sub Sequence operator
The operator crop a subsequence from given sequence with given start offset and subsequence size.
Sequence slice operator
The operator crop a subsequence from given sequence with given start offset and subsequence length.
It only supports sequence (LoD Tensor with level number is 1).
- Case:
LoD(x) = {{0, 3, 6, 10}}; Dims(x0) = (10, 3, 2)
offset = (0, 1, 1); size = (2, 1, 2)
LoD(Out) = {{0, 2, 3, 5}}; Dims(Out) = (5,3,2)
NOTE: The length of the input, offset and size should be the same. The offset start from 0.
X = [[a1, a2;
b1, b2;
c1, c2]
[d1, d2;
e1, e2]]
LoD(X) = {{0, 3, 5}}; Dims(X) = (4, 1, 2)
Offset = (0, 1); Length = (2, 1)
Out = [[a1, a2;
b1, b2]
[e1, e2]]
LoD(Out) = {{0, 2, 3}}
NOTE: The length of the input, offset and length should be the same. The offset start from 0.
)DOC"
);
}
};
...
...
@@ -89,11 +107,11 @@ NOTE: The length of the input, offset and size should be the same. The offset st
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
s
ub_sequence
,
ops
::
SubSequenceOp
,
ops
::
SubSequen
ceOpMaker
,
s
ub_sequence_grad
,
ops
::
SubSequen
ceGradOp
);
REGISTER_OP
(
s
equence_slice
,
ops
::
SequenceSliceOp
,
ops
::
SequenceSli
ceOpMaker
,
s
equence_slice_grad
,
ops
::
SequenceSli
ceGradOp
);
REGISTER_OP_CPU_KERNEL
(
s
ub_sequen
ce
,
ops
::
S
ubSequen
ceOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
s
equence_sli
ce
,
ops
::
S
equenceSli
ceOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
s
ub_sequen
ce_grad
,
ops
::
S
ubSequen
ceGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
s
equence_sli
ce_grad
,
ops
::
S
equenceSli
ceGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sequence_slice_op.cu
浏览文件 @
b24afd81
...
...
@@ -12,14 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sub_sequence_op.h"
#include "paddle/operators/sequence_slice_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
s
ub_sequen
ce
,
ops
::
S
ubSequen
ceOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
s
equence_sli
ce
,
ops
::
S
equenceSli
ceOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
s
ub_sequen
ce_grad
,
ops
::
S
ubSequen
ceGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
s
equence_sli
ce_grad
,
ops
::
S
equenceSli
ceGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/sequence_slice_op.h
浏览文件 @
b24afd81
...
...
@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/strided_memcpy.h"
namespace
paddle
{
...
...
@@ -25,109 +25,124 @@ using LoDTensor = framework::LoDTensor;
using
LoD
=
framework
::
LoD
;
template
<
typename
T
>
LoD
subsequenceLoD
(
const
T
*
in
,
const
std
::
vector
<
int
>
offsets
,
const
std
::
vector
<
int
>
sizes
)
{
auto
out_lod
=
in
->
lod
();
LoD
SequenceSliceLoD
(
const
T
&
in
,
const
int64_t
*
offset_data
,
const
int64_t
*
length_data
)
{
auto
out_lod
=
in
.
lod
();
size_t
lod_offset
=
0
;
auto
n
=
in
->
lod
()[
0
].
size
()
-
1
;
auto
n
=
in
.
lod
()[
0
].
size
()
-
1
;
out_lod
[
0
][
0
]
=
0
;
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
lod_offset
+=
sizes
[
i
];
lod_offset
+=
length_data
[
i
];
out_lod
[
0
][
i
+
1
]
=
lod_offset
;
}
return
out_lod
;
}
template
<
typename
Place
,
typename
T
>
class
S
ubSequen
ceOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
S
equenceSli
ceOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
std
::
vector
<
int
>
offsets
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"o
ffset"
);
std
::
vector
<
int
>
sizes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"size
"
);
auto
*
offset
=
ctx
.
Input
<
Tensor
>
(
"O
ffset"
);
auto
*
length
=
ctx
.
Input
<
Tensor
>
(
"Length
"
);
auto
*
out
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
auto
offset_len
=
offsets
.
size
();
auto
size_len
=
sizes
.
size
();
const
int64_t
*
offset_data
=
offset
->
data
<
int64_t
>
();
const
int64_t
*
length_data
=
length
->
data
<
int64_t
>
();
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
framework
::
Tensor
offset_cpu
;
offset_cpu
.
mutable_data
<
T
>
(
offset
->
dims
(),
platform
::
CPUPlace
());
offset_cpu
.
CopyFrom
(
*
offset
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
offset_data
=
offset_cpu
.
data
<
int64_t
>
();
framework
::
Tensor
length_cpu
;
length_cpu
.
mutable_data
<
T
>
(
length
->
dims
(),
platform
::
CPUPlace
());
length_cpu
.
CopyFrom
(
*
length
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
length_data
=
length_cpu
.
data
<
int64_t
>
();
}
auto
lod
=
in
->
lod
();
auto
n
=
lod
[
0
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
n
,
offset_len
,
"The length of input and offset should be the same"
)
PADDLE_ENFORCE_EQ
(
n
,
size_len
,
"The length of input and size should be the same"
)
PADDLE_ENFORCE_EQ
(
offset
->
dims
().
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
length
->
dims
().
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
n
,
length
->
dims
()[
0
],
"The size of input-sequence and length-array should be the same"
)
PADDLE_ENFORCE_EQ
(
n
,
offset
->
dims
()[
0
],
"The size of input-sequence and offset-array should be the same"
)
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
auto
offset
=
offsets
[
i
];
auto
size
=
sizes
[
i
];
PADDLE_ENFORCE_LT
(
lod
[
0
][
i
]
+
offset
+
size
,
lod
[
0
][
i
+
1
],
"The target tensor's length overflow"
)
PADDLE_ENFORCE_LT
(
0
,
offset_data
[
i
],
"The offset must greater than zero"
)
PADDLE_ENFORCE_LT
(
0
,
length_data
[
i
],
"The length must greater than zero"
)
PADDLE_ENFORCE_LT
(
lod
[
0
][
i
]
+
offset
_data
[
i
]
+
length_data
[
i
],
lod
[
0
][
i
+
1
],
"The target tensor's length overflow"
)
}
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_lod
=
subsequenceLoD
(
in
,
offsets
,
sizes
);
auto
out_lod
=
SequenceSliceLoD
(
*
in
,
offset_data
,
length_data
);
out
->
set_lod
(
out_lod
);
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
device_context
(),
out
,
static_cast
<
T
>
(
0
));
auto
in_stride
=
framework
::
stride
(
in
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
size_t
out_offset
=
0
;
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
auto
offset
=
offsets
[
i
];
auto
size
=
sizes
[
i
];
Tensor
in_t
=
in
->
Slice
(
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset
),
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset
+
size
));
Tensor
in_t
=
in
->
Slice
(
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset_data
[
i
]),
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset_data
[
i
]
+
length_data
[
i
]));
StridedMemcpy
<
T
>
(
ctx
.
device_context
(),
in_t
.
data
<
T
>
(),
in_stride
,
in_t
.
dims
(),
out_stride
,
out
->
data
<
T
>
()
+
out_offset
);
out_offset
+=
size
*
in_stride
[
0
];
out_offset
+=
length_data
[
i
]
*
in_stride
[
0
];
}
}
};
template
<
typename
Place
,
typename
T
>
class
S
ubSequen
ceGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
S
equenceSli
ceGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
std
::
vector
<
int
>
offsets
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"o
ffset"
);
std
::
vector
<
int
>
sizes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"size
"
);
auto
*
offset
=
ctx
.
Input
<
Tensor
>
(
"O
ffset"
);
auto
*
length
=
ctx
.
Input
<
Tensor
>
(
"Length
"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
offset_len
=
offsets
.
size
();
auto
size_len
=
sizes
.
size
();
const
int64_t
*
offset_data
=
offset
->
data
<
int64_t
>
();
const
int64_t
*
length_data
=
length
->
data
<
int64_t
>
();
auto
lod
=
in
->
lod
();
auto
n
=
lod
[
0
].
size
()
-
1
;
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
framework
::
Tensor
offset_cpu
;
offset_cpu
.
mutable_data
<
T
>
(
offset
->
dims
(),
platform
::
CPUPlace
());
offset_cpu
.
CopyFrom
(
*
offset
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
offset_data
=
offset_cpu
.
data
<
int64_t
>
();
// check input data format
PADDLE_ENFORCE_EQ
(
lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
n
,
offset_len
,
"The length of input and offset should be the same"
)
PADDLE_ENFORCE_EQ
(
n
,
size_len
,
"The length of input and size should be the same"
)
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
auto
offset
=
offsets
[
i
];
auto
size
=
sizes
[
i
];
PADDLE_ENFORCE_LT
(
lod
[
0
][
i
]
+
offset
+
size
,
lod
[
0
][
i
+
1
],
"The target tensor's length overflow"
)
framework
::
Tensor
length_cpu
;
length_cpu
.
mutable_data
<
T
>
(
length
->
dims
(),
platform
::
CPUPlace
());
length_cpu
.
CopyFrom
(
*
length
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
length_data
=
length_cpu
.
data
<
int64_t
>
();
}
auto
out_lod
=
subsequenceLoD
(
in
,
offsets
,
sizes
);
auto
lod
=
in
->
lod
();
auto
out_lod
=
SequenceSliceLoD
(
*
in
,
offset_data
,
length_data
);
x_grad
->
set_lod
(
lod
);
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
x_grad
)
;
temp
.
device
(
ctx
.
GetEigenDevice
<
Place
>
())
=
temp
.
constant
(
static_cast
<
T
>
(
0
));
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
device_context
(),
x_grad
,
static_cast
<
T
>
(
0
));
auto
out_grad_stride
=
framework
::
stride
(
out_grad
->
dims
());
...
...
@@ -139,11 +154,9 @@ class SubSequenceGradOpKernel : public framework::OpKernel<T> {
auto
x_grad_stride
=
framework
::
stride
(
x_grad
->
dims
());
auto
offset
=
offsets
[
i
];
auto
size
=
sizes
[
i
];
Tensor
x_grad_t
=
x_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset
),
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset
+
size
));
Tensor
x_grad_t
=
x_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset_data
[
i
]),
static_cast
<
int
>
(
lod
[
0
][
i
]
+
offset_data
[
i
]
+
length_data
[
i
]));
StridedMemcpy
<
T
>
(
ctx
.
device_context
(),
out_grad_t
.
data
<
T
>
(),
out_grad_stride
,
out_grad_t
.
dims
(),
x_grad_stride
,
...
...
python/paddle/v2/framework/tests/test_sequence_slice_op.py
浏览文件 @
b24afd81
...
...
@@ -3,31 +3,29 @@ import numpy as np
import
sys
from
op_test
import
OpTest
class
TestS
ubSequen
ceOp
(
OpTest
):
class
TestS
equenceSli
ceOp
(
OpTest
):
def
set_data
(
self
):
# only supprot one level LoD
x
=
np
.
random
.
random
((
100
,
3
,
2
)).
astype
(
'float32'
)
lod
=
[[
0
,
20
,
40
,
60
,
80
,
100
]]
offset
s
=
np
.
array
([
1
,
2
,
3
,
4
,
5
]).
flatten
(
)
sizes
=
np
.
array
([
10
,
8
,
6
,
4
,
2
]).
flatten
(
)
offset
=
np
.
array
([
1
,
2
,
3
,
4
,
5
]).
flatten
().
astype
(
"int64"
)
length
=
np
.
array
([
10
,
8
,
6
,
4
,
2
]).
flatten
().
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
self
.
attrs
=
{
'offset'
:
offsets
,
'size'
:
sizes
}
outs
=
[]
self
.
inputs
=
{
'X'
:
(
x
,
lod
),
'Offset'
:
offset
,
'Length'
:
length
}
outs
=
np
.
zeros
((
100
,
3
,
2
)).
astype
(
'float32'
)
out_lod
=
[[
0
]]
out_lod_offset
=
0
for
i
in
range
(
len
(
offsets
)):
sub_x
=
x
[
lod
[
0
][
i
]
+
offsets
[
i
]:
lod
[
0
]
[
i
]
+
offsets
[
i
]
+
sizes
[
i
],
:]
outs
.
append
(
sub_x
)
for
i
in
range
(
len
(
offset
)):
sub_x
=
x
[
lod
[
0
][
i
]
+
offset
[
i
]:
lod
[
0
]
[
i
]
+
offset
[
i
]
+
length
[
i
],
:]
out_lod_offset
=
out_lod_offset
+
len
(
sub_x
)
outs
[
out_lod
[
0
][
i
]:
out_lod_offset
,
:]
=
sub_x
out_lod
[
0
].
append
(
out_lod_offset
)
outs
=
np
.
concatenate
(
outs
,
axis
=
0
)
self
.
outputs
=
{
'Out'
:
outs
}
self
.
outputs
=
{
'Out'
:
(
outs
,
out_lod
)}
def
setUp
(
self
):
self
.
op_type
=
"s
ub_sequen
ce"
self
.
op_type
=
"s
equence_sli
ce"
self
.
set_data
()
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录