Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b1c0bad9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1c0bad9
编写于
8月 26, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add config parser for pooling3D
上级
860bf192
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
304 addition
and
5 deletion
+304
-5
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+0
-2
proto/ModelConfig.proto
proto/ModelConfig.proto
+1
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+119
-1
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+145
-1
python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py
...iner_config_helpers/tests/configs/test_pooling3D_layer.py
+38
-0
python/paddle/trainer_config_helpers/tests/layers_test.py
python/paddle/trainer_config_helpers/tests/layers_test.py
+1
-1
未找到文件。
paddle/math/Matrix.cpp
浏览文件 @
b1c0bad9
...
...
@@ -2255,9 +2255,7 @@ void CpuMatrix::maxPool3DBackward(Matrix& outGrad,
real
*
tgtGrad
=
getData
();
real
*
otGrad
=
outGrad
.
getData
();
real
*
maxPoolIdxData
=
maxPoolIdx
.
getData
();
size_t
outStride
=
outGrad
.
getStride
();
;
for
(
size_t
n
=
0
;
n
<
num
;
++
n
)
{
if
(
!
outGrad
.
isContiguous
())
{
...
...
proto/ModelConfig.proto
浏览文件 @
b1c0bad9
...
...
@@ -495,6 +495,7 @@ message LayerConfig {
// to indicate rectangle image data
optional
uint64
height
=
50
;
optional
uint64
width
=
51
;
optional
uint64
depth
=
57
[
default
=
1
];
// blank label used in ctc loss
optional
uint32
blank
=
52
[
default
=
0
];
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
b1c0bad9
...
...
@@ -903,6 +903,31 @@ class Pool(Cfg):
self
.
add_keys
(
locals
())
@
config_class
class
Pool3d
(
Cfg
):
def
__init__
(
self
,
pool_type
,
channels
,
size_x
,
size_y
=
None
,
size_z
=
None
,
start
=
None
,
stride
=
None
,
# 1 by defalut in protobuf
stride_y
=
None
,
stride_z
=
None
,
padding
=
None
,
# 0 by defalut in protobuf
padding_y
=
None
,
padding_z
=
None
):
self
.
add_keys
(
locals
())
self
.
filter_size_y
=
size_y
if
size_y
else
size_x
self
.
filter_size_z
=
size_z
if
size_z
else
size_x
self
.
padding_y
=
padding_y
if
padding_y
else
padding
self
.
padding_z
=
padding_z
if
padding_z
else
padding
self
.
stride_y
=
stride_y
if
stride_y
else
stride
self
.
stride_z
=
stride_z
if
stride_z
else
stride
@
config_class
class
SpatialPyramidPool
(
Cfg
):
def
__init__
(
self
,
pool_type
,
pyramid_height
,
channels
):
...
...
@@ -1167,6 +1192,20 @@ def get_img_size(input_layer_name, channels):
return
img_size
,
img_size_y
def
get_img3d_size
(
input_layer_name
,
channels
):
input
=
g_layer_map
[
input_layer_name
]
img_pixels
=
input
.
size
/
channels
img_size
=
input
.
width
img_size_y
=
input
.
height
img_size_z
=
input
.
depth
config_assert
(
img_size
*
img_size_y
*
img_size_z
==
img_pixels
,
"Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
%
(
input_layer_name
,
img_size
,
img_size_y
,
img_size_z
,
img_pixels
))
return
img_size
,
img_size_y
,
img_size_z
def
parse_bilinear
(
bilinear
,
input_layer_name
,
bilinear_conf
):
parse_image
(
bilinear
,
input_layer_name
,
bilinear_conf
.
image_conf
)
bilinear_conf
.
out_size_x
=
bilinear
.
out_size_x
...
...
@@ -1204,6 +1243,45 @@ def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
pool_conf
.
stride_y
,
not
ceil_mode
)
def
parse_pool3d
(
pool
,
input_layer_name
,
pool_conf
,
ceil_mode
):
pool_conf
.
pool_type
=
pool
.
pool_type
config_assert
(
pool
.
pool_type
in
[
'max-projection'
,
'avg-projection'
],
"pool-type %s is not in "
"['max-projection', 'avg-projection']"
%
pool
.
pool_type
)
pool_conf
.
channels
=
pool
.
channels
pool_conf
.
size_x
=
pool
.
size_x
pool_conf
.
stride
=
pool
.
stride
pool_conf
.
padding
=
pool
.
padding
pool_conf
.
size_y
=
default
(
pool
.
size_y
,
pool_conf
.
size_x
)
pool_conf
.
size_z
=
default
(
pool
.
size_z
,
pool_conf
.
size_x
)
pool_conf
.
stride_y
=
default
(
pool
.
stride_y
,
pool_conf
.
stride
)
pool_conf
.
stride_z
=
default
(
pool
.
stride_z
,
pool_conf
.
stride
)
pool_conf
.
padding_y
=
default
(
pool
.
padding_y
,
pool_conf
.
padding
)
pool_conf
.
padding_z
=
default
(
pool
.
padding_z
,
pool_conf
.
padding
)
pool_conf
.
img_size
,
pool_conf
.
img_size_y
,
pool_conf
.
img_size_z
=
\
get_img3d_size
(
input_layer_name
,
pool
.
channels
)
config_assert
(
not
pool
.
start
,
"start is deprecated in pooling."
)
if
pool
.
padding
is
not
None
:
pool_conf
.
padding
=
pool
.
padding
pool_conf
.
padding_y
=
default
(
pool
.
padding_y
,
pool_conf
.
padding
)
pool_conf
.
padding_z
=
default
(
pool
.
padding_z
,
pool_conf
.
padding
)
pool_conf
.
output_x
=
cnn_output_size
(
pool_conf
.
img_size
,
pool_conf
.
size_x
,
pool_conf
.
padding
,
pool_conf
.
stride
,
not
ceil_mode
)
pool_conf
.
output_y
=
cnn_output_size
(
pool_conf
.
img_size_y
,
pool_conf
.
size_y
,
pool_conf
.
padding_y
,
pool_conf
.
stride_y
,
not
ceil_mode
)
pool_conf
.
output_z
=
cnn_output_size
(
pool_conf
.
img_size_z
,
pool_conf
.
size_z
,
pool_conf
.
padding_z
,
pool_conf
.
stride_z
,
not
ceil_mode
)
def
parse_spp
(
spp
,
input_layer_name
,
spp_conf
):
parse_image
(
spp
,
input_layer_name
,
spp_conf
.
image_conf
)
spp_conf
.
pool_type
=
spp
.
pool_type
...
...
@@ -1580,6 +1658,9 @@ class LayerBase(object):
self
.
config
.
height
=
height
self
.
config
.
width
=
width
def
set_layer_depth
(
self
,
depth
):
self
.
config
.
depth
=
depth
def
set_cnn_layer
(
self
,
input_layer_name
,
height
,
...
...
@@ -1763,11 +1844,19 @@ class DetectionOutputLayer(LayerBase):
@
config_layer
(
'data'
)
class
DataLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
height
=
None
,
width
=
None
,
device
=
None
):
def
__init__
(
self
,
name
,
size
,
depth
=
None
,
height
=
None
,
width
=
None
,
device
=
None
):
super
(
DataLayer
,
self
).
__init__
(
name
,
'data'
,
size
,
inputs
=
[],
device
=
device
)
if
height
and
width
:
self
.
set_layer_height_width
(
height
,
width
)
if
depth
:
self
.
set_layer_depth
(
depth
)
'''
...
...
@@ -1995,6 +2084,35 @@ class PoolLayer(LayerBase):
pool_conf
.
channels
)
@
config_layer
(
'pool3d'
)
class
Pool3DLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
ceil_mode
=
True
,
**
xargs
):
super
(
Pool3DLayer
,
self
).
__init__
(
name
,
'pool3d'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
pool_conf
=
self
.
config
.
inputs
[
input_index
].
pool_conf
parse_pool3d
(
self
.
inputs
[
input_index
].
pool
,
input_layer
.
name
,
pool_conf
,
ceil_mode
)
self
.
set_cnn_layer
(
name
,
pool_conf
.
output_z
,
pool_conf
.
output_y
,
pool_conf
.
output_x
,
pool_conf
.
channels
)
def
set_cnn_layer
(
self
,
input_layer_name
,
depth
,
height
,
width
,
channels
,
is_print
=
True
):
size
=
depth
*
height
*
width
*
channels
self
.
set_layer_size
(
size
)
self
.
set_layer_height_width
(
height
,
width
)
self
.
set_layer_depth
(
depth
)
if
is_print
:
print
(
"output for %s: c = %d, d = %d, h = %d, w = %d, size = %d"
%
(
input_layer_name
,
channels
,
depth
,
height
,
width
,
size
))
@
config_layer
(
'spp'
)
class
SpatialPyramidPoolLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
b1c0bad9
...
...
@@ -133,6 +133,7 @@ __all__ = [
'clip_layer'
,
'slice_projection'
,
'kmax_sequence_score_layer'
,
'img_pool3d_layer'
,
]
...
...
@@ -161,6 +162,7 @@ class LayerType(object):
EXCONVTRANS_LAYER
=
'exconvt'
CUDNNCONV_LAYER
=
'cudnn_conv'
POOL_LAYER
=
'pool'
POOL3D_LAYER
=
'pool3d'
BATCH_NORM_LAYER
=
'batch_norm'
NORM_LAYER
=
'norm'
SUM_TO_ONE_NORM_LAYER
=
'sum_to_one_norm'
...
...
@@ -878,7 +880,8 @@ def mixed_layer(size=0,
@
layer_support
()
def
data_layer
(
name
,
size
,
height
=
None
,
width
=
None
,
layer_attr
=
None
):
def
data_layer
(
name
,
size
,
depth
=
None
,
height
=
None
,
width
=
None
,
layer_attr
=
None
):
"""
Define DataLayer For NeuralNetwork.
...
...
@@ -905,6 +908,7 @@ def data_layer(name, size, height=None, width=None, layer_attr=None):
type
=
LayerType
.
DATA
,
name
=
name
,
size
=
size
,
depth
=
depth
,
height
=
height
,
width
=
width
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
...
...
@@ -2610,6 +2614,146 @@ def img_pool_layer(input,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"pool3d"
)
@
layer_support
()
def
img_pool3d_layer
(
input
,
pool_size
,
name
=
None
,
num_channels
=
None
,
pool_type
=
None
,
stride
=
1
,
padding
=
0
,
layer_attr
=
None
,
pool_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
,
pool_size_z
=
None
,
stride_z
=
None
,
padding_z
=
None
,
ceil_mode
=
True
):
"""
Image pooling Layer.
The details of pooling layer, please refer ufldl's pooling_ .
.. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))
The example usage is:
.. code-block:: python
maxpool = img_pool3d_layer(input=conv,
pool_size=3,
num_channels=8,
stride=1,
padding=1,
pool_type=MaxPooling())
:param padding: pooling padding width.
:type padding: int|tuple|list
:param name: name of pooling layer
:type name: basestring.
:param input: layer's input
:type input: LayerOutput
:param pool_size: pooling window width
:type pool_size: int|tuple|list
:param num_channels: number of input channel.
:type num_channels: int
:param pool_type: pooling type. MaxPooling or AvgPooling. Default is
MaxPooling.
:type pool_type: BasePoolingType
:param stride: stride width of pooling.
:type stride: int|tuple|list
:param layer_attr: Extra Layer attribute.
:type layer_attr: ExtraLayerAttribute
:param ceil_mode: Wether to use ceil mode to calculate output height and with.
Defalut is True. If set false, Otherwise use floor.
:type ceil_mode: bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
if
num_channels
is
None
:
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
if
pool_type
is
None
:
pool_type
=
MaxPooling
()
elif
isinstance
(
pool_type
,
AvgPooling
):
pool_type
.
name
=
'avg'
type_name
=
pool_type
.
name
+
'-projection'
\
if
(
isinstance
(
pool_type
,
AvgPooling
)
or
isinstance
(
pool_type
,
MaxPooling
))
\
else
pool_type
.
name
if
isinstance
(
pool_size
,
collections
.
Sequence
):
assert
len
(
pool_size
)
==
3
pool_size
,
pool_size_y
,
pool_size_z
=
pool_size
else
:
pool_size_y
=
pool_size
pool_size_z
=
pool_size
if
isinstance
(
stride
,
collections
.
Sequence
):
assert
len
(
stride
)
==
3
stride
,
stride_y
,
stride_z
=
stride
else
:
stride_y
=
stride
stride_z
=
stride
if
isinstance
(
padding
,
collections
.
Sequence
):
assert
len
(
padding
)
==
3
padding
,
padding_y
,
padding_y
=
padding
else
:
padding_y
=
padding
padding_z
=
padding
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
POOL3D_LAYER
,
inputs
=
[
Input
(
input
.
name
,
pool
=
Pool3d
(
pool_type
=
type_name
,
channels
=
num_channels
,
size_x
=
pool_size
,
start
=
None
,
stride
=
stride
,
padding
=
padding
,
size_y
=
pool_size_y
,
stride_y
=
stride_y
,
padding_y
=
padding_y
,
size_z
=
pool_size_z
,
stride_z
=
stride_z
,
padding_z
=
padding_z
))
],
ceil_mode
=
ceil_mode
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
POOL_LAYER
,
parents
=
[
input
],
num_filters
=
num_channels
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"spp"
)
@
layer_support
()
def
spp_layer
(
input
,
...
...
python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py
0 → 100644
浏览文件 @
b1c0bad9
from
paddle.trainer_config_helpers
import
*
settings
(
batch_size
=
100
,
learning_rate
=
1e-5
)
data_2d
=
data_layer
(
name
=
'data_2d'
,
size
=
6000
,
height
=
20
,
width
=
10
)
pool_2d
=
img_pool_layer
(
name
=
"pool___2d"
,
input
=
data_2d
,
num_channels
=
30
,
pool_size
=
5
,
stride
=
3
,
padding
=
1
,
pool_type
=
AvgPooling
())
outputs
(
pool_2d
)
data_3d
=
data_layer
(
name
=
'data_3d_1'
,
size
=
60000
,
depth
=
10
,
height
=
20
,
width
=
10
)
pool_3d_1
=
img_pool3d_layer
(
name
=
"pool_3d_1"
,
input
=
data_3d
,
num_channels
=
30
,
pool_size
=
5
,
stride
=
3
,
padding
=
1
,
pool_type
=
AvgPooling
())
outputs
(
pool_3d_1
)
pool_3d_2
=
img_pool3d_layer
(
name
=
"pool_3d_2"
,
input
=
data_3d
,
num_channels
=
30
,
pool_size
=
[
5
,
5
,
5
],
stride
=
[
3
,
3
,
3
],
padding
=
[
1
,
1
,
1
],
pool_type
=
MaxPooling
())
outputs
(
pool_3d_2
)
python/paddle/trainer_config_helpers/tests/layers_test.py
浏览文件 @
b1c0bad9
...
...
@@ -16,4 +16,4 @@ from paddle.trainer.config_parser import parse_config_and_serialize
if
__name__
==
'__main__'
:
parse_config_and_serialize
(
'trainer_config_helpers/tests/
layers_test_config
.py'
,
''
)
'trainer_config_helpers/tests/
configs/test_pooling3D_layer
.py'
,
''
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录