Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b07584dc
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b07584dc
编写于
4月 10, 2019
作者:
J
Jiabin Yang
提交者:
GitHub
4月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=release/1.4, refine test_imperative_transformer (#16737)
上级
cb9c59bd
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
36 addition
and
24 deletion
+36
-24
python/paddle/fluid/tests/unittests/test_imperative_transformer.py
...ddle/fluid/tests/unittests/test_imperative_transformer.py
+36
-24
未找到文件。
python/paddle/fluid/tests/unittests/test_imperative_transformer.py
浏览文件 @
b07584dc
...
...
@@ -116,7 +116,7 @@ class ModelHyperParams(object):
# to process after each sub-layer
postprocess_cmd
=
"da"
# dropout + residual connection
# random seed used in dropout for CE.
dropout_seed
=
1
dropout_seed
=
None
# the flag indicating whether to share embedding and softmax weights.
# vocabularies in source and target should be same for weight sharing.
weight_sharing
=
True
...
...
@@ -166,15 +166,21 @@ def create_data(is_static=False):
]
else
:
enc_inputs
=
[
to_variable
(
src_word_np
),
to_variable
(
src_pos_np
),
to_variable
(
src_slf_attn_bias_np
)
to_variable
(
src_word_np
,
name
=
'src_word'
),
to_variable
(
src_pos_np
,
name
=
'src_pos'
),
to_variable
(
src_slf_attn_bias_np
,
name
=
'src_slf_attn_bias'
)
]
dec_inputs
=
[
to_variable
(
trg_word_np
),
to_variable
(
trg_pos_np
),
to_variable
(
trg_slf_attn_bias_np
),
to_variable
(
trg_src_attn_bias_np
)
to_variable
(
trg_word_np
,
name
=
'trg_word'
),
to_variable
(
trg_pos_np
,
name
=
'trg_pos'
),
to_variable
(
trg_slf_attn_bias_np
,
name
=
'trg_slf_attn_bias'
),
to_variable
(
trg_src_attn_bias_np
,
name
=
'trg_src_attn_bias'
)
]
label
=
to_variable
(
lbl_word_np
)
weight
=
to_variable
(
lbl_weight_np
)
label
=
to_variable
(
lbl_word_np
,
name
=
'lbl_word'
)
weight
=
to_variable
(
lbl_weight_np
,
name
=
'lbl_weight'
)
return
enc_inputs
,
dec_inputs
,
label
,
weight
...
...
@@ -211,7 +217,7 @@ def make_all_inputs(input_fields):
# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size
=
32
batch_size
=
-
1
# The placeholder for squence length in compile time.
seq_len
=
ModelHyperParams
.
max_length
# Here list the data shapes and data types of all inputs.
...
...
@@ -304,35 +310,40 @@ sync = False
batch_num
=
5
np
.
random
.
seed
=
1
np
.
random
.
seed
=
90
src_word_np
=
np
.
random
.
randint
(
1
,
ModelHyperParams
.
src_vocab_size
-
1
,
size
=
(
batch_size
,
seq_len
,
1
),
size
=
(
TrainTaskConfig
.
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
src_pos_np
=
np
.
random
.
randint
(
1
,
seq_len
,
size
=
(
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
src_slf_attn_bias_np
=
np
.
random
.
randn
(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
1
,
seq_len
,
size
=
(
TrainTaskConfig
.
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
src_slf_attn_bias_np
=
np
.
random
.
randn
(
TrainTaskConfig
.
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
trg_word_np
=
np
.
random
.
randint
(
1
,
ModelHyperParams
.
src_vocab_size
-
1
,
size
=
(
batch_size
,
seq_len
,
1
),
size
=
(
TrainTaskConfig
.
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
trg_pos_np
=
np
.
random
.
randint
(
1
,
seq_len
,
size
=
(
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
trg_slf_attn_bias_np
=
np
.
random
.
randn
(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
trg_src_attn_bias_np
=
np
.
random
.
randn
(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
1
,
seq_len
,
size
=
(
TrainTaskConfig
.
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
trg_slf_attn_bias_np
=
np
.
random
.
randn
(
TrainTaskConfig
.
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
trg_src_attn_bias_np
=
np
.
random
.
randn
(
TrainTaskConfig
.
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
lbl_word_np
=
np
.
random
.
randint
(
1
,
ModelHyperParams
.
src_vocab_size
-
1
,
size
=
(
batch_size
*
seq_len
,
1
),
size
=
(
TrainTaskConfig
.
batch_size
*
seq_len
,
1
),
dtype
=
'int64'
)
lbl_weight_np
=
np
.
random
.
randn
(
batch_size
*
seq_len
,
1
).
astype
(
'float32'
)
lbl_weight_np
=
np
.
random
.
randn
(
TrainTaskConfig
.
batch_size
*
seq_len
,
1
).
astype
(
'float32'
)
pos_inp1
=
position_encoding_init
(
ModelHyperParams
.
max_length
,
ModelHyperParams
.
d_model
)
...
...
@@ -447,7 +458,7 @@ class MultiHeadAttentionLayer(Layer):
x
=
v
,
shape
=
[
0
,
0
,
self
.
_n_head
,
self
.
_d_value
],
inplace
=
False
)
transpose_v
=
fluid
.
layers
.
transpose
(
x
=
reshaped_v
,
perm
=
[
0
,
2
,
1
,
3
])
#scale dot product attention
#
scale dot product attention
product
=
fluid
.
layers
.
matmul
(
x
=
transpose_q
,
y
=
transpose_k
,
...
...
@@ -971,6 +982,7 @@ class TestDygraphTransformer(unittest.TestCase):
enc_inputs
,
dec_inputs
,
label
,
weights
=
create_data
()
dy_sum_cost
,
dy_avg_cost
,
dy_predict
,
dy_token_num
=
transformer
(
enc_inputs
,
dec_inputs
,
label
,
weights
)
if
i
==
0
:
for
param
in
transformer
.
parameters
():
dy_param_init
[
param
.
name
]
=
param
.
_numpy
()
...
...
@@ -978,6 +990,7 @@ class TestDygraphTransformer(unittest.TestCase):
dy_avg_cost
.
_backward
()
optimizer
.
minimize
(
dy_avg_cost
)
transformer
.
clear_gradients
()
if
i
==
batch_num
-
1
:
for
param
in
transformer
.
parameters
():
dy_param_updated
[
param
.
name
]
=
param
.
_numpy
()
...
...
@@ -1024,7 +1037,6 @@ class TestDygraphTransformer(unittest.TestCase):
static_param_name_list
=
list
()
static_sum_cost
,
static_avg_cost
,
static_predict
,
static_token_num
=
transformer
(
enc_inputs
,
dec_inputs
,
label
,
weights
)
optimizer
.
minimize
(
static_avg_cost
)
for
param
in
transformer
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
...
...
@@ -1042,8 +1054,8 @@ class TestDygraphTransformer(unittest.TestCase):
static_sum_cost
,
static_avg_cost
,
static_predict
,
static_token_num
]
fetch_list
.
extend
(
static_param_name_list
)
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feed_dict
,
fetch_list
=
fetch_list
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录