Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b084dfab
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b084dfab
编写于
9月 12, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into parallel_bcast
上级
5ce1a960
08cfe27c
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
497 addition
and
338 deletion
+497
-338
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+108
-117
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+1
-1
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
+0
-28
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+43
-12
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+3
-0
paddle/fluid/operators/distributed/CMakeLists.txt
paddle/fluid/operators/distributed/CMakeLists.txt
+1
-0
paddle/fluid/operators/distributed/grpc_client.cc
paddle/fluid/operators/distributed/grpc_client.cc
+69
-73
paddle/fluid/operators/distributed/grpc_client.h
paddle/fluid/operators/distributed/grpc_client.h
+57
-53
paddle/fluid/operators/distributed/request_handler.h
paddle/fluid/operators/distributed/request_handler.h
+65
-10
paddle/fluid/operators/distributed/rpc_client.h
paddle/fluid/operators/distributed/rpc_client.h
+32
-31
paddle/fluid/operators/distributed/varhandle_test.cc
paddle/fluid/operators/distributed/varhandle_test.cc
+55
-0
paddle/fluid/operators/prefetch_op.cc
paddle/fluid/operators/prefetch_op.cc
+6
-2
paddle/fluid/operators/recv_op.cc
paddle/fluid/operators/recv_op.cc
+5
-2
paddle/fluid/operators/send_op.cc
paddle/fluid/operators/send_op.cc
+6
-4
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+3
-2
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+7
-0
python/paddle/fluid/transpiler/inference_transpiler.py
python/paddle/fluid/transpiler/inference_transpiler.py
+36
-3
未找到文件。
benchmark/fluid/models/resnet.py
浏览文件 @
b084dfab
...
...
@@ -20,6 +20,7 @@ import functools
import
numpy
as
np
import
time
import
os
import
math
import
cProfile
,
pstats
,
StringIO
...
...
@@ -27,128 +28,120 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.profiler
as
profiler
# from recordio_converter import imagenet_train, imagenet_test
from
imagenet_reader
import
train
,
val
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
ResNet
():
def
__init__
(
self
,
layers
=
50
,
is_train
=
True
):
self
.
params
=
train_parameters
self
.
layers
=
layers
self
.
is_train
=
is_train
def
net
(
self
,
input
,
class_dim
=
1000
):
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
is_test
=
not
self
.
is_train
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
)
else
:
return
input
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
is_train
=
True
):
conv1
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv1
,
act
=
act
,
is_test
=
not
is_train
)
def
shortcut
(
input
,
ch_out
,
stride
,
is_train
=
True
):
ch_in
=
input
.
shape
[
1
]
# if args.data_format == 'NCHW' else input.shape[-1]
if
ch_in
!=
ch_out
:
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
None
,
is_train
=
is_train
)
else
:
return
input
def
basicblock
(
input
,
ch_out
,
stride
,
is_train
=
True
):
short
=
shortcut
(
input
,
ch_out
,
stride
,
is_train
=
is_train
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
,
is_train
=
is_train
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
,
3
,
1
,
1
,
act
=
None
,
is_train
=
is_train
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
bottleneck
(
input
,
ch_out
,
stride
,
is_train
=
True
):
short
=
shortcut
(
input
,
ch_out
*
4
,
stride
,
is_train
=
is_train
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
is_train
=
is_train
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
,
3
,
1
,
1
,
is_train
=
is_train
)
conv3
=
conv_bn_layer
(
conv2
,
ch_out
*
4
,
1
,
1
,
0
,
act
=
None
,
is_train
=
is_train
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv3
,
act
=
'relu'
)
def
layer_warp
(
block_func
,
input
,
ch_out
,
count
,
stride
):
res_out
=
block_func
(
input
,
ch_out
,
stride
)
for
i
in
range
(
1
,
count
):
res_out
=
block_func
(
res_out
,
ch_out
,
1
)
return
res_out
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
def
resnet_imagenet
(
input
,
class_dim
,
depth
=
50
,
data_format
=
'NCHW'
,
is_train
=
True
):
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
)
cfg
=
{
18
:
([
2
,
2
,
2
,
1
],
basicblock
),
34
:
([
3
,
4
,
6
,
3
],
basicblock
),
50
:
([
3
,
4
,
6
,
3
],
bottleneck
),
101
:
([
3
,
4
,
23
,
3
],
bottleneck
),
152
:
([
3
,
8
,
36
,
3
],
bottleneck
)
}
stages
,
block_func
=
cfg
[
depth
]
conv1
=
conv_bn_layer
(
input
,
ch_out
=
64
,
filter_size
=
7
,
stride
=
2
,
padding
=
3
)
pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_type
=
'avg'
,
pool_size
=
3
,
pool_stride
=
2
)
res1
=
layer_warp
(
block_func
,
pool1
,
64
,
stages
[
0
],
1
)
res2
=
layer_warp
(
block_func
,
res1
,
128
,
stages
[
1
],
2
)
res3
=
layer_warp
(
block_func
,
res2
,
256
,
stages
[
2
],
2
)
res4
=
layer_warp
(
block_func
,
res3
,
512
,
stages
[
3
],
2
)
pool2
=
fluid
.
layers
.
pool2d
(
input
=
res4
,
pool_size
=
7
,
pool_type
=
'avg'
,
pool_stride
=
1
,
global_pooling
=
True
)
out
=
fluid
.
layers
.
fc
(
input
=
pool2
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
def
resnet_cifar10
(
input
,
class_dim
,
depth
=
32
,
data_format
=
'NCHW'
):
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
//
6
conv1
=
conv_bn_layer
(
input
=
input
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
64
,
n
,
2
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
_model_reader_dshape_classdim
(
args
,
is_train
):
model
=
resnet_cifar10
model
=
None
reader
=
None
if
args
.
data_set
==
"cifar10"
:
class_dim
=
10
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
32
,
32
]
else
:
dshape
=
[
32
,
32
,
3
]
model
=
resnet_cifar10
if
is_train
:
reader
=
paddle
.
dataset
.
cifar
.
train10
()
else
:
reader
=
paddle
.
dataset
.
cifar
.
test10
()
elif
args
.
data_set
==
"flowers"
:
if
args
.
data_set
==
"flowers"
:
class_dim
=
102
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
224
,
224
]
else
:
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
is_train
:
reader
=
paddle
.
dataset
.
flowers
.
train
()
else
:
...
...
@@ -159,7 +152,6 @@ def _model_reader_dshape_classdim(args, is_train):
dshape
=
[
3
,
224
,
224
]
else
:
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
not
args
.
data_path
:
raise
Exception
(
"Must specify --data_path when training with imagenet"
)
...
...
@@ -173,12 +165,11 @@ def _model_reader_dshape_classdim(args, is_train):
reader
=
train
(
xmap
=
False
)
else
:
reader
=
val
(
xmap
=
False
)
return
model
,
reader
,
dshape
,
class_dim
return
reader
,
dshape
,
class_dim
def
get_model
(
args
,
is_train
,
main_prog
,
startup_prog
):
model
,
reader
,
dshape
,
class_dim
=
_model_reader_dshape_classdim
(
args
,
is_train
)
reader
,
dshape
,
class_dim
=
_model_reader_dshape_classdim
(
args
,
is_train
)
pyreader
=
None
trainer_count
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS"
))
...
...
@@ -198,7 +189,8 @@ def get_model(args, is_train, main_prog, startup_prog):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict
=
model
(
input
,
class_dim
,
is_train
=
is_train
)
model
=
ResNet
(
is_train
=
is_train
)
predict
=
model
.
net
(
input
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
...
...
@@ -216,15 +208,14 @@ def get_model(args, is_train, main_prog, startup_prog):
total_images
=
1281167
/
trainer_count
step
=
int
(
total_images
/
args
.
batch_size
+
1
)
epochs
=
[
30
,
60
,
80
,
90
]
epochs
=
[
30
,
60
,
90
]
bd
=
[
step
*
e
for
e
in
epochs
]
base_lr
=
args
.
learning_rate
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
base_lr
,
#learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
avg_cost
)
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
b084dfab
...
...
@@ -262,7 +262,7 @@ void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
if
(
buffer
.
empty
()
||
buffer
.
length
()
<
sizeof
(
T
)
*
data
.
size
())
{
buffer
.
Resize
(
sizeof
(
T
)
*
data
.
size
());
}
std
::
memcpy
(
buffer
.
data
(),
data
.
data
(),
buffer
.
length
());
std
::
memcpy
(
buffer
.
data
(),
data
.
data
(),
sizeof
(
T
)
*
data
.
size
());
// copy LoD
for
(
const
auto
&
level
:
fetch
.
lod
())
{
output
->
lod
.
emplace_back
(
level
);
...
...
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
浏览文件 @
b084dfab
...
...
@@ -117,34 +117,6 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
input_slots
->
assign
({
input_tensor
});
}
void
BenchAllData
(
const
std
::
string
&
model_path
,
const
std
::
string
&
data_file
,
const
int
batch_size
,
const
int
repeat
)
{
NativeConfig
config
;
config
.
model_dir
=
model_path
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
std
::
vector
<
PaddleTensor
>
input_slots
,
outputs_slots
;
DataRecord
data
(
data_file
,
batch_size
);
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
GetOneBatch
(
&
input_slots
,
&
data
,
batch_size
);
for
(
int
i
=
0
;
i
<
FLAGS_burning
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs_slots
);
}
Timer
timer
;
double
sum
=
0
;
for
(
int
i
=
0
;
i
<
repeat
;
i
++
)
{
for
(
size_t
bid
=
0
;
bid
<
data
.
batched_datas
.
size
();
++
bid
)
{
GetOneBatch
(
&
input_slots
,
&
data
,
batch_size
);
timer
.
tic
();
predictor
->
Run
(
input_slots
,
&
outputs_slots
);
sum
+=
timer
.
toc
();
}
}
PrintTime
(
batch_size
,
repeat
,
1
,
0
,
sum
/
repeat
);
}
const
int64_t
lac_ref_data
[]
=
{
24
,
25
,
25
,
25
,
38
,
30
,
31
,
14
,
15
,
44
,
24
,
25
,
25
,
25
,
25
,
25
,
44
,
24
,
25
,
25
,
25
,
36
,
42
,
43
,
44
,
14
,
15
,
44
,
14
,
15
,
44
,
14
,
15
,
44
,
38
,
39
,
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
b084dfab
...
...
@@ -130,12 +130,13 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_weights_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
// NOLINT
bool
is_persistent
=
false
)
{
auto
user_weights_pd
=
user_weights_memory_p
->
get_primitive_desc
();
auto
weights_pd
=
conv_pd_
->
weights_primitive_desc
();
return
this
->
AcquireMemory
(
weights_pd
,
user_weights_pd
,
user_weights_memory_p
,
"@weights_mem_p"
,
pipeline
);
pipeline
,
is_persistent
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBiasMemoryFromPrimitive
(
...
...
@@ -266,6 +267,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
...
...
@@ -296,6 +299,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
bool
fuse_relu
=
ctx
.
Attr
<
bool
>
(
"fuse_relu"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// TODO(pzelazko-intel) add support for group convolution and dilation
...
...
@@ -348,11 +352,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
);
}
else
{
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
);
paddings
,
mkldnn_engine
,
fuse_relu
);
}
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
...
...
@@ -371,7 +376,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
);
user_weights_memory_p
,
pipeline
,
is_test
);
auto
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
...
...
@@ -402,11 +407,26 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
private:
mkldnn
::
primitive_attr
AddRelu
()
const
{
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
mkldnn
::
primitive_attr
conv_attr
;
constexpr
float
scale
=
1.0
f
;
constexpr
float
negative_slope
=
0.0
f
;
constexpr
float
placeholder
=
0.0
f
;
mkldnn
::
post_ops
post_operations
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_relu
,
negative_slope
,
placeholder
);
conv_attr
.
set_post_ops
(
post_operations
);
return
conv_attr
;
}
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
ConvFwdPrimitiveDesc
(
const
memory
::
desc
&
src
,
const
memory
::
desc
&
weights
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
)
const
{
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
...
@@ -415,8 +435,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
engine
);
mkldnn
::
primitive_attr
conv_attr
;
if
(
fuse_relu
)
{
conv_attr
=
AddRelu
();
}
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
conv_attr
,
engine
);
return
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
p_conv_pd
);
...
...
@@ -427,7 +452,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
memory
::
desc
&
bias
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
)
const
{
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
...
@@ -436,8 +462,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias
,
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
engine
);
mkldnn
::
primitive_attr
conv_attr
;
if
(
fuse_relu
)
{
conv_attr
=
AddRelu
();
}
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
conv_attr
,
engine
);
return
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
p_conv_pd
);
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
b084dfab
...
...
@@ -109,6 +109,7 @@ framework::OpKernelType ConvOp::GetExpectedKernelType(
}
void
Conv2DOpMaker
::
Make
()
{
AddAttr
<
bool
>
(
"is_test"
,
""
).
SetDefault
(
false
);
AddInput
(
"Input"
,
"(Tensor) The input tensor of convolution operator. "
...
...
@@ -161,6 +162,8 @@ void Conv2DOpMaker::Make() {
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_relu"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
...
...
paddle/fluid/operators/distributed/CMakeLists.txt
浏览文件 @
b084dfab
...
...
@@ -20,6 +20,7 @@ if(WITH_GRPC)
DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc scope profiler math_function SERIAL
)
cc_test
(
rpc_server_test SRCS rpc_server_test.cc
DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf executor proto_desc lookup_sparse_table_op SERIAL
)
cc_test
(
varhandle_test SRCS varhandle_test.cc
)
return
()
endif
()
...
...
paddle/fluid/operators/distributed/grpc_client.cc
浏览文件 @
b084dfab
...
...
@@ -59,40 +59,32 @@ GRPCClient::~GRPCClient() {
}
channels_
.
clear
();
}
client_thread_
->
join
();
}
bool
GRPCClient
::
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
VarHandlePtr
GRPCClient
::
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
var_name_val
=
var_name
;
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
auto
ch
=
GetChannel
(
ep_val
);
SendProcessor
*
s
=
new
SendProcessor
(
ch
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"Send"
,
var_name_val
,
p_ctx
,
p_scope
));
s
->
Prepare
(
h
,
time_out
);
framework
::
AsyncIO
([
var_name_val
,
p_ctx
,
ep_val
,
p_scope
,
time_out
,
ch
,
this
]
{
framework
::
AsyncIO
([
var_name_val
,
p_scope
,
p_ctx
,
s
,
this
]
{
auto
*
var
=
p_scope
->
FindVar
(
var_name_val
);
::
grpc
::
ByteBuffer
req
;
SerializeToByteBuffer
(
var_name_val
,
var
,
*
p_ctx
,
&
req
);
// varhandle
VarHandle
var_h
;
var_h
.
ep
=
ep_val
;
var_h
.
scope
=
p_scope
;
var_h
.
name
=
var_name_val
;
var_h
.
ctx
=
p_ctx
;
var_h
.
method
=
"Send"
;
VLOG
(
3
)
<<
var_h
.
String
()
<<
" begin"
;
VLOG
(
3
)
<<
s
->
GetVarHandlePtr
()
->
String
()
<<
" begin"
;
// stub context
SendProcessor
*
s
=
new
SendProcessor
(
ch
);
s
->
Prepare
(
var_h
,
time_out
);
s
->
response_call_back_
=
nullptr
;
auto
call
=
s
->
stub_g_
.
PrepareUnaryCall
(
...
...
@@ -102,13 +94,13 @@ bool GRPCClient::AsyncSendVar(const std::string& ep,
});
req_count_
++
;
return
true
;
return
h
;
}
void
ProcGetResponse
(
const
VarHandle
&
var_h
,
const
::
grpc
::
ByteBuffer
&
ret_msg
)
{
framework
::
Variable
*
outvar
=
nullptr
;
DeserializeFromByteBuffer
(
ret_msg
,
*
var_h
.
ctx
,
var_h
.
scope
,
&
outvar
);
DeserializeFromByteBuffer
(
ret_msg
,
*
var_h
.
ctx
(),
var_h
.
scope
()
,
&
outvar
);
}
template
<
typename
T
>
...
...
@@ -119,37 +111,30 @@ void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) {
result
->
Swap
(
&
tmp
);
}
bool
GRPCClient
::
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
VarHandlePtr
GRPCClient
::
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
var_name_val
=
var_name
;
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
auto
ch
=
GetChannel
(
ep_val
);
GetProcessor
*
s
=
new
GetProcessor
(
ch
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"Get"
,
var_name_val
,
p_ctx
,
p_scope
));
s
->
Prepare
(
h
,
time_out
);
framework
::
AsyncIO
([
var_name_val
,
ep_val
,
p_scope
,
p_ctx
,
time_out
,
ch
,
this
]
{
framework
::
AsyncIO
([
var_name_val
,
p_scope
,
p_ctx
,
s
,
this
]
{
// prepare input
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
var_name_val
);
::
grpc
::
ByteBuffer
buf
;
RequestToByteBuffer
<
sendrecv
::
VariableMessage
>
(
req
,
&
buf
);
// var handle
VarHandle
var_h
;
var_h
.
ep
=
ep_val
;
var_h
.
scope
=
p_scope
;
var_h
.
name
=
var_name_val
;
var_h
.
ctx
=
p_ctx
;
var_h
.
method
=
"Get"
;
VLOG
(
3
)
<<
var_h
.
String
()
<<
" begin"
;
VLOG
(
3
)
<<
s
->
GetVarHandlePtr
()
->
String
()
<<
" begin"
;
// stub context
GetProcessor
*
s
=
new
GetProcessor
(
ch
);
s
->
Prepare
(
var_h
,
time_out
);
s
->
response_call_back_
=
ProcGetResponse
;
auto
call
=
s
->
stub_g_
.
PrepareUnaryCall
(
...
...
@@ -160,42 +145,36 @@ bool GRPCClient::AsyncGetVar(const std::string& ep,
req_count_
++
;
return
true
;
return
h
;
}
bool
GRPCClient
::
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
)
{
VarHandlePtr
GRPCClient
::
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
in_var_name_val
=
in_var_name
;
const
std
::
string
out_var_name_val
=
out_var_name
;
const
framework
::
Scope
*
p_scope
=
&
scope
;
const
auto
ch
=
GetChannel
(
ep_val
);
GetProcessor
*
s
=
new
GetProcessor
(
ch
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"Prefetch"
,
out_var_name_val
,
p_ctx
,
p_scope
));
s
->
Prepare
(
h
,
time_out
);
framework
::
AsyncIO
([
in_var_name_val
,
out_var_name_val
,
ep_val
,
p_scope
,
p_ctx
,
time_out
,
ch
,
this
]
{
time_out
,
s
,
this
]
{
auto
*
var
=
p_scope
->
FindVar
(
in_var_name_val
);
::
grpc
::
ByteBuffer
req
;
SerializeToByteBuffer
(
in_var_name_val
,
var
,
*
p_ctx
,
&
req
,
out_var_name_val
);
// var handle
VarHandle
var_h
;
var_h
.
ep
=
ep_val
;
var_h
.
scope
=
p_scope
;
var_h
.
name
=
out_var_name_val
;
var_h
.
ctx
=
p_ctx
;
var_h
.
method
=
"Prefetch"
;
VLOG
(
3
)
<<
var_h
.
String
()
<<
" begin"
;
VLOG
(
3
)
<<
s
->
GetVarHandlePtr
()
->
String
()
<<
" begin"
;
// stub context
GetProcessor
*
s
=
new
GetProcessor
(
ch
);
s
->
Prepare
(
var_h
,
time_out
);
s
->
response_call_back_
=
ProcGetResponse
;
auto
call
=
s
->
stub_g_
.
PrepareUnaryCall
(
...
...
@@ -206,56 +185,68 @@ bool GRPCClient::AsyncPrefetchVar(const std::string& ep,
});
req_count_
++
;
return
true
;
return
h
;
}
void
GRPCClient
::
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
VarHandlePtr
GRPCClient
::
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"BatchBarrier"
,
BATCH_BARRIER_MESSAGE
,
nullptr
,
nullptr
));
s
->
Prepare
(
h
,
time_out
);
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
BATCH_BARRIER_MESSAGE
);
auto
rpc
=
s
->
stub_
->
AsyncSendVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
return
h
;
}
void
GRPCClient
::
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
VarHandlePtr
GRPCClient
::
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
FetchBarrierProcessor
*
s
=
new
FetchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"FetchBarrier"
,
FETCH_BARRIER_MESSAGE
,
nullptr
,
nullptr
));
s
->
Prepare
(
h
,
time_out
);
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
FETCH_BARRIER_MESSAGE
);
auto
rpc
=
s
->
stub_
->
AsyncGetVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
return
h
;
}
void
GRPCClient
::
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
VarHandlePtr
GRPCClient
::
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"SendComplete"
,
COMPLETE_MESSAGE
,
nullptr
,
nullptr
));
s
->
Prepare
(
h
,
time_out
);
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
COMPLETE_MESSAGE
);
auto
rpc
=
s
->
stub_
->
AsyncSendVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
return
h
;
}
void
GRPCClient
::
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
)
{
VarHandlePtr
GRPCClient
::
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
CheckpointNotifyProcessor
*
s
=
new
CheckpointNotifyProcessor
(
ch
);
s
->
Prepare
(
time_out
);
VarHandlePtr
h
(
new
VarHandle
(
ep
,
"CheckPointNotify"
,
CHECKPOINT_SAVE_MESSAGE
,
nullptr
,
nullptr
));
s
->
Prepare
(
h
,
time_out
);
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
CHECKPOINT_SAVE_MESSAGE
);
...
...
@@ -264,6 +255,7 @@ void GRPCClient::AsyncCheckpointNotify(const std::string& ep,
auto
rpc
=
s
->
stub_
->
AsyncCheckpointNotify
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
return
h
;
}
bool
GRPCClient
::
Wait
()
{
...
...
@@ -276,25 +268,28 @@ void GRPCClient::Proceed() {
void
*
tag
=
nullptr
;
bool
ok
=
false
;
VLOG
(
3
)
<<
"GRPCClient Proceed begin"
;
while
(
!
stopped_
&&
cq_
.
Next
(
&
tag
,
&
ok
))
{
BaseProcessor
*
c
=
static_cast
<
BaseProcessor
*>
(
tag
);
GPR_ASSERT
(
ok
);
PADDLE_ENFORCE
(
c
);
if
(
c
->
status_
.
ok
())
{
VLOG
(
3
)
<<
c
->
var_h_
.
String
()
<<
" process"
;
VLOG
(
3
)
<<
c
->
GetVarHandlePtr
()
->
String
()
<<
" process"
;
c
->
Process
();
}
else
if
(
c
->
status_
.
error_code
()
==
grpc
::
StatusCode
::
DEADLINE_EXCEEDED
)
{
LOG
(
ERROR
)
<<
c
->
var_h_
.
String
()
LOG
(
ERROR
)
<<
c
->
GetVarHandlePtr
()
->
String
()
<<
" meets grpc error:"
<<
c
->
status_
.
error_message
();
{
std
::
lock_guard
<
std
::
mutex
>
lk
(
sync_mutex_
);
ok_
=
false
;
}
sync_cond_
.
notify_all
(
);
c
->
Finish
(
false
);
}
else
{
LOG
(
FATAL
)
<<
c
->
var_h_
.
String
()
LOG
(
FATAL
)
<<
c
->
GetVarHandlePtr
()
->
String
()
<<
" meets grpc error:"
<<
c
->
status_
.
error_message
();
c
->
Finish
(
false
);
}
delete
c
;
{
std
::
lock_guard
<
std
::
mutex
>
lk
(
sync_mutex_
);
...
...
@@ -302,6 +297,7 @@ void GRPCClient::Proceed() {
}
sync_cond_
.
notify_all
();
}
VLOG
(
3
)
<<
"GRPCClient Proceed end"
;
}
std
::
shared_ptr
<
grpc
::
Channel
>
GRPCClient
::
GetChannel
(
const
std
::
string
&
ep
)
{
...
...
paddle/fluid/operators/distributed/grpc_client.h
浏览文件 @
b084dfab
...
...
@@ -53,15 +53,14 @@ void ProcGetResponse(const VarHandle& var_h, const grpc::ByteBuffer& msg);
class
BaseProcessor
{
public:
explicit
BaseProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
{
context_
=
nullptr
;
}
BaseProcessor
()
{
context_
=
nullptr
;
}
virtual
~
BaseProcessor
()
{}
virtual
void
Prepare
(
const
VarHandle
&
var_info
,
int64_t
time_out
)
{
virtual
void
Prepare
(
VarHandlePtr
h
,
int64_t
time_out
)
{
var_h_
=
h
;
context_
.
reset
(
new
grpc
::
ClientContext
());
var_h_
=
var_info
;
context_
->
set_wait_for_ready
(
true
);
if
(
time_out
)
{
std
::
chrono
::
system_clock
::
time_point
deadline
=
...
...
@@ -71,21 +70,21 @@ class BaseProcessor {
}
}
virtual
void
Prepare
(
int64_t
time_out
)
{
context_
.
reset
(
new
grpc
::
ClientContext
());
context_
->
set_wait_for_ready
(
true
);
std
::
chrono
::
system_clock
::
time_point
deadline
=
std
::
chrono
::
system_clock
::
now
()
+
std
::
chrono
::
milliseconds
(
time_out
);
context_
->
set_deadline
(
deadline
);
void
Process
()
{
ProcessImpl
();
var_h_
->
Finish
(
true
);
}
virtual
void
Process
()
=
0
;
VarHandlePtr
GetVarHandlePtr
()
{
return
var_h_
;
}
bool
Wait
()
{
return
var_h_
->
Wait
();
}
void
Finish
(
bool
ok
)
{
return
var_h_
->
Finish
(
ok
);
}
virtual
void
ProcessImpl
()
=
0
;
std
::
unique_ptr
<
grpc
::
ClientContext
>
context_
;
grpc
::
Status
status_
;
VarHandle
var_h_
;
protected:
VarHandlePtr
var_h_
;
};
typedef
std
::
function
<
void
(
const
VarHandle
&
,
const
::
grpc
::
ByteBuffer
&
)
>
...
...
@@ -94,13 +93,13 @@ typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
class
SendProcessor
:
public
BaseProcessor
{
public:
explicit
SendProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
),
stub_g_
(
ch
)
{}
:
BaseProcessor
(),
stub_g_
(
ch
)
{}
virtual
~
SendProcessor
()
{}
v
irtual
void
Process
()
{
v
oid
ProcessImpl
()
override
{
if
(
response_call_back_
)
{
response_call_back_
(
var_h_
,
reply_
);
response_call_back_
(
*
var_h_
.
get
()
,
reply_
);
}
}
...
...
@@ -115,13 +114,13 @@ typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
class
GetProcessor
:
public
BaseProcessor
{
public:
explicit
GetProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
),
stub_g_
(
ch
)
{}
:
BaseProcessor
(),
stub_g_
(
ch
)
{}
virtual
~
GetProcessor
()
{}
v
irtual
void
Process
()
{
v
oid
ProcessImpl
()
override
{
if
(
response_call_back_
)
{
response_call_back_
(
var_h_
,
reply_
);
response_call_back_
(
*
var_h_
.
get
()
,
reply_
);
}
}
...
...
@@ -133,13 +132,13 @@ class GetProcessor : public BaseProcessor {
class
BatchBarrierProcessor
:
public
BaseProcessor
{
public:
explicit
BatchBarrierProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
)
{
:
BaseProcessor
()
{
stub_
=
sendrecv
::
SendRecvService
::
NewStub
(
ch
);
}
virtual
~
BatchBarrierProcessor
()
{}
v
irtual
void
Process
()
{}
v
oid
ProcessImpl
()
override
{}
sendrecv
::
VoidMessage
reply_
;
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
};
...
...
@@ -147,13 +146,13 @@ class BatchBarrierProcessor : public BaseProcessor {
class
FetchBarrierProcessor
:
public
BaseProcessor
{
public:
explicit
FetchBarrierProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
)
{
:
BaseProcessor
()
{
stub_
=
sendrecv
::
SendRecvService
::
NewStub
(
ch
);
}
virtual
~
FetchBarrierProcessor
()
{}
v
irtual
void
Process
()
{}
v
oid
ProcessImpl
()
override
{}
sendrecv
::
VariableMessage
reply_
;
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
};
...
...
@@ -161,13 +160,13 @@ class FetchBarrierProcessor : public BaseProcessor {
class
CheckpointNotifyProcessor
:
public
BaseProcessor
{
public:
explicit
CheckpointNotifyProcessor
(
std
::
shared_ptr
<
grpc
::
Channel
>
ch
)
:
BaseProcessor
(
ch
)
{
:
BaseProcessor
()
{
stub_
=
sendrecv
::
SendRecvService
::
NewStub
(
ch
);
}
virtual
~
CheckpointNotifyProcessor
()
{}
v
irtual
void
Process
()
{}
v
oid
ProcessImpl
()
override
{}
sendrecv
::
VoidMessage
reply_
;
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
};
...
...
@@ -177,32 +176,37 @@ class GRPCClient : public RPCClient {
GRPCClient
()
:
ok_
(
true
),
completed_
(
false
),
stopped_
(
false
)
{}
virtual
~
GRPCClient
();
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
bool
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
void
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
VarHandlePtr
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
VarHandlePtr
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
VarHandlePtr
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
VarHandlePtr
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
VarHandlePtr
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
VarHandlePtr
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
VarHandlePtr
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
override
;
bool
Wait
()
override
;
...
...
paddle/fluid/operators/distributed/request_handler.h
浏览文件 @
b084dfab
...
...
@@ -28,6 +28,7 @@
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/macros.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -49,23 +50,77 @@ constexpr char kRequestPassBarrier[] = "RequestPassBarrier";
class
RPCServer
;
struct
VarHandle
{
// RPC endpoint.
std
::
string
ep
;
const
platform
::
DeviceContext
*
ctx
;
const
framework
::
Scope
*
scope
;
// Variable name.
std
::
string
name
;
// RPC method name.
std
::
string
method
;
class
VarHandle
{
public:
VarHandle
(
const
std
::
string
ep
,
const
std
::
string
&
method
,
const
std
::
string
&
name
,
const
platform
::
DeviceContext
*
p_ctx
=
nullptr
,
const
framework
::
Scope
*
p_scope
=
nullptr
)
:
ok_
(
kVarHandleDefaultState
)
{
ep_
=
ep
;
ctx_
=
p_ctx
;
scope_
=
p_scope
;
name_
=
name
;
method_
=
method
;
}
virtual
~
VarHandle
()
{}
public:
bool
Wait
()
{
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
sync_mutex_
);
wait_cond_
.
wait
(
lk
,
[
this
]
{
return
ok_
!=
kVarHandleDefaultState
;
});
}
VLOG
(
7
)
<<
"VarHandle wait:"
<<
ok_
;
return
ok_
!=
0
;
}
void
Finish
(
bool
ok
)
{
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
sync_mutex_
);
ok_
=
ok
;
}
VLOG
(
7
)
<<
"VarHandle finish:"
<<
ok
;
wait_cond_
.
notify_all
();
}
std
::
string
String
()
const
{
std
::
ostringstream
s
;
s
<<
method
<<
" name:["
<<
name
<<
"], ep:["
<<
ep
<<
"]"
;
s
<<
method_
<<
" name:["
<<
name_
<<
"], ep:["
<<
ep_
<<
"], ok:["
<<
ok_
<<
"]"
;
return
s
.
str
();
}
std
::
string
ep
()
const
{
return
ep_
;
}
const
platform
::
DeviceContext
*
ctx
()
const
{
return
ctx_
;
}
const
framework
::
Scope
*
scope
()
const
{
return
scope_
;
}
std
::
string
name
()
const
{
return
name_
;
}
std
::
string
method
()
const
{
return
method_
;
}
protected:
// RPC endpoint.
std
::
string
ep_
;
const
platform
::
DeviceContext
*
ctx_
;
const
framework
::
Scope
*
scope_
;
// Variable name.
std
::
string
name_
;
// RPC method name.
std
::
string
method_
;
protected:
std
::
mutex
sync_mutex_
;
std
::
condition_variable
wait_cond_
;
int
ok_
;
static
const
int
kVarHandleDefaultState
=
-
1
;
private:
DISABLE_COPY_AND_ASSIGN
(
VarHandle
);
};
typedef
std
::
shared_ptr
<
VarHandle
>
VarHandlePtr
;
class
RequestHandler
{
public:
explicit
RequestHandler
(
bool
sync_mode
)
...
...
paddle/fluid/operators/distributed/rpc_client.h
浏览文件 @
b084dfab
...
...
@@ -14,12 +14,14 @@
#pragma once
#include <condition_variable> // NOLINT
#include <string>
#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/operators/distributed/request_handler.h"
DECLARE_int32
(
rpc_deadline
);
...
...
@@ -31,37 +33,36 @@ class RPCClient {
public:
RPCClient
()
{}
virtual
~
RPCClient
()
{}
virtual
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
bool
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
void
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
VarHandlePtr
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
VarHandlePtr
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
VarHandlePtr
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
VarHandlePtr
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
VarHandlePtr
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
VarHandlePtr
AsyncCheckpointNotify
(
const
std
::
string
&
ep
,
const
std
::
string
&
dir
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
virtual
VarHandlePtr
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
=
FLAGS_rpc_deadline
)
=
0
;
// Complete tells all the pserver instances that finishe the training,
// the pserver can reduce it's barrier count, and continue to train
...
...
paddle/fluid/operators/distributed/varhandle_test.cc
0 → 100644
浏览文件 @
b084dfab
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <unistd.h>
#include <string>
#include <thread> // NOLINT
#include "google/protobuf/text_format.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/distributed/request_handler.h"
using
paddle
::
operators
::
distributed
::
VarHandlePtr
;
using
paddle
::
operators
::
distributed
::
VarHandle
;
void
WaitTrue
(
VarHandlePtr
s
)
{
EXPECT_TRUE
(
s
->
Wait
());
}
void
WaitFalse
(
VarHandlePtr
s
)
{
EXPECT_FALSE
(
s
->
Wait
());
}
TEST
(
VarHandle
,
Run
)
{
std
::
vector
<
VarHandlePtr
>
a
;
for
(
int
i
=
0
;
i
<
12
;
i
++
)
{
VarHandlePtr
s
(
new
VarHandle
(
""
,
""
,
""
,
nullptr
,
nullptr
));
a
.
push_back
(
s
);
}
std
::
vector
<
std
::
unique_ptr
<
std
::
thread
>>
t
;
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
t
.
emplace_back
(
new
std
::
thread
(
WaitFalse
,
a
[
i
]));
}
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
a
[
i
]
->
Finish
(
false
);
t
[
i
]
->
join
();
}
for
(
int
i
=
6
;
i
<
12
;
i
++
)
{
t
.
emplace_back
(
new
std
::
thread
(
WaitTrue
,
a
[
i
]));
}
for
(
int
i
=
6
;
i
<
12
;
i
++
)
{
a
[
i
]
->
Finish
(
true
);
t
[
i
]
->
join
();
}
}
paddle/fluid/operators/prefetch_op.cc
浏览文件 @
b084dfab
...
...
@@ -44,16 +44,20 @@ class PrefetchOp : public framework::OperatorBase {
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
<<
outs
[
i
]
<<
" back"
;
rpc_client
->
AsyncPrefetchVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
],
outs
[
i
]);
rets
.
push_back
(
rpc_client
->
AsyncPrefetchVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
],
outs
[
i
]));
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
}
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
}
}
};
...
...
paddle/fluid/operators/recv_op.cc
浏览文件 @
b084dfab
...
...
@@ -44,12 +44,15 @@ class RecvOp : public framework::OperatorBase {
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
i
++
)
{
VLOG
(
3
)
<<
"getting "
<<
outs
[
i
]
<<
" from "
<<
epmap
[
i
];
r
pc_client
->
AsyncGetVar
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]
);
r
ets
.
push_back
(
rpc_client
->
AsyncGetVar
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
])
);
}
if
(
sync_mode
)
{
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
}
}
}
};
...
...
paddle/fluid/operators/send_op.cc
浏览文件 @
b084dfab
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include <future> // NOLINT
#include <ostream>
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -45,18 +46,19 @@ class SendOp : public framework::OperatorBase {
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
];
// TODO(Yancey1989): we need to use an IO threadpool which has
// a larger number of threads than the computing threadpool.
rpc_client
->
AsyncSendVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
rets
.
push_back
(
rpc_client
->
AsyncSendVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]));
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
}
if
(
sync_send
)
{
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
}
}
}
};
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
b084dfab
...
...
@@ -192,7 +192,8 @@ class MKLDNNHandler {
mkldnn
::
memory
::
primitive_desc
&
user_mpd
,
// NOLINT
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
const
std
::
string
&
suffix
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
// NOLINT
bool
is_persistent
=
false
)
{
// create reorder primitive if the input format is not the preferred one
auto
local_key
=
key_
+
suffix
;
auto
key_reorder_p
=
key_
+
suffix
+
"reorder_p"
;
...
...
@@ -213,7 +214,7 @@ class MKLDNNHandler {
pipeline
.
push_back
(
*
reorder_p
);
}
dev_ctx_
.
SetBlob
(
local_key
,
target_memory_p
);
}
else
{
}
else
if
(
!
is_persistent
)
{
// Make reorder if needed
auto
reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
key_reorder_p
));
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
b084dfab
...
...
@@ -128,6 +128,13 @@ class ParallelExecutor(object):
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
*
2
# Set 1 thread num under nccl2 distribute
# env to make sure all gpus run ops in same order.
if
num_trainers
>
1
:
assert
(
use_cuda
)
# FIXME(gongwb): avoid this set.
exec_strategy
.
num_threads
=
1
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
...
...
python/paddle/fluid/transpiler/inference_transpiler.py
浏览文件 @
b084dfab
...
...
@@ -60,12 +60,46 @@ class InferenceTranspiler(object):
if
not
isinstance
(
scope
,
core
.
Scope
):
raise
TypeError
(
"scope should be as Scope type or None"
)
use_mkldnn
=
bool
(
os
.
getenv
(
"FLAGS_use_mkldnn"
,
False
))
self
.
_fuse_batch_norm
(
program
,
place
,
scope
)
if
use_mkldnn
:
self
.
_fuse_relu_mkldnn
(
program
)
self
.
_fuse_conv_bias_mkldnn
(
program
)
self
.
_fuse_conv_relu_mkldnn
(
program
)
self
.
_fuse_bn_relu_mkldnn
(
program
)
def
_fuse_conv_relu_mkldnn
(
self
,
program
):
'''
Transpile the program by fused relu activation for MKLDNN program.
Relu activation following convolution OP can be fused by adding
'fuse_relu' attribute to convolution OP.
The result of fuse is:
- before:
- conv->relu->any_other_op
- after:
- conv->any_other_op
:param program: program to transpile
:type program: Program
'''
self
.
block
=
program
.
block
(
0
)
i
=
0
while
i
<
len
(
self
.
block
.
ops
):
current_op
=
self
.
block
.
ops
[
i
]
if
current_op
.
type
in
[
'conv2d'
]:
next_op
=
self
.
block
.
ops
[
i
+
1
]
if
next_op
.
type
==
'relu'
:
# modify conv OP to include relu
current_op
.
set_attr
(
"fuse_relu"
,
True
)
# remove conv OP
self
.
block
.
_remove_op
(
i
+
1
)
i
=
i
+
1
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program
=
program
.
clone
()
def
_fuse_relu_mkldnn
(
self
,
program
):
def
_fuse_
bn_
relu_mkldnn
(
self
,
program
):
'''
Transpile the program by fused relu activation for MKLDNN program.
...
...
@@ -159,7 +193,6 @@ class InferenceTranspiler(object):
self
.
_fuse_conv_bias
(
i
,
current_op
,
next_op
)
self
.
block
.
_remove_op
(
i
+
1
)
# Remove old conv
self
.
block
.
_remove_op
(
i
+
1
)
# Remove elementwise_add
i
=
i
+
1
i
=
i
+
1
self
.
_remove_unused_var
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录