Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b152dbb4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
接近 2 年 前同步成功
通知
707
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b152dbb4
编写于
6月 18, 2019
作者:
S
Superjomn
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add GoogleNet realted kernels unitest
上级
ce6c24e6
变更
32
隐藏空白更改
内联
并排
Showing
32 changed file
with
1802 addition
and
801 deletion
+1802
-801
paddle/fluid/lite/kernels/x86/CMakeLists.txt
paddle/fluid/lite/kernels/x86/CMakeLists.txt
+12
-0
paddle/fluid/lite/kernels/x86/concat_compute.cc
paddle/fluid/lite/kernels/x86/concat_compute.cc
+1
-82
paddle/fluid/lite/kernels/x86/concat_compute.h
paddle/fluid/lite/kernels/x86/concat_compute.h
+98
-0
paddle/fluid/lite/kernels/x86/concat_compute_test.cc
paddle/fluid/lite/kernels/x86/concat_compute_test.cc
+83
-0
paddle/fluid/lite/kernels/x86/conv_compute.cc
paddle/fluid/lite/kernels/x86/conv_compute.cc
+1
-138
paddle/fluid/lite/kernels/x86/conv_compute.h
paddle/fluid/lite/kernels/x86/conv_compute.h
+153
-0
paddle/fluid/lite/kernels/x86/conv_compute_test.cc
paddle/fluid/lite/kernels/x86/conv_compute_test.cc
+92
-0
paddle/fluid/lite/kernels/x86/dropout_compute.cc
paddle/fluid/lite/kernels/x86/dropout_compute.cc
+1
-66
paddle/fluid/lite/kernels/x86/dropout_compute.h
paddle/fluid/lite/kernels/x86/dropout_compute.h
+81
-0
paddle/fluid/lite/kernels/x86/dropout_compute_test.cc
paddle/fluid/lite/kernels/x86/dropout_compute_test.cc
+78
-0
paddle/fluid/lite/kernels/x86/elementwise_compute.cc
paddle/fluid/lite/kernels/x86/elementwise_compute.cc
+1
-106
paddle/fluid/lite/kernels/x86/elementwise_compute.h
paddle/fluid/lite/kernels/x86/elementwise_compute.h
+120
-0
paddle/fluid/lite/kernels/x86/elementwise_compute_test.cc
paddle/fluid/lite/kernels/x86/elementwise_compute_test.cc
+86
-0
paddle/fluid/lite/kernels/x86/fc_compute.cc
paddle/fluid/lite/kernels/x86/fc_compute.cc
+1
-83
paddle/fluid/lite/kernels/x86/fc_compute.h
paddle/fluid/lite/kernels/x86/fc_compute.h
+98
-0
paddle/fluid/lite/kernels/x86/fc_compute_test.cc
paddle/fluid/lite/kernels/x86/fc_compute_test.cc
+100
-0
paddle/fluid/lite/kernels/x86/mul_compute.cc
paddle/fluid/lite/kernels/x86/mul_compute.cc
+1
-116
paddle/fluid/lite/kernels/x86/mul_compute.h
paddle/fluid/lite/kernels/x86/mul_compute.h
+131
-0
paddle/fluid/lite/kernels/x86/mul_compute_test.cc
paddle/fluid/lite/kernels/x86/mul_compute_test.cc
+84
-0
paddle/fluid/lite/kernels/x86/pool_compute.cc
paddle/fluid/lite/kernels/x86/pool_compute.cc
+2
-61
paddle/fluid/lite/kernels/x86/pool_compute.h
paddle/fluid/lite/kernels/x86/pool_compute.h
+75
-0
paddle/fluid/lite/kernels/x86/pool_compute_test.cc
paddle/fluid/lite/kernels/x86/pool_compute_test.cc
+79
-0
paddle/fluid/lite/kernels/x86/relu_compute.cc
paddle/fluid/lite/kernels/x86/relu_compute.cc
+1
-36
paddle/fluid/lite/kernels/x86/relu_compute.h
paddle/fluid/lite/kernels/x86/relu_compute.h
+52
-0
paddle/fluid/lite/kernels/x86/relu_compute_test.cc
paddle/fluid/lite/kernels/x86/relu_compute_test.cc
+75
-0
paddle/fluid/lite/kernels/x86/scale_compute.cc
paddle/fluid/lite/kernels/x86/scale_compute.cc
+1
-42
paddle/fluid/lite/kernels/x86/scale_compute.h
paddle/fluid/lite/kernels/x86/scale_compute.h
+57
-0
paddle/fluid/lite/kernels/x86/scale_compute_test.cc
paddle/fluid/lite/kernels/x86/scale_compute_test.cc
+76
-0
paddle/fluid/lite/kernels/x86/softmax_compute.cc
paddle/fluid/lite/kernels/x86/softmax_compute.cc
+1
-70
paddle/fluid/lite/kernels/x86/softmax_compute.h
paddle/fluid/lite/kernels/x86/softmax_compute.h
+86
-0
paddle/fluid/lite/kernels/x86/softmax_compute_test.cc
paddle/fluid/lite/kernels/x86/softmax_compute_test.cc
+74
-0
paddle/fluid/lite/operators/dropout_op.cc
paddle/fluid/lite/operators/dropout_op.cc
+1
-1
未找到文件。
paddle/fluid/lite/kernels/x86/CMakeLists.txt
浏览文件 @
b152dbb4
...
...
@@ -18,6 +18,18 @@ cc_library(concat_compute_x86 SRCS concat_compute.cc DEPS ${lite_kernel_deps} )
cc_library
(
conv_compute_x86 SRCS conv_compute.cc DEPS
${
lite_kernel_deps
}
blas im2col vol2col
)
cc_library
(
pool_compute_x86 SRCS pool_compute.cc DEPS
${
lite_kernel_deps
}
pooling
)
lite_cc_test
(
test_fc_compute_x86 SRCS fc_compute_test.cc DEPS fc_compute_x86
)
lite_cc_test
(
test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86
)
lite_cc_test
(
test_pool2d_compute_x86 SRCS pool_compute_test.cc DEPS pool_compute_x86
)
lite_cc_test
(
test_concat_compute_x86 SRCS concat_compute_test.cc DEPS concat_compute_x86
)
lite_cc_test
(
test_softmax_compute_x86 SRCS softmax_compute_test.cc DEPS softmax_compute_x86
)
lite_cc_test
(
test_elementwise_compute_x86 SRCS elementwise_compute_test.cc DEPS elementwise_compute_x86
)
lite_cc_test
(
test_relu_compute_x86 SRCS relu_compute_test.cc DEPS relu_compute_x86
)
lite_cc_test
(
test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86 operator
)
lite_cc_test
(
test_scale_compute_x86 SRCS scale_compute_test.cc DEPS scale_compute_x86
)
lite_cc_test
(
test_dropout_compute_x86 SRCS dropout_compute_test.cc DEPS dropout_compute_x86
)
set
(
x86_kernels
activation_compute_x86
elementwise_compute_x86
...
...
paddle/fluid/lite/kernels/x86/concat_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,88 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/strided_memcpy.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
ConcatCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ConcatParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
int64_t
axis
=
static_cast
<
int64_t
>
(
param
.
axis
);
auto
out
=
param
.
output
;
if
(
axis
==
0
&&
param
.
x
.
size
()
<
10
)
{
size_t
output_offset
=
0
;
for
(
auto
*
in
:
param
.
x
)
{
if
(
!
in
||
in
->
dims
().
production
()
==
0UL
)
{
continue
;
}
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
().
data
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
().
data
());
paddle
::
operators
::
StridedNumelCopyWithAxis
<
T
>
(
platform
::
CPUDeviceContext
(),
axis
,
out
->
mutable_data
<
T
>
()
+
output_offset
,
out_stride
,
in
->
data
<
T
>
(),
in_stride
,
in_stride
[
axis
]);
output_offset
+=
in_stride
[
axis
];
}
}
else
{
std
::
vector
<
lite
::
Tensor
>
inputs
;
for
(
size_t
j
=
0
;
j
<
param
.
x
.
size
();
++
j
)
{
if
(
param
.
x
[
j
]
&&
param
.
x
[
j
]
->
dims
().
production
()
>
0
)
{
inputs
.
push_back
(
*
param
.
x
[
j
]);
}
else
{
continue
;
}
}
int
num
=
inputs
.
size
();
int
rows
=
1
;
auto
dim_0
=
inputs
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
dim_0
[
i
];
}
int
out_rows
=
rows
,
out_cols
=
0
;
std
::
vector
<
int64_t
>
input_cols
(
inputs
.
size
());
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
inputs
[
i
].
dims
().
production
()
/
rows
;
out_cols
+=
t_cols
;
input_cols
[
i
]
=
t_cols
;
}
// computation
auto
output_data
=
param
.
output
->
template
mutable_data
<
T
>();
int
col_idx
=
0
;
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
input_cols
[
j
];
auto
input_data
=
inputs
[
j
].
data
<
float
>
();
for
(
int
k
=
0
;
k
<
out_rows
;
++
k
)
{
std
::
memcpy
(
output_data
+
k
*
out_cols
+
col_idx
,
input_data
+
k
*
col_len
,
sizeof
(
T
)
*
col_len
);
}
col_idx
+=
col_len
;
}
}
}
virtual
~
ConcatCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
#include "paddle/fluid/lite/kernels/x86/concat_compute.h"
REGISTER_LITE_KERNEL
(
concat
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
ConcatCompute
<
float
>
,
def
)
...
...
paddle/fluid/lite/kernels/x86/concat_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Core>
#include <vector>
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/strided_memcpy.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
ConcatCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ConcatParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
int64_t
axis
=
static_cast
<
int64_t
>
(
param
.
axis
);
auto
out
=
param
.
output
;
if
(
axis
==
0
&&
param
.
x
.
size
()
<
10
)
{
size_t
output_offset
=
0
;
for
(
auto
*
in
:
param
.
x
)
{
if
(
!
in
||
in
->
dims
().
production
()
==
0UL
)
{
continue
;
}
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
().
data
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
().
data
());
paddle
::
operators
::
StridedNumelCopyWithAxis
<
T
>
(
platform
::
CPUDeviceContext
(),
axis
,
out
->
mutable_data
<
T
>
()
+
output_offset
,
out_stride
,
in
->
data
<
T
>
(),
in_stride
,
in_stride
[
axis
]);
output_offset
+=
in_stride
[
axis
];
}
}
else
{
std
::
vector
<
lite
::
Tensor
>
inputs
;
for
(
size_t
j
=
0
;
j
<
param
.
x
.
size
();
++
j
)
{
if
(
param
.
x
[
j
]
&&
param
.
x
[
j
]
->
dims
().
production
()
>
0
)
{
inputs
.
push_back
(
*
param
.
x
[
j
]);
}
else
{
continue
;
}
}
int
num
=
inputs
.
size
();
int
rows
=
1
;
auto
dim_0
=
inputs
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
dim_0
[
i
];
}
int
out_rows
=
rows
,
out_cols
=
0
;
std
::
vector
<
int64_t
>
input_cols
(
inputs
.
size
());
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
inputs
[
i
].
dims
().
production
()
/
rows
;
out_cols
+=
t_cols
;
input_cols
[
i
]
=
t_cols
;
}
// computation
auto
output_data
=
param
.
output
->
template
mutable_data
<
T
>();
int
col_idx
=
0
;
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
input_cols
[
j
];
auto
input_data
=
inputs
[
j
].
data
<
float
>
();
for
(
int
k
=
0
;
k
<
out_rows
;
++
k
)
{
std
::
memcpy
(
output_data
+
k
*
out_cols
+
col_idx
,
input_data
+
k
*
col_len
,
sizeof
(
T
)
*
col_len
);
}
col_idx
+=
col_len
;
}
}
}
virtual
~
ConcatCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/concat_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/concat_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
concat_x86
,
retrive_op
)
{
auto
concat
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"concat"
);
ASSERT_FALSE
(
concat
.
empty
());
ASSERT_TRUE
(
concat
.
front
());
}
TEST
(
concat_x86
,
init
)
{
ConcatCompute
<
float
>
concat
;
ASSERT_EQ
(
concat
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
concat
.
target
(),
TARGET
(
kX86
));
}
TEST
(
concat_x86
,
run_test
)
{
lite
::
Tensor
x1
,
x2
,
out
;
constexpr
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x1_shape
{
batch_size
,
1
,
3
,
3
};
x1
.
Resize
(
lite
::
DDim
(
x1_shape
));
std
::
vector
<
int64_t
>
x2_shape
{
batch_size
,
1
,
3
,
3
};
x2
.
Resize
(
lite
::
DDim
(
x2_shape
));
std
::
vector
<
lite
::
Tensor
*>
x
=
{
&
x1
,
&
x2
};
std
::
vector
<
int64_t
>
out_shape
{
batch_size
,
2
,
3
,
3
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x1_data
=
x1
.
mutable_data
<
float
>
();
auto
x2_data
=
x2
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x1
.
dims
().
production
();
i
++
)
{
x1_data
[
i
]
=
1
;
x2_data
[
i
]
=
2
;
}
ConcatCompute
<
float
>
concat
;
operators
::
ConcatParam
param
;
param
.
x
=
x
;
param
.
output
=
&
out
;
param
.
axis
=
1
;
concat
.
SetParam
(
param
);
concat
.
Run
();
std
::
cout
<<
"output: "
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
std
::
cout
<<
out_data
[
i
]
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
concat
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/x86/conv_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,144 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/lite/operators/conv_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
inline
bool
IsExpand
(
const
std
::
vector
<
int64_t
>&
filter_dim
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
}
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
template
<
typename
T
>
class
Conv2dCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ConvParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
ConvParam
>
();
lite
::
Tensor
filter
=
*
param
.
filter
;
param
.
output
->
template
mutable_data
<
T
>();
const
int
batch_size
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
filter
.
dims
().
Vectorize
());
std
::
vector
<
int64_t
>
output_shape_vec
(
param
.
output
->
dims
().
Vectorize
());
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
param
.
x
->
dims
()[
1
]
/
param
.
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
lite
::
DDim
col_shape
(
col_shape_vec
);
lite
::
DDim
col_matrix_shape
=
col_shape
.
Flattern2D
(
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
param
.
strides
,
param
.
paddings
,
param
.
dilations
);
lite
::
Tensor
col
;
lite
::
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
Resize
(
col_shape
);
col
.
mutable_data
<
T
>
();
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
lite
::
DDim
input_shape
=
param
.
x
->
dims
().
Slice
(
1
,
param
.
x
->
dims
().
size
());
lite
::
DDim
filter_matrix_shape
(
std
::
vector
<
int64_t
>
{
filter
.
dims
()[
0
],
filter
.
dims
().
production
()
/
filter
.
dims
()[
0
]});
filter
.
Resize
(
filter_matrix_shape
);
lite
::
DDim
output_matrix_shape
(
std
::
vector
<
int64_t
>
{
param
.
output
->
dims
()[
1
],
param
.
output
->
dims
().
production
()
/
(
param
.
output
->
dims
()[
0
]
*
param
.
output
->
dims
()[
1
])});
int
in_step
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
1
])
/
param
.
groups
;
int
out_step
=
static_cast
<
int
>
(
param
.
output
->
dims
()[
1
])
/
param
.
groups
;
paddle
::
operators
::
math
::
Vol2ColFunctor
<
platform
::
CPUDeviceContext
,
T
>
vol2col
;
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
platform
::
CPUDeviceContext
,
T
>
im2col
;
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
platform
::
CPUDeviceContext
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
lite
::
Tensor
in_batch
;
in_batch
.
ShareDataWith
(
param
.
x
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
.
data
()));
lite
::
Tensor
out_batch
;
out_batch
.
ShareDataWith
(
param
.
output
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
.
data
()));
for
(
int
g
=
0
;
g
<
param
.
groups
;
g
++
)
{
lite
::
Tensor
in_slice
;
in_slice
.
ShareDataWith
(
in_batch
.
raw_tensor
().
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
));
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
platform
::
CPUDeviceContext
(),
in_slice
.
raw_tensor
(),
param
.
dilations
,
param
.
strides
,
std
::
vector
<
int
>
{
param
.
paddings
[
0
],
param
.
paddings
[
1
],
param
.
paddings
[
0
],
param
.
paddings
[
1
]},
&
(
col
.
raw_tensor
()));
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
platform
::
CPUDeviceContext
(),
in_slice
.
raw_tensor
(),
param
.
dilations
,
param
.
strides
,
param
.
paddings
,
&
(
col
.
raw_tensor
()));
}
// gemm
lite
::
Tensor
out_slice
;
out_slice
.
ShareDataWith
(
out_batch
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
lite
::
Tensor
filter_slice
;
filter_slice
.
ShareDataWith
(
filter
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
blas
.
MatMul
(
filter_slice
.
raw_tensor
(),
false
,
col_matrix
.
raw_tensor
(),
false
,
T
(
1.0
),
&
(
out_slice
.
raw_tensor
()),
T
(
0.0
));
}
}
}
virtual
~
Conv2dCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
#include "paddle/fluid/lite/kernels/x86/conv_compute.h"
REGISTER_LITE_KERNEL
(
conv2d
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
Conv2dCompute
<
float
>
,
def
)
...
...
paddle/fluid/lite/kernels/x86/conv_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Core>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/lite/operators/conv_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
inline
bool
IsExpand
(
const
std
::
vector
<
int64_t
>&
filter_dim
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
}
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
template
<
typename
T
>
class
Conv2dCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ConvParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
ConvParam
>
();
lite
::
Tensor
filter
=
*
param
.
filter
;
param
.
output
->
template
mutable_data
<
T
>();
const
int
batch_size
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
filter
.
dims
().
Vectorize
());
std
::
vector
<
int64_t
>
output_shape_vec
(
param
.
output
->
dims
().
Vectorize
());
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
param
.
x
->
dims
()[
1
]
/
param
.
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
lite
::
DDim
col_shape
(
col_shape_vec
);
lite
::
DDim
col_matrix_shape
=
col_shape
.
Flattern2D
(
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
param
.
strides
,
param
.
paddings
,
param
.
dilations
);
lite
::
Tensor
col
;
lite
::
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
Resize
(
col_shape
);
col
.
mutable_data
<
T
>
();
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
lite
::
DDim
input_shape
=
param
.
x
->
dims
().
Slice
(
1
,
param
.
x
->
dims
().
size
());
lite
::
DDim
filter_matrix_shape
(
std
::
vector
<
int64_t
>
{
filter
.
dims
()[
0
],
filter
.
dims
().
production
()
/
filter
.
dims
()[
0
]});
filter
.
Resize
(
filter_matrix_shape
);
lite
::
DDim
output_matrix_shape
(
std
::
vector
<
int64_t
>
{
param
.
output
->
dims
()[
1
],
param
.
output
->
dims
().
production
()
/
(
param
.
output
->
dims
()[
0
]
*
param
.
output
->
dims
()[
1
])});
int
in_step
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
1
])
/
param
.
groups
;
int
out_step
=
static_cast
<
int
>
(
param
.
output
->
dims
()[
1
])
/
param
.
groups
;
paddle
::
operators
::
math
::
Vol2ColFunctor
<
platform
::
CPUDeviceContext
,
T
>
vol2col
;
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
platform
::
CPUDeviceContext
,
T
>
im2col
;
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
platform
::
CPUDeviceContext
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
lite
::
Tensor
in_batch
;
in_batch
.
ShareDataWith
(
param
.
x
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
.
data
()));
lite
::
Tensor
out_batch
;
out_batch
.
ShareDataWith
(
param
.
output
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
.
data
()));
for
(
int
g
=
0
;
g
<
param
.
groups
;
g
++
)
{
lite
::
Tensor
in_slice
;
in_slice
.
ShareDataWith
(
in_batch
.
raw_tensor
().
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
));
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
platform
::
CPUDeviceContext
(),
in_slice
.
raw_tensor
(),
param
.
dilations
,
param
.
strides
,
std
::
vector
<
int
>
{
param
.
paddings
[
0
],
param
.
paddings
[
1
],
param
.
paddings
[
0
],
param
.
paddings
[
1
]},
&
(
col
.
raw_tensor
()));
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
platform
::
CPUDeviceContext
(),
in_slice
.
raw_tensor
(),
param
.
dilations
,
param
.
strides
,
param
.
paddings
,
&
(
col
.
raw_tensor
()));
}
// gemm
lite
::
Tensor
out_slice
;
out_slice
.
ShareDataWith
(
out_batch
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
lite
::
Tensor
filter_slice
;
filter_slice
.
ShareDataWith
(
filter
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
blas
.
MatMul
(
filter_slice
.
raw_tensor
(),
false
,
col_matrix
.
raw_tensor
(),
false
,
T
(
1.0
),
&
(
out_slice
.
raw_tensor
()),
T
(
0.0
));
}
}
}
virtual
~
Conv2dCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/conv_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/conv_compute.h"
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
conv_x86
,
retrive_op
)
{
auto
conv2d
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"conv2d"
);
ASSERT_FALSE
(
conv2d
.
empty
());
ASSERT_TRUE
(
conv2d
.
front
());
}
TEST
(
conv2d_x86
,
init
)
{
Conv2dCompute
<
float
>
conv2d
;
ASSERT_EQ
(
conv2d
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
conv2d
.
target
(),
TARGET
(
kX86
));
}
TEST
(
conv2d_x86
,
run_test
)
{
lite
::
Tensor
x
,
filter
,
b
,
out
;
constexpr
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
,
3
,
3
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
filter_shape
{
1
,
3
,
3
,
3
};
filter
.
Resize
(
lite
::
DDim
(
filter_shape
));
std
::
vector
<
int64_t
>
b_shape
{
1
,
3
,
1
,
1
};
b
.
Resize
(
lite
::
DDim
(
b_shape
));
std
::
vector
<
int64_t
>
out_shape
{
batch_size
,
1
,
1
,
1
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
filter_data
=
filter
.
mutable_data
<
float
>
();
auto
b_data
=
b
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
1
;
}
for
(
int64_t
i
=
0
;
i
<
filter
.
dims
().
production
();
i
++
)
{
filter_data
[
i
]
=
1
;
}
for
(
int64_t
i
=
0
;
i
<
b
.
dims
().
production
();
i
++
)
{
b_data
[
i
]
=
0
;
}
Conv2dCompute
<
float
>
conv2d
;
operators
::
ConvParam
param
;
param
.
x
=
&
x
;
param
.
filter
=
&
filter
;
param
.
bias
=
&
b
;
param
.
output
=
&
out
;
param
.
strides
=
{
1
,
1
};
param
.
paddings
=
{
0
,
0
};
param
.
groups
=
1
;
param
.
dilations
=
{
1
,
1
};
conv2d
.
SetParam
(
param
);
conv2d
.
Run
();
LOG
(
INFO
)
<<
"output: "
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
LOG
(
INFO
)
<<
out_data
[
i
]
<<
" "
;
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
conv2d
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/x86/dropout_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,72 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <random>
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
class
DropoutCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
DropoutParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
DropoutParam
>
();
const
auto
*
x_data
=
param
.
x
->
data
<
T
>
();
auto
*
out_data
=
param
.
output
->
template
mutable_data
<
T
>();
if
(
!
param
.
is_test
)
{
auto
*
mask_data
=
param
.
mask
->
template
mutable_data
<
T
>();
std
::
random_device
rnd
;
std
::
minstd_rand
engine
;
int
seed
=
param
.
fix_seed
?
param
.
seed
:
rnd
();
engine
.
seed
(
seed
);
std
::
uniform_real_distribution
<
float
>
dist
(
0
,
1
);
size_t
size
=
framework
::
product
(
param
.
mask
->
dims
().
data
());
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
if
(
dist
(
engine
)
<
param
.
dropout_prob
)
{
mask_data
[
i
]
=
0
;
out_data
[
i
]
=
0
;
}
else
{
if
(
param
.
dropout_implementation
==
"upscale_in_train"
)
{
mask_data
[
i
]
=
1.0
f
/
static_cast
<
T
>
(
1.0
f
-
param
.
dropout_prob
);
out_data
[
i
]
=
x_data
[
i
]
/
static_cast
<
T
>
(
1.0
f
-
param
.
dropout_prob
);
}
else
{
mask_data
[
i
]
=
1
;
out_data
[
i
]
=
x_data
[
i
];
}
}
}
}
else
{
auto
X
=
EigenMatrix
<
T
>::
Reshape
(
param
.
x
->
raw_tensor
(),
1
);
auto
Y
=
EigenMatrix
<
T
>::
Reshape
(
param
.
output
->
raw_tensor
(),
1
);
auto
&
place
=
*
platform
::
CPUDeviceContext
().
eigen_device
();
if
(
param
.
dropout_implementation
==
"upscale_in_train"
)
{
Y
.
device
(
place
)
=
X
;
}
else
{
Y
.
device
(
place
)
=
X
*
static_cast
<
T
>
(
1.0
f
-
param
.
dropout_prob
);
}
}
}
virtual
~
DropoutCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
#include "paddle/fluid/lite/kernels/x86/dropout_compute.h"
REGISTER_LITE_KERNEL
(
dropout
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
DropoutCompute
<
float
>
,
def
)
...
...
paddle/fluid/lite/kernels/x86/dropout_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <random>
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
class
DropoutCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
DropoutParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
DropoutParam
>
();
const
auto
*
x_data
=
param
.
x
->
data
<
T
>
();
auto
*
out_data
=
param
.
output
->
template
mutable_data
<
T
>();
if
(
!
param
.
is_test
)
{
auto
*
mask_data
=
param
.
mask
->
template
mutable_data
<
T
>();
std
::
random_device
rnd
;
std
::
minstd_rand
engine
;
int
seed
=
param
.
fix_seed
?
param
.
seed
:
rnd
();
engine
.
seed
(
seed
);
std
::
uniform_real_distribution
<
float
>
dist
(
0
,
1
);
size_t
size
=
framework
::
product
(
param
.
mask
->
dims
().
data
());
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
if
(
dist
(
engine
)
<
param
.
dropout_prob
)
{
mask_data
[
i
]
=
0
;
out_data
[
i
]
=
0
;
}
else
{
if
(
param
.
dropout_implementation
==
"upscale_in_train"
)
{
mask_data
[
i
]
=
1.0
f
/
static_cast
<
T
>
(
1.0
f
-
param
.
dropout_prob
);
out_data
[
i
]
=
x_data
[
i
]
/
static_cast
<
T
>
(
1.0
f
-
param
.
dropout_prob
);
}
else
{
mask_data
[
i
]
=
1
;
out_data
[
i
]
=
x_data
[
i
];
}
}
}
}
else
{
auto
X
=
EigenMatrix
<
T
>::
Reshape
(
param
.
x
->
raw_tensor
(),
1
);
auto
Y
=
EigenMatrix
<
T
>::
Reshape
(
param
.
output
->
raw_tensor
(),
1
);
auto
&
place
=
*
platform
::
CPUDeviceContext
().
eigen_device
();
if
(
param
.
dropout_implementation
==
"upscale_in_train"
)
{
Y
.
device
(
place
)
=
X
;
}
else
{
Y
.
device
(
place
)
=
X
*
static_cast
<
T
>
(
1.0
f
-
param
.
dropout_prob
);
}
}
}
virtual
~
DropoutCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/dropout_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/dropout_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
dropout_x86
,
retrive_op
)
{
auto
dropout
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"dropout"
);
ASSERT_FALSE
(
dropout
.
empty
());
ASSERT_TRUE
(
dropout
.
front
());
}
TEST
(
dropout_x86
,
init
)
{
DropoutCompute
<
float
>
dropout
;
ASSERT_EQ
(
dropout
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
dropout
.
target
(),
TARGET
(
kX86
));
}
TEST
(
dropout_x86
,
run_test
)
{
lite
::
Tensor
x
,
y
,
out
;
constexpr
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
,
2
,
2
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
out_shape
{
batch_size
,
3
,
2
,
2
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
// DropoutCompute dropout;
DropoutCompute
<
float
>
dropout
;
operators
::
DropoutParam
param
;
param
.
x
=
&
x
;
param
.
dropout_prob
=
0.25
;
param
.
is_test
=
true
;
param
.
fix_seed
=
true
;
param
.
output
=
&
out
;
dropout
.
SetParam
(
param
);
dropout
.
Run
();
LOG
(
INFO
)
<<
"output: "
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
LOG
(
INFO
)
<<
out_data
[
i
];
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
dropout
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/x86/elementwise_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,113 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/lite/kernels/x86/elementwise_compute.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
struct
SubFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
-
b
;
}
};
template
<
typename
T
>
struct
AddFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
+
b
;
}
};
template
<
typename
T
>
class
ElementwiseSubCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ElementwiseParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
CHECK
(
context
.
x86_device_context
());
param
.
Out
->
template
mutable_data
<
T
>();
paddle
::
operators
::
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
platform
::
CPUDeviceContext
,
T
>
(
*
context
.
x86_execution_context
(),
&
param
.
X
->
raw_tensor
(),
&
param
.
Y
->
raw_tensor
(),
param
.
axis
,
SubFunctor
<
T
>
(),
&
param
.
Out
->
raw_tensor
());
}
virtual
~
ElementwiseSubCompute
()
=
default
;
};
template
<
typename
T
>
struct
SubGradDX
{
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
;
}
};
template
<
typename
T
>
struct
SubGradDY
{
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
-
dout
;
}
};
template
<
typename
T
>
class
ElementwiseSubGradCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ElementwiseGradParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
CHECK
(
context
.
x86_device_context
());
param
.
X_grad
->
template
mutable_data
<
T
>();
param
.
Y_grad
->
template
mutable_data
<
T
>();
// skip out, x, y
auto
dout
=
param
.
Out_grad
->
raw_tensor
();
auto
dx
=
param
.
X_grad
->
raw_tensor
();
auto
dy
=
param
.
Y_grad
->
raw_tensor
();
auto
&
skip
=
dout
;
paddle
::
operators
::
ElemwiseExplicitGradCompute
<
platform
::
CPUDeviceContext
,
T
,
SubGradDX
<
T
>
,
SubGradDY
<
T
>>
(
*
context
.
x86_execution_context
(),
skip
,
skip
,
skip
,
dout
,
param
.
axis
,
&
dx
,
&
dy
,
SubGradDX
<
T
>
(),
SubGradDY
<
T
>
());
}
virtual
~
ElementwiseSubGradCompute
()
=
default
;
};
template
<
typename
T
>
class
ElementwiseAddCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ElementwiseParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
CHECK
(
context
.
x86_device_context
());
param
.
Out
->
template
mutable_data
<
T
>();
paddle
::
operators
::
ElementwiseComputeEx
<
AddFunctor
<
T
>
,
platform
::
CPUDeviceContext
,
T
>
(
*
context
.
x86_execution_context
(),
&
param
.
X
->
raw_tensor
(),
&
param
.
Y
->
raw_tensor
(),
param
.
axis
,
AddFunctor
<
T
>
(),
&
param
.
Out
->
raw_tensor
());
}
virtual
~
ElementwiseAddCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
// float
REGISTER_LITE_KERNEL
(
elementwise_sub
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
ElementwiseSubCompute
<
float
>
,
def
)
...
...
paddle/fluid/lite/kernels/x86/elementwise_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
struct
SubFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
-
b
;
}
};
template
<
typename
T
>
struct
AddFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
+
b
;
}
};
template
<
typename
T
>
class
ElementwiseSubCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ElementwiseParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
CHECK
(
context
.
x86_device_context
());
param
.
Out
->
template
mutable_data
<
T
>();
paddle
::
operators
::
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
platform
::
CPUDeviceContext
,
T
>
(
*
context
.
x86_execution_context
(),
&
param
.
X
->
raw_tensor
(),
&
param
.
Y
->
raw_tensor
(),
param
.
axis
,
SubFunctor
<
T
>
(),
&
param
.
Out
->
raw_tensor
());
}
virtual
~
ElementwiseSubCompute
()
=
default
;
};
template
<
typename
T
>
struct
SubGradDX
{
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
;
}
};
template
<
typename
T
>
struct
SubGradDY
{
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
-
dout
;
}
};
template
<
typename
T
>
class
ElementwiseSubGradCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ElementwiseGradParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
CHECK
(
context
.
x86_device_context
());
param
.
X_grad
->
template
mutable_data
<
T
>();
param
.
Y_grad
->
template
mutable_data
<
T
>();
// skip out, x, y
auto
dout
=
param
.
Out_grad
->
raw_tensor
();
auto
dx
=
param
.
X_grad
->
raw_tensor
();
auto
dy
=
param
.
Y_grad
->
raw_tensor
();
auto
&
skip
=
dout
;
paddle
::
operators
::
ElemwiseExplicitGradCompute
<
platform
::
CPUDeviceContext
,
T
,
SubGradDX
<
T
>
,
SubGradDY
<
T
>>
(
*
context
.
x86_execution_context
(),
skip
,
skip
,
skip
,
dout
,
param
.
axis
,
&
dx
,
&
dy
,
SubGradDX
<
T
>
(),
SubGradDY
<
T
>
());
}
virtual
~
ElementwiseSubGradCompute
()
=
default
;
};
template
<
typename
T
>
class
ElementwiseAddCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ElementwiseParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
CHECK
(
context
.
x86_device_context
());
param
.
Out
->
template
mutable_data
<
T
>();
paddle
::
operators
::
ElementwiseComputeEx
<
AddFunctor
<
T
>
,
platform
::
CPUDeviceContext
,
T
>
(
*
context
.
x86_execution_context
(),
&
param
.
X
->
raw_tensor
(),
&
param
.
Y
->
raw_tensor
(),
param
.
axis
,
AddFunctor
<
T
>
(),
&
param
.
Out
->
raw_tensor
());
}
virtual
~
ElementwiseAddCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/elementwise_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/elementwise_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
elementwise_add_x86
,
retrive_op
)
{
auto
elementwise_add
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"elementwise_add"
);
ASSERT_FALSE
(
elementwise_add
.
empty
());
ASSERT_TRUE
(
elementwise_add
.
front
());
}
TEST
(
elementwise_add_x86
,
init
)
{
ElementwiseAddCompute
<
float
>
elementwise_add
;
ASSERT_EQ
(
elementwise_add
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
elementwise_add
.
target
(),
TARGET
(
kX86
));
}
TEST
(
elementwise_add_x86
,
run_test
)
{
lite
::
Tensor
x
,
y
,
out
;
constexpr
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
,
2
,
2
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
y_shape
{
batch_size
,
3
,
2
,
2
};
y
.
Resize
(
lite
::
DDim
(
y_shape
));
std
::
vector
<
int64_t
>
out_shape
{
batch_size
,
3
,
2
,
2
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
y_data
=
y
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
1
;
}
for
(
int64_t
i
=
0
;
i
<
y
.
dims
().
production
();
i
++
)
{
y_data
[
i
]
=
2
;
}
// ElementwiseAddCompute elementwise_add;
ElementwiseAddCompute
<
float
>
elementwise_add
;
operators
::
ElementwiseParam
param
;
param
.
X
=
&
x
;
param
.
Y
=
&
y
;
param
.
Out
=
&
out
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
X86Context
>
();
elementwise_add
.
SetParam
(
param
);
elementwise_add
.
SetContext
(
std
::
move
(
ctx
));
elementwise_add
.
Run
();
LOG
(
INFO
)
<<
"output: "
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
LOG
(
INFO
)
<<
out_data
[
i
];
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
elementwise_add
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/x86/fc_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,89 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
#include "paddle/fluid/lite/operators/fc_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
void
fc_compute_eigen
(
const
T
*
x
,
int
x_h
,
int
x_w
,
//
const
T
*
w
,
int
w_h
,
int
w_w
,
//
const
T
*
b
,
//
T
*
out
)
{
using
matrix_t
=
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>
;
Eigen
::
Map
<
const
matrix_t
>
X
(
x
,
x_h
,
x_w
);
Eigen
::
Map
<
const
matrix_t
>
W
(
w
,
w_h
,
w_w
);
Eigen
::
Map
<
matrix_t
>
Out
(
out
,
x_h
,
w_w
);
Out
=
X
*
W
;
if
(
b
)
{
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
1
>>
B
(
b
,
w_w
);
Out
=
Out
.
array
().
rowwise
()
+
B
.
transpose
().
array
();
}
}
template
<
typename
T
>
void
fc_compute_naive
(
const
T
*
x
,
int
x_h
,
int
x_w
,
//
const
T
*
w
,
int
w_h
,
int
w_w
,
//
const
T
*
b
,
//
T
*
out
)
{
CHECK_EQ
(
x_w
,
w_h
);
// out shape: (x_h, w_w)
memset
(
out
,
0
,
x_h
*
w_w
*
sizeof
(
T
));
for
(
int
i
=
0
;
i
<
x_h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w_w
;
j
++
)
{
T
tmp
=
static_cast
<
T
>
(
0
);
for
(
int
k
=
0
;
k
<
x_w
;
k
++
)
{
tmp
+=
x
[
i
*
x_w
+
k
]
*
w
[
k
*
w_w
+
j
];
}
out
[
i
*
w_w
+
j
]
=
tmp
+
b
[
j
];
}
}
}
template
<
typename
T
>
class
FcCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
FcParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
CHECK_GE
(
param
.
input
->
dims
().
size
(),
2UL
);
CHECK_EQ
(
param
.
output
->
dims
().
size
(),
2UL
);
fc_compute_eigen
(
param
.
input
->
data
<
T
>
(),
// x
param
.
input
->
dims
().
Slice
(
0
,
param
.
in_num_col_dims
).
production
(),
param
.
input
->
dims
()
.
Slice
(
param
.
in_num_col_dims
,
param
.
input
->
dims
().
size
())
.
production
(),
param
.
w
->
data
<
T
>
(),
// w
param
.
w
->
dims
()[
0
],
// w_h
param
.
w
->
dims
()[
1
],
// w_w
param
.
bias
->
data
<
T
>
(),
// b
param
.
output
->
mutable_data
<
T
>
());
}
virtual
~
FcCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
#include "paddle/fluid/lite/kernels/x86/fc_compute.h"
REGISTER_LITE_KERNEL
(
fc
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
FcCompute
<
float
>
,
def
)
...
...
paddle/fluid/lite/kernels/x86/fc_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Core>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
#include "paddle/fluid/lite/operators/fc_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
void
fc_compute_eigen
(
const
T
*
x
,
int
x_h
,
int
x_w
,
//
const
T
*
w
,
int
w_h
,
int
w_w
,
//
const
T
*
b
,
//
T
*
out
)
{
using
matrix_t
=
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>
;
Eigen
::
Map
<
const
matrix_t
>
X
(
x
,
x_h
,
x_w
);
Eigen
::
Map
<
const
matrix_t
>
W
(
w
,
w_h
,
w_w
);
Eigen
::
Map
<
matrix_t
>
Out
(
out
,
x_h
,
w_w
);
Out
=
X
*
W
;
if
(
b
)
{
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
1
>>
B
(
b
,
w_w
);
Out
=
Out
.
array
().
rowwise
()
+
B
.
transpose
().
array
();
}
}
template
<
typename
T
>
void
fc_compute_naive
(
const
T
*
x
,
int
x_h
,
int
x_w
,
//
const
T
*
w
,
int
w_h
,
int
w_w
,
//
const
T
*
b
,
//
T
*
out
)
{
CHECK_EQ
(
x_w
,
w_h
);
// out shape: (x_h, w_w)
memset
(
out
,
0
,
x_h
*
w_w
*
sizeof
(
T
));
for
(
int
i
=
0
;
i
<
x_h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w_w
;
j
++
)
{
T
tmp
=
static_cast
<
T
>
(
0
);
for
(
int
k
=
0
;
k
<
x_w
;
k
++
)
{
tmp
+=
x
[
i
*
x_w
+
k
]
*
w
[
k
*
w_w
+
j
];
}
out
[
i
*
w_w
+
j
]
=
tmp
+
b
[
j
];
}
}
}
template
<
typename
T
>
class
FcCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
FcParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
CHECK_GE
(
param
.
input
->
dims
().
size
(),
2UL
);
CHECK_EQ
(
param
.
output
->
dims
().
size
(),
2UL
);
fc_compute_eigen
(
param
.
input
->
data
<
T
>
(),
// x
param
.
input
->
dims
().
Slice
(
0
,
param
.
in_num_col_dims
).
production
(),
param
.
input
->
dims
()
.
Slice
(
param
.
in_num_col_dims
,
param
.
input
->
dims
().
size
())
.
production
(),
param
.
w
->
data
<
T
>
(),
// w
param
.
w
->
dims
()[
0
],
// w_h
param
.
w
->
dims
()[
1
],
// w_w
param
.
bias
->
data
<
T
>
(),
// b
param
.
output
->
mutable_data
<
T
>
());
}
virtual
~
FcCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/fc_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/fc_compute.h"
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
fc_x86
,
retrive_op
)
{
auto
fc
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"fc"
);
ASSERT_FALSE
(
fc
.
empty
());
ASSERT_TRUE
(
fc
.
front
());
}
TEST
(
fc_x86
,
init
)
{
FcCompute
<
float
>
fc
;
ASSERT_EQ
(
fc
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
fc
.
target
(),
TARGET
(
kX86
));
}
TEST
(
fc_x86
,
run_test
)
{
lite
::
Tensor
x
,
w
,
b
,
out
;
constexpr
int
batch_size
=
2
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
w_shape
{
3
,
4
};
w
.
Resize
(
lite
::
DDim
(
w_shape
));
std
::
vector
<
int64_t
>
b_shape
{
1
,
4
};
b
.
Resize
(
lite
::
DDim
(
b_shape
));
std
::
vector
<
int64_t
>
out_shape
{
1
,
4
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
w_data
=
w
.
mutable_data
<
float
>
();
auto
b_data
=
b
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
for
(
int64_t
i
=
0
;
i
<
w
.
dims
().
production
();
i
++
)
{
w_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
for
(
int64_t
i
=
0
;
i
<
b
.
dims
().
production
();
i
++
)
{
b_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
/* lite::x86::math::fc_compute_eigen(x_data, batch_size, 3, //
w_data, 3, 4, //
b_data, ref_data); */
// FcCompute fc;
FcCompute
<
float
>
fc
;
operators
::
FcParam
param
;
param
.
in_num_col_dims
=
1
;
param
.
input
=
&
x
;
param
.
w
=
&
w
;
param
.
bias
=
&
b
;
param
.
output
=
&
out
;
param
.
in_mat_dims
=
x
.
dims
();
// std::unique_ptr<KernelContext> ctx(new KernelContext);
// ctx->As<X86Context>();
fc
.
SetParam
(
param
);
// fc.SetContext(std::move(ctx));
fc
.
Run
();
VLOG
(
3
)
<<
"output vs ref"
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
VLOG
(
3
)
<<
out_data
[
i
];
}
/* for (int i = 0; i < out.dims().product(); ++i) {
EXPECT_NEAR(out_data[i], ref_data[i], 1e-5);
}*/
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
fc
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/x86/mul_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,122 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
MulCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
MulParam
;
void
Run
()
override
{
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
MulParam
>
();
CHECK
(
context
.
x86_device_context
());
param
.
output
->
template
mutable_data
<
T
>();
auto
*
x
=
&
param
.
x
->
raw_tensor
();
auto
*
y
=
&
param
.
y
->
raw_tensor
();
const
Tensor
x_matrix
=
x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
x
,
param
.
x_num_col_dims
)
:
*
x
;
const
Tensor
y_matrix
=
y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
y
,
param
.
y_num_col_dims
)
:
*
y
;
auto
*
z
=
&
param
.
output
->
raw_tensor
();
auto
z_dim
=
z
->
dims
();
if
(
z_dim
.
size
()
!=
2
)
{
z
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
*
context
.
x86_device_context
());
blas
.
MatMul
(
x_matrix
,
y_matrix
,
z
);
if
(
z_dim
.
size
()
!=
2
)
{
z
->
Resize
(
z_dim
);
}
}
virtual
~
MulCompute
()
=
default
;
};
template
<
typename
T
>
class
MulGradCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
void
Run
()
override
{
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
MulGradParam
>
();
CHECK
(
context
.
x86_device_context
());
auto
*
x
=
&
param
.
x
->
raw_tensor
();
auto
*
y
=
&
param
.
y
->
raw_tensor
();
auto
x_matrix
=
x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
x
,
param
.
x_num_col_dims
)
:
static_cast
<
const
Tensor
&>
(
*
x
);
auto
y_matrix
=
y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
y
,
param
.
y_num_col_dims
)
:
static_cast
<
const
Tensor
&>
(
*
y
);
auto
*
dout
=
&
param
.
output_grad
->
raw_tensor
();
Tensor
dout_mat
;
dout_mat
.
ShareDataWith
(
*
dout
);
dout_mat
.
Resize
(
{
framework
::
flatten_to_2d
(
x
->
dims
(),
param
.
x_num_col_dims
)[
0
],
framework
::
flatten_to_2d
(
y
->
dims
(),
param
.
y_num_col_dims
)[
1
]});
auto
*
dx
=
&
param
.
x_grad
->
raw_tensor
();
auto
*
dy
=
&
param
.
y_grad
->
raw_tensor
();
if
(
dx
!=
nullptr
)
{
dx
->
set_lod
(
x
->
lod
());
}
if
(
dy
!=
nullptr
)
{
dy
->
set_lod
(
y
->
lod
());
}
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
*
context
.
x86_device_context
());
if
(
dx
)
{
// dx->mutable_data<T>(context.x86_device_context->GetPlace());
param
.
x_grad
->
template
mutable_data
<
T
>();
Tensor
dx_matrix
=
dx
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
dx
,
param
.
x_num_col_dims
)
:
*
dx
;
// dx = dout * y'. dx: M x K, dout : M x N, y : K x N
blas
.
MatMul
(
dout_mat
,
false
,
y_matrix
,
true
,
&
dx_matrix
);
}
if
(
dy
)
{
// dy->yutable_data<T>(context.x86_device_context->GetPlace());
param
.
y_grad
->
template
mutable_data
<
T
>();
Tensor
dy_matrix
=
dy
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
dy
,
param
.
y_num_col_dims
)
:
*
dy
;
// dy = x' * dout. dy K x N, dout : M x N, x : M x K
blas
.
MatMul
(
x_matrix
,
true
,
dout_mat
,
false
,
&
dy_matrix
);
}
}
virtual
~
MulGradCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
#include "paddle/fluid/lite/kernels/x86/mul_compute.h"
REGISTER_LITE_KERNEL
(
mul
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
MulCompute
<
float
>
,
def
)
...
...
paddle/fluid/lite/kernels/x86/mul_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
MulCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
MulParam
;
void
Run
()
override
{
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
MulParam
>
();
CHECK
(
context
.
x86_device_context
());
param
.
output
->
template
mutable_data
<
T
>();
auto
*
x
=
&
param
.
x
->
raw_tensor
();
auto
*
y
=
&
param
.
y
->
raw_tensor
();
const
Tensor
x_matrix
=
x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
x
,
param
.
x_num_col_dims
)
:
*
x
;
const
Tensor
y_matrix
=
y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
y
,
param
.
y_num_col_dims
)
:
*
y
;
auto
*
z
=
&
param
.
output
->
raw_tensor
();
auto
z_dim
=
z
->
dims
();
if
(
z_dim
.
size
()
!=
2
)
{
z
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
*
context
.
x86_device_context
());
blas
.
MatMul
(
x_matrix
,
y_matrix
,
z
);
if
(
z_dim
.
size
()
!=
2
)
{
z
->
Resize
(
z_dim
);
}
}
virtual
~
MulCompute
()
=
default
;
};
template
<
typename
T
>
class
MulGradCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
void
Run
()
override
{
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
MulGradParam
>
();
CHECK
(
context
.
x86_device_context
());
auto
*
x
=
&
param
.
x
->
raw_tensor
();
auto
*
y
=
&
param
.
y
->
raw_tensor
();
auto
x_matrix
=
x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
x
,
param
.
x_num_col_dims
)
:
static_cast
<
const
Tensor
&>
(
*
x
);
auto
y_matrix
=
y
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
y
,
param
.
y_num_col_dims
)
:
static_cast
<
const
Tensor
&>
(
*
y
);
auto
*
dout
=
&
param
.
output_grad
->
raw_tensor
();
Tensor
dout_mat
;
dout_mat
.
ShareDataWith
(
*
dout
);
dout_mat
.
Resize
(
{
framework
::
flatten_to_2d
(
x
->
dims
(),
param
.
x_num_col_dims
)[
0
],
framework
::
flatten_to_2d
(
y
->
dims
(),
param
.
y_num_col_dims
)[
1
]});
auto
*
dx
=
&
param
.
x_grad
->
raw_tensor
();
auto
*
dy
=
&
param
.
y_grad
->
raw_tensor
();
if
(
dx
!=
nullptr
)
{
dx
->
set_lod
(
x
->
lod
());
}
if
(
dy
!=
nullptr
)
{
dy
->
set_lod
(
y
->
lod
());
}
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
*
context
.
x86_device_context
());
if
(
dx
)
{
// dx->mutable_data<T>(context.x86_device_context->GetPlace());
param
.
x_grad
->
template
mutable_data
<
T
>();
Tensor
dx_matrix
=
dx
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
dx
,
param
.
x_num_col_dims
)
:
*
dx
;
// dx = dout * y'. dx: M x K, dout : M x N, y : K x N
blas
.
MatMul
(
dout_mat
,
false
,
y_matrix
,
true
,
&
dx_matrix
);
}
if
(
dy
)
{
// dy->yutable_data<T>(context.x86_device_context->GetPlace());
param
.
y_grad
->
template
mutable_data
<
T
>();
Tensor
dy_matrix
=
dy
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
dy
,
param
.
y_num_col_dims
)
:
*
dy
;
// dy = x' * dout. dy K x N, dout : M x N, x : M x K
blas
.
MatMul
(
x_matrix
,
true
,
dout_mat
,
false
,
&
dy_matrix
);
}
}
virtual
~
MulGradCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/mul_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/mul_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
mul_x86
,
retrive_op
)
{
auto
mul
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"mul"
);
ASSERT_FALSE
(
mul
.
empty
());
ASSERT_TRUE
(
mul
.
front
());
}
TEST
(
mul_x86
,
init
)
{
MulCompute
<
float
>
mul
;
ASSERT_EQ
(
mul
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
mul
.
target
(),
TARGET
(
kX86
));
}
TEST
(
mul_x86
,
run_test
)
{
lite
::
Tensor
x
,
y
,
out
;
constexpr
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
y_shape
{
3
,
4
};
y
.
Resize
(
lite
::
DDim
(
y_shape
));
std
::
vector
<
int64_t
>
out_shape
{
batch_size
,
4
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
y_data
=
y
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
for
(
int64_t
i
=
0
;
i
<
y
.
dims
().
production
();
i
++
)
{
y_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
// MulCompute mul;
MulCompute
<
float
>
mul
;
operators
::
MulParam
param
;
param
.
x
=
&
x
;
param
.
y
=
&
y
;
param
.
output
=
&
out
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
X86Context
>
();
mul
.
SetContext
(
std
::
move
(
ctx
));
mul
.
SetParam
(
param
);
mul
.
Run
();
LOG
(
INFO
)
<<
"output: "
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
LOG
(
INFO
)
<<
out_data
[
i
];
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
mul
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/x86/pool_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,69 +12,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
PoolCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
PoolParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
if
(
param
.
global_pooling
)
{
for
(
size_t
i
=
0
;
i
<
param
.
ksize
.
size
();
++
i
)
{
param
.
paddings
[
i
]
=
0
;
param
.
ksize
[
i
]
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
i
+
2
]);
}
}
switch
(
param
.
ksize
.
size
())
{
case
2
:
{
if
(
param
.
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
platform
::
CPUDeviceContext
,
paddle
::
operators
::
math
::
MaxPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool2d_forward
(
platform
::
CPUDeviceContext
(),
param
.
x
->
raw_tensor
(),
param
.
ksize
,
param
.
strides
,
param
.
paddings
,
pool_process
,
true
,
false
,
&
(
param
.
output
->
raw_tensor
()));
}
else
if
(
param
.
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
platform
::
CPUDeviceContext
,
paddle
::
operators
::
math
::
AvgPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool2d_forward
(
platform
::
CPUDeviceContext
(),
param
.
x
->
raw_tensor
(),
param
.
ksize
,
param
.
strides
,
param
.
paddings
,
pool_process
,
param
.
exclusive
,
param
.
adaptive
,
&
(
param
.
output
->
raw_tensor
()));
}
}
break
;
case
3
:
{
}
break
;
}
}
virtual
~
PoolCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
#include "paddle/fluid/lite/kernels/x86/pool_compute.h"
REGISTER_LITE_KERNEL
(
pool2d
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
PoolCompute
<
float
>
,
def
)
.
BindInput
(
"
X
"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"
x
"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
paddle/fluid/lite/kernels/x86/pool_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Core>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
PoolCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
PoolParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
if
(
param
.
global_pooling
)
{
for
(
size_t
i
=
0
;
i
<
param
.
ksize
.
size
();
++
i
)
{
param
.
paddings
[
i
]
=
0
;
param
.
ksize
[
i
]
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
i
+
2
]);
}
}
switch
(
param
.
ksize
.
size
())
{
case
2
:
{
if
(
param
.
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
platform
::
CPUDeviceContext
,
paddle
::
operators
::
math
::
MaxPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool2d_forward
(
platform
::
CPUDeviceContext
(),
param
.
x
->
raw_tensor
(),
param
.
ksize
,
param
.
strides
,
param
.
paddings
,
pool_process
,
true
,
false
,
&
(
param
.
output
->
raw_tensor
()));
}
else
if
(
param
.
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
platform
::
CPUDeviceContext
,
paddle
::
operators
::
math
::
AvgPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool2d_forward
(
platform
::
CPUDeviceContext
(),
param
.
x
->
raw_tensor
(),
param
.
ksize
,
param
.
strides
,
param
.
paddings
,
pool_process
,
param
.
exclusive
,
param
.
adaptive
,
&
(
param
.
output
->
raw_tensor
()));
}
}
break
;
case
3
:
{
}
break
;
}
}
virtual
~
PoolCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/pool_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/pool_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
pool_x86
,
retrive_op
)
{
auto
pool2d
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"pool2d"
);
ASSERT_FALSE
(
pool2d
.
empty
());
ASSERT_TRUE
(
pool2d
.
front
());
}
TEST
(
pool2d_x86
,
init
)
{
PoolCompute
<
float
>
pool2d
;
ASSERT_EQ
(
pool2d
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
pool2d
.
target
(),
TARGET
(
kX86
));
}
TEST
(
pool2d_x86
,
run_test
)
{
lite
::
Tensor
x
,
out
;
constexpr
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
,
4
,
4
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
out_shape
{
batch_size
,
3
,
2
,
2
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
PoolCompute
<
float
>
pool2d
;
operators
::
PoolParam
param
;
param
.
x
=
&
x
;
param
.
output
=
&
out
;
param
.
strides
=
{
2
,
2
};
param
.
paddings
=
{
0
,
0
};
param
.
ksize
=
{
2
,
2
};
param
.
pooling_type
=
"max"
;
pool2d
.
SetParam
(
param
);
pool2d
.
Run
();
LOG
(
INFO
)
<<
"output: "
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
LOG
(
INFO
)
<<
out_data
[
i
];
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
pool2d
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/x86/relu_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,42 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
#include "paddle/fluid/lite/operators/relu_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
ReluCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ReluParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
n
=
param
.
input
->
dims
().
production
();
const
float
*
input
=
param
.
input
->
data
<
float
>
();
float
*
output
=
param
.
output
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
output
[
i
]
=
std
::
max
(
0.
f
,
input
[
i
]);
}
}
virtual
~
ReluCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
#include "paddle/fluid/lite/kernels/x86/relu_compute.h"
REGISTER_LITE_KERNEL
(
relu
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
ReluCompute
<
float
>
,
def
)
...
...
paddle/fluid/lite/kernels/x86/relu_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Core>
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
#include "paddle/fluid/lite/operators/relu_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
ReluCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ReluParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
n
=
param
.
input
->
dims
().
production
();
const
float
*
input
=
param
.
input
->
data
<
float
>
();
float
*
output
=
param
.
output
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
output
[
i
]
=
std
::
max
(
0.
f
,
input
[
i
]);
}
}
virtual
~
ReluCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/relu_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/relu_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
relu_x86
,
retrive_op
)
{
auto
relu
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"relu"
);
ASSERT_FALSE
(
relu
.
empty
());
ASSERT_TRUE
(
relu
.
front
());
}
TEST
(
relu_x86
,
init
)
{
ReluCompute
<
float
>
relu
;
ASSERT_EQ
(
relu
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
relu
.
target
(),
TARGET
(
kX86
));
}
TEST
(
relu_x86
,
run_test
)
{
lite
::
Tensor
x
,
out
;
constexpr
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
,
2
,
2
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
out_shape
{
batch_size
,
3
,
2
,
2
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
int
sign
=
i
%
2
==
0
?
1
:
-
1
;
x_data
[
i
]
=
static_cast
<
float
>
(
i
*
sign
);
}
// ReluCompute relu;
ReluCompute
<
float
>
relu
;
operators
::
ReluParam
param
;
param
.
input
=
&
x
;
param
.
output
=
&
out
;
relu
.
SetParam
(
param
);
relu
.
Run
();
LOG
(
INFO
)
<<
"output: "
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
LOG
(
INFO
)
<<
out_data
[
i
];
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
relu
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/x86/scale_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,48 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
#include "paddle/fluid/lite/operators/relu_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
void
scale_compute
(
const
T
*
x
,
T
*
out
,
int
size
,
float
scale
,
float
bias
,
bool
bias_before
)
{
if
(
bias_before
)
bias
*=
scale
;
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
out
[
i
]
=
x
[
i
]
*
scale
+
bias
;
}
}
template
<
typename
T
>
class
ScaleCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ScaleParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
scale_compute
(
param
.
x
->
data
<
T
>
(),
param
.
output
->
mutable_data
<
T
>
(),
param
.
x
->
dims
().
production
(),
param
.
scale
,
param
.
bias
,
param
.
bias_after_scale
);
}
virtual
~
ScaleCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
#include "paddle/fluid/lite/kernels/x86/scale_compute.h"
REGISTER_LITE_KERNEL
(
scale
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
ScaleCompute
<
float
>
,
def
)
...
...
paddle/fluid/lite/kernels/x86/scale_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Core>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
#include "paddle/fluid/lite/operators/relu_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
void
scale_compute
(
const
T
*
x
,
T
*
out
,
int
size
,
float
scale
,
float
bias
,
bool
bias_before
)
{
if
(
bias_before
)
bias
*=
scale
;
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
out
[
i
]
=
x
[
i
]
*
scale
+
bias
;
}
}
template
<
typename
T
>
class
ScaleCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ScaleParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
scale_compute
(
param
.
x
->
data
<
T
>
(),
param
.
output
->
mutable_data
<
T
>
(),
param
.
x
->
dims
().
production
(),
param
.
scale
,
param
.
bias
,
param
.
bias_after_scale
);
}
virtual
~
ScaleCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/scale_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/scale_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
scale_x86
,
retrive_op
)
{
auto
scale
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"scale"
);
ASSERT_FALSE
(
scale
.
empty
());
ASSERT_TRUE
(
scale
.
front
());
}
TEST
(
scale_x86
,
init
)
{
ScaleCompute
<
float
>
scale
;
ASSERT_EQ
(
scale
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
scale
.
target
(),
TARGET
(
kX86
));
}
TEST
(
scale_x86
,
run_test
)
{
lite
::
Tensor
x
,
y
,
out
;
constexpr
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
,
2
,
2
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
out_shape
{
batch_size
,
3
,
2
,
2
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
// ScaleCompute scale;
ScaleCompute
<
float
>
scale
;
operators
::
ScaleParam
param
;
param
.
x
=
&
x
;
param
.
scale
=
0.5
;
param
.
bias
=
0
;
param
.
output
=
&
out
;
scale
.
SetParam
(
param
);
scale
.
Run
();
LOG
(
INFO
)
<<
"output: "
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
LOG
(
INFO
)
<<
out_data
[
i
];
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
scale
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/x86/softmax_compute.cc
浏览文件 @
b152dbb4
...
...
@@ -12,76 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
static
inline
int
CanonicalAxis
(
const
int
axis
,
const
int
rank
)
{
if
(
axis
<
0
)
{
return
axis
+
rank
;
}
return
axis
;
}
static
inline
int
SizeToAxis
(
const
int
axis
,
lite
::
DDim
dims
)
{
int
size
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
size
*=
dims
[
i
];
}
return
size
;
}
static
inline
int
SizeFromAxis
(
const
int
axis
,
lite
::
DDim
dims
)
{
int
size
=
1
;
for
(
int
i
=
axis
;
i
<
dims
.
size
();
i
++
)
{
size
*=
dims
[
i
];
}
return
size
;
}
template
<
typename
T
>
class
SoftmaxCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
SoftmaxParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
SoftmaxParam
>
();
// auto& context = context_->As<X86Context>();
CHECK
(
param
.
output
);
CHECK
(
param
.
x
);
const
int
rank
=
param
.
x
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
param
.
axis
,
rank
);
int
axis_dim
=
param
.
x
->
dims
()[
axis
];
const
int
n
=
SizeToAxis
(
axis
,
param
.
x
->
dims
());
const
int
d
=
SizeFromAxis
(
axis
,
param
.
x
->
dims
());
std
::
vector
<
int64_t
>
shape
{
n
,
d
};
lite
::
Tensor
input_2d
,
out_2d
;
input_2d
.
ShareDataWith
(
*
param
.
x
);
input_2d
.
Resize
(
lite
::
DDim
(
shape
));
out_2d
.
ShareDataWith
(
*
param
.
output
);
out_2d
.
Resize
(
lite
::
DDim
(
shape
));
paddle
::
operators
::
math
::
SoftmaxFunctor
<
platform
::
CPUDeviceContext
,
T
,
true
>
()(
platform
::
CPUDeviceContext
(),
axis_dim
,
&
input_2d
.
raw_tensor
(),
&
out_2d
.
raw_tensor
());
}
virtual
~
SoftmaxCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
#include "paddle/fluid/lite/kernels/x86/softmax_compute.h"
REGISTER_LITE_KERNEL
(
softmax
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
SoftmaxCompute
<
float
>
,
def
)
...
...
paddle/fluid/lite/kernels/x86/softmax_compute.h
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/operators/math/softmax.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
static
inline
int
CanonicalAxis
(
const
int
axis
,
const
int
rank
)
{
if
(
axis
<
0
)
{
return
axis
+
rank
;
}
return
axis
;
}
static
inline
int
SizeToAxis
(
const
int
axis
,
lite
::
DDim
dims
)
{
int
size
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
size
*=
dims
[
i
];
}
return
size
;
}
static
inline
int
SizeFromAxis
(
const
int
axis
,
lite
::
DDim
dims
)
{
int
size
=
1
;
for
(
size_t
i
=
axis
;
i
<
dims
.
size
();
i
++
)
{
size
*=
dims
[
i
];
}
return
size
;
}
template
<
typename
T
>
class
SoftmaxCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
SoftmaxParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
SoftmaxParam
>
();
// auto& context = context_->As<X86Context>();
CHECK
(
param
.
output
);
CHECK
(
param
.
x
);
const
int
rank
=
param
.
x
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
param
.
axis
,
rank
);
int
axis_dim
=
param
.
x
->
dims
()[
axis
];
const
int
n
=
SizeToAxis
(
axis
,
param
.
x
->
dims
());
const
int
d
=
SizeFromAxis
(
axis
,
param
.
x
->
dims
());
std
::
vector
<
int64_t
>
shape
{
n
,
d
};
lite
::
Tensor
input_2d
,
out_2d
;
input_2d
.
ShareDataWith
(
*
param
.
x
);
input_2d
.
Resize
(
lite
::
DDim
(
shape
));
out_2d
.
ShareDataWith
(
*
param
.
output
);
out_2d
.
Resize
(
lite
::
DDim
(
shape
));
paddle
::
operators
::
math
::
SoftmaxFunctor
<
platform
::
CPUDeviceContext
,
T
,
true
>
()(
platform
::
CPUDeviceContext
(),
axis_dim
,
&
input_2d
.
raw_tensor
(),
&
out_2d
.
raw_tensor
());
}
virtual
~
SoftmaxCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/x86/softmax_compute_test.cc
0 → 100644
浏览文件 @
b152dbb4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/softmax_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
TEST
(
softmax_x86
,
retrive_op
)
{
auto
softmax
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"softmax"
);
ASSERT_FALSE
(
softmax
.
empty
());
ASSERT_TRUE
(
softmax
.
front
());
}
TEST
(
softmax_x86
,
init
)
{
SoftmaxCompute
<
float
>
softmax
;
ASSERT_EQ
(
softmax
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
softmax
.
target
(),
TARGET
(
kX86
));
}
TEST
(
softmax_x86
,
run_test
)
{
lite
::
Tensor
x
,
out
;
constexpr
int
batch_size
=
1
;
std
::
vector
<
int64_t
>
x_shape
{
batch_size
,
3
,
3
,
3
};
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
out_shape
{
batch_size
,
3
,
3
,
3
};
out
.
Resize
(
lite
::
DDim
(
out_shape
));
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
SoftmaxCompute
<
float
>
softmax
;
operators
::
SoftmaxParam
param
;
param
.
x
=
&
x
;
param
.
output
=
&
out
;
softmax
.
SetParam
(
param
);
softmax
.
Run
();
LOG
(
INFO
)
<<
"output: "
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
LOG
(
INFO
)
<<
out_data
[
i
];
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
softmax
,
kX86
,
kFloat
,
kNCHW
,
def
);
paddle/fluid/lite/operators/dropout_op.cc
浏览文件 @
b152dbb4
...
...
@@ -52,7 +52,7 @@ class DropoutOpLite : public OpLite {
param_
.
mask
=
GetMutableVar
<
lite
::
Tensor
>
(
scope
,
Mask
);
param_
.
dropout_prob
=
op_desc
.
GetAttr
<
float
>
(
"dropout_prob"
);
if
(
op_desc
.
HasAttr
(
"
axis
"
))
{
if
(
op_desc
.
HasAttr
(
"
is_test
"
))
{
param_
.
is_test
=
op_desc
.
GetAttr
<
bool
>
(
"is_test"
);
}
param_
.
fix_seed
=
op_desc
.
GetAttr
<
bool
>
(
"fix_seed"
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录