Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
af9a3301
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
af9a3301
编写于
11月 21, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop
上级
014e50c2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
152 addition
and
130 deletion
+152
-130
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+4
-2
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+3
-2
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+1
-1
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+144
-125
未找到文件。
paddle/fluid/framework/selected_rows.h
浏览文件 @
af9a3301
...
...
@@ -121,7 +121,9 @@ class SelectedRows {
int64_t
AutoGrownIndex
(
int64_t
key
,
bool
auto_grown
);
void
SyncIndex
();
/*
* @brief Get complete Dims before
*/
DDim
GetCompleteDims
()
const
{
std
::
vector
<
int64_t
>
dims
=
vectorize
(
value_
->
dims
());
dims
[
0
]
=
height_
;
...
...
@@ -136,7 +138,7 @@ class SelectedRows {
std
::
unordered_map
<
int64_t
,
int64_t
>
id_to_index_
;
// should not be used when ids has duplicate member
std
::
unique_ptr
<
Tensor
>
value_
{
nullptr
};
int64_t
height_
;
int64_t
height_
;
// height indicates the underline tensor's height
std
::
unique_ptr
<
RWLock
>
rwlock_
{
nullptr
};
};
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
af9a3301
...
...
@@ -145,8 +145,9 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PreOut"
),
"Input(Preout) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"W"
)),
"Output(W@Grad should not be null.)"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
"Output(W@Grad should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output(X@Grad should not be null."
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
af9a3301
...
...
@@ -191,10 +191,10 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
framework
::
Vector
<
int64_t
>
real_rows
=
cal_rows
(
path
);
auto
*
w_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
set_rows
(
real_rows
);
// build ids -> rows index map
w_grad
->
SyncIndex
();
w_grad
->
set_height
(
w
->
dims
()[
0
]);
auto
*
w_grad_value
=
w_grad
->
mutable_value
();
framework
::
DDim
temp_dim
(
w
->
dims
());
set
(
temp_dim
,
0
,
real_rows
.
size
());
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
af9a3301
...
...
@@ -140,148 +140,167 @@ def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
return
pre_output
,
out
#
class TestHSigmoidOp(OpTest):
#
def setUp(self):
#
self.op_type = "hierarchical_sigmoid"
#
num_classes = 6
#
feature_size = 8
#
batch_size = 4
#
x = np.random.random((batch_size, feature_size)).astype("float32") * 2
#
w = np.random.random(
#
(num_classes - 1, feature_size)).astype("float32") * 2
#
label = np.random.randint(0, num_classes, (batch_size, 1))
#
bias = np.random.random((1, num_classes - 1)).astype("float32")
#
self.attrs = {'num_classes': num_classes, 'is_sparse': False}
#
self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
#
pre_output, out = hsigmoid(x, w, label, bias, num_classes)
#
self.outputs = {'PreOut': pre_output, 'Out': out}
#
def test_check_output(self):
#
self.check_output()
#
def test_check_grad(self):
#
self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
# class TestHSigmoidOpSparse(OpTest):
# def setUp(self
):
# self.op_type = "hierarchical_sigmoid"
# num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
# feature_size = 8
# batch_size = 4
# x = np.random.random((batch_size, feature_size)).astype("float32") * 2
# w = np.random.random(
# (num_classes - 1, feature_size)).astype("float32") * 2
#
label = np.array([0, 1, 4, 5])
#
ptable = np.array(
#
[(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
#
(0, 2, -1, -1,
#
-1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
#
pcode = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
#
1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store
#
bias = np.random.random((1, num_classes - 1)).astype("float32")
#
self.attrs = {'num_classes': num_classes, 'is_sparse': True}
#
self.inputs = {
#
'X': x,
#
'W': w,
#
'PTable': ptable,
#
'PCode': pcode,
#
'Label': label,
#
'Bias': bias
#
}
#
pre_output, out = hsigmoidWithCustomTree(x, w, ptable, pcode, label,
#
bias, num_classes)
#
self.outputs = {'PreOut': pre_output, 'Out': out}
#
def test_check_output(self):
#
print("checking output in CostumTree")
#
self.check_output()
class
TestHSigmoidOpWithSparseGrad
():
def
hs_net_conf
(
self
):
emb
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
3
],
dtype
=
'int64'
)
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
class
TestHSigmoidOpSparse
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
label
=
np
.
array
([
0
,
1
,
4
,
5
])
ptable
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
True
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
ptable
,
'PCode'
:
pcode
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
,
w
,
ptable
,
pcode
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
print
(
"checking output in CostumTree"
)
self
.
check_output
()
class
TestHSigmoidOpWithSparseGrad
(
unittest
.
TestCase
):
def
hs_net_conf
(
self
,
is_sparse
):
input_word
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
1
],
dtype
=
'int64'
)
ptable
=
fluid
.
layers
.
data
(
name
=
'ptable'
,
shape
=
[
3
],
dtype
=
'int64'
)
pcode
=
fluid
.
layers
.
data
(
name
=
'pcode'
,
shape
=
[
3
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
data_list
=
[
emb
,
ptable
,
pcode
,
label
]
data_list
=
[
input_word
,
ptable
,
pcode
,
label
]
emb
=
fluid
.
layers
.
embedding
(
input
=
input_word
,
is_sparse
=
False
,
size
=
[
3
,
3
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
3
))))
cost
=
fluid
.
layers
.
hsigmoid
(
input
=
emb
,
label
=
predict_word
,
non_leaf_num
=
4
,
label
=
label
,
non_leaf_num
=
3
,
ptable
=
ptable
,
pcode
=
pcode
,
is_costum
=
True
,
is_sparse
=
Tru
e
)
is_sparse
=
is_spars
e
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
return
avg_cost
,
data_list
def
test_training_test
(
self
):
print
(
"im here"
)
w
=
np
.
arange
(
12
).
reshape
(
4
,
3
)
x
=
np
.
ones
((
2
,
3
))
ptable
=
np
.
array
([(
1
,
2
,
-
1
),
(
1
,
2
,
-
1
)])
pcode
=
np
.
array
([(
1
,
0
,
-
1
),
(
0
,
0
,
-
1
)])
label
=
np
.
array
([(
1
,
4
)])
loss
,
data_list
=
hs_net_conf
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
main_program
=
fluid
.
default_main_program
()
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
data_list
,
place
=
place
)
data_name_list
=
[
var
.
name
for
var
in
data_list
]
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
range
(
args
.
num_passes
):
def
training_test
(
self
,
is_sparse
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
start_up
=
fluid
.
default_startup_program
()
start_up
.
random_seed
=
1
# Fix random seed
x
=
np
.
arange
(
6
).
reshape
(
6
)
ptable
=
np
.
array
([(
1
,
2
,
-
1
),
(
1
,
2
,
-
1
)])
pcode
=
np
.
array
([(
1
,
0
,
-
1
),
(
0
,
0
,
-
1
)])
label
=
np
.
array
([
1
,
4
])
loss
,
data_list
=
self
.
hs_net_conf
(
is_sparse
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
main_program
=
fluid
.
default_main_program
()
# print("main program: {program}".format{program=str(main_program)})
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
data_list
,
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
start_up
)
result
=
list
()
for
i
in
range
(
10
):
data
=
[
w
,
x
[
i
%
2
],
ptable
[
i
%
2
],
pcode
[
i
%
2
],
label
[
i
%
2
]]
data
=
[([[
x
[
i
%
2
]]],
[
list
(
ptable
[
i
%
2
])],
[
list
(
pcode
[
i
%
2
])],
[
label
[
i
%
2
]])]
loss_val
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
print
(
"loss is: {loss}"
.
format
(
loss
=
loss
))
# class TestHSigmoidOpWithCostumTree(OpTest):
# def setUp(self):
# self.op_type = "hierarchical_sigmoid"
# num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
# feature_size = 8
# batch_size = 4
# x = np.random.random((batch_size, feature_size)).astype("float32") * 2
# w = np.random.random(
# (num_classes - 1, feature_size)).astype("float32") * 2
# label = np.array([0, 1, 4, 5])
# ptable = np.array(
# [(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
# (0, 2, -1, -1,
# -1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
# pcode = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
# 1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store
# bias = np.random.random((1, num_classes - 1)).astype("float32")
# self.attrs = {'num_classes': num_classes, 'is_sparse': False}
# self.inputs = {
# 'X': x,
# 'W': w,
# 'PTable': ptable,
# 'PCode': pcode,
# 'Label': label,
# 'Bias': bias
# }
# pre_output, out = hsigmoidWithCustomTree(x, w, ptable, pcode, label,
# bias, num_classes)
# self.outputs = {'PreOut': pre_output, 'Out': out}
# def test_check_output(self):
# print("checking output in CostumTree")
# self.check_output()
# def test_check_grad(self):
# print("checking outputGrad in CostumTree")
# self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
result
.
append
(
loss_val
)
return
result
def
test_hs_grad_with_sparse
(
self
):
dense_result
=
self
.
training_test
(
is_sparse
=
False
)
sparse_result
=
self
.
training_test
(
is_sparse
=
True
)
assert
(
dense_result
==
sparse_result
)
class
TestHSigmoidOpWithCostumTree
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
array
([
0
,
1
,
4
,
5
])
ptable
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
ptable
,
'PCode'
:
pcode
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
,
w
,
ptable
,
pcode
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
print
(
"checking output in CostumTree"
)
self
.
check_output
()
def
test_check_grad
(
self
):
print
(
"checking outputGrad in CostumTree"
)
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录