Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
af53eb6a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
af53eb6a
编写于
4月 15, 2019
作者:
Y
Yan Xu
提交者:
GitHub
4月 15, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] test_imperative_se_resnext (#16816)
cherry-pick dygraph serenext unit test
上级
7b453631
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
484 addition
and
0 deletion
+484
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/test_imperative_se_resnext.py
...addle/fluid/tests/unittests/test_imperative_se_resnext.py
+481
-0
未找到文件。
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
af53eb6a
...
@@ -79,6 +79,7 @@ list(REMOVE_ITEM TEST_OPS test_bilinear_interp_op)
...
@@ -79,6 +79,7 @@ list(REMOVE_ITEM TEST_OPS test_bilinear_interp_op)
list
(
REMOVE_ITEM TEST_OPS test_nearest_interp_op
)
list
(
REMOVE_ITEM TEST_OPS test_nearest_interp_op
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_resnet
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_resnet
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_mnist
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_mnist
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_se_resnext
)
list
(
REMOVE_ITEM TEST_OPS test_ir_memory_optimize_transformer
)
list
(
REMOVE_ITEM TEST_OPS test_ir_memory_optimize_transformer
)
list
(
REMOVE_ITEM TEST_OPS test_layers
)
list
(
REMOVE_ITEM TEST_OPS test_layers
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
...
@@ -92,6 +93,8 @@ py_test_modules(test_imperative_resnet MODULES test_imperative_resnet ENVS
...
@@ -92,6 +93,8 @@ py_test_modules(test_imperative_resnet MODULES test_imperative_resnet ENVS
FLAGS_cudnn_deterministic=1
)
FLAGS_cudnn_deterministic=1
)
py_test_modules
(
test_imperative_mnist MODULES test_imperative_mnist ENVS
py_test_modules
(
test_imperative_mnist MODULES test_imperative_mnist ENVS
FLAGS_cudnn_deterministic=1
)
FLAGS_cudnn_deterministic=1
)
py_test_modules
(
test_imperative_se_resnext MODULES test_imperative_se_resnext SERIAL ENVS
FLAGS_cudnn_deterministic=1
)
if
(
WITH_DISTRIBUTE
)
if
(
WITH_DISTRIBUTE
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 20
)
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 20
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_se_resnext.py
0 → 100644
浏览文件 @
af53eb6a
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
contextlib
import
unittest
import
numpy
as
np
import
six
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.dygraph.base
import
to_variable
from
test_imperative_base
import
new_program_scope
batch_size
=
8
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
batch_size
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
},
"batch_size"
:
batch_size
,
"lr"
:
0.1
,
"total_images"
:
6149
,
}
def
optimizer_setting
(
params
):
ls
=
params
[
"learning_strategy"
]
if
ls
[
"name"
]
==
"piecewise_decay"
:
if
"total_images"
not
in
params
:
total_images
=
6149
else
:
total_images
=
params
[
"total_images"
]
# TODO(Yancey1989): using lr decay if it is ready.
#batch_size = ls["batch_size"]
#step = int(total_images / batch_size + 1)
#bd = [step * e for e in ls["epochs"]]
#base_lr = params["lr"]
#lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
return
optimizer
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
(
name_scope
)
self
.
_conv
=
Conv2D
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
None
)
self
.
_batch_norm
=
BatchNorm
(
self
.
full_name
(),
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
SqueezeExcitation
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
reduction_ratio
):
super
(
SqueezeExcitation
,
self
).
__init__
(
name_scope
)
self
.
_pool
=
Pool2D
(
self
.
full_name
(),
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
_squeeze
=
FC
(
self
.
full_name
(),
size
=
num_channels
//
reduction_ratio
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.05
)),
act
=
'relu'
)
self
.
_excitation
=
FC
(
self
.
full_name
(),
size
=
num_channels
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.05
)),
act
=
'sigmoid'
)
def
forward
(
self
,
input
):
y
=
self
.
_pool
(
input
)
y
=
self
.
_squeeze
(
y
)
y
=
self
.
_excitation
(
y
)
y
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
y
,
axis
=
0
)
return
y
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
num_filters
,
stride
,
cardinality
,
reduction_ratio
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
(
name_scope
)
self
.
conv0
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
)
self
.
conv1
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
groups
=
cardinality
)
self
.
conv2
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
'relu'
)
self
.
scale
=
SqueezeExcitation
(
self
.
full_name
(),
num_channels
=
num_filters
*
4
,
reduction_ratio
=
reduction_ratio
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
4
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
scale
=
self
.
scale
(
conv2
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
y
=
layer_helper
.
append_activation
(
y
)
return
y
class
SeResNeXt
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
layers
=
50
,
class_dim
=
102
):
super
(
SeResNeXt
,
self
).
__init__
(
name_scope
)
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
cardinality
=
32
reduction_ratio
=
16
depth
=
[
3
,
4
,
6
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv0
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
self
.
full_name
(),
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
elif
layers
==
101
:
cardinality
=
32
reduction_ratio
=
16
depth
=
[
3
,
4
,
23
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv0
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
3
,
num_filters
=
3
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
self
.
full_name
(),
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
elif
layers
==
152
:
cardinality
=
64
reduction_ratio
=
16
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv0
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
3
,
num_filters
=
3
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
64
,
num_filters
=
3
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
64
,
num_filters
=
3
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
self
.
full_name
(),
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
num_channels
=
64
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
cardinality
,
reduction_ratio
=
reduction_ratio
,
shortcut
=
shortcut
))
num_channels
=
bottleneck_block
.
_num_channels_out
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
self
.
full_name
(),
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
import
math
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
FC
(
self
.
full_name
(),
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
inputs
):
if
self
.
layers
==
50
or
self
.
layers
==
101
:
y
=
self
.
conv0
(
inputs
)
y
=
self
.
pool
(
y
)
elif
self
.
layers
==
152
:
y
=
self
.
conv0
(
inputs
)
y
=
self
.
conv1
(
inputs
)
y
=
self
.
conv2
(
inputs
)
y
=
self
.
pool
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
dropout
(
y
,
dropout_prob
=
0.2
)
y
=
self
.
out
(
y
)
return
y
class
TestImperativeResneXt
(
unittest
.
TestCase
):
def
test_se_resnext_float32
(
self
):
seed
=
90
batch_size
=
train_parameters
[
"batch_size"
]
batch_num
=
2
epoch_num
=
1
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
se_resnext
=
SeResNeXt
(
"se_resnext"
)
optimizer
=
optimizer_setting
(
train_parameters
)
np
.
random
.
seed
(
seed
)
import
random
random
.
seed
=
seed
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
),
batch_size
=
batch_size
,
drop_last
=
True
)
dy_param_init_value
=
{}
for
param
in
se_resnext
.
parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
numpy
()
for
epoch_id
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
batch_num
and
batch_num
!=
-
1
:
break
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
batch_size
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
stop_gradient
=
True
out
=
se_resnext
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
dy_out
=
avg_loss
.
numpy
()
if
batch_id
==
0
:
for
param
in
se_resnext
.
parameters
():
if
param
.
name
not
in
dy_param_init_value
:
dy_param_init_value
[
param
.
name
]
=
param
.
numpy
()
avg_loss
.
backward
()
#dy_grad_value = {}
#for param in se_resnext.parameters():
# if param.trainable:
# np_array = np.array(param._ivar._grad_ivar().value()
# .get_tensor())
# dy_grad_value[param.name + core.grad_var_suffix()] = np_array
optimizer
.
minimize
(
avg_loss
)
se_resnext
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
se_resnext
.
parameters
():
dy_param_value
[
param
.
name
]
=
param
.
numpy
()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
se_resnext
=
SeResNeXt
(
"se_resnext"
)
optimizer
=
optimizer_setting
(
train_parameters
)
np
.
random
.
seed
(
seed
)
import
random
random
.
seed
=
seed
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
),
batch_size
=
batch_size
,
drop_last
=
True
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
out
=
se_resnext
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
optimizer
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
static_param_name_list
=
[]
static_grad_name_list
=
[]
for
param
in
se_resnext
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
for
param
in
se_resnext
.
parameters
():
if
param
.
trainable
:
static_grad_name_list
.
append
(
param
.
name
+
core
.
grad_var_suffix
())
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
epoch_id
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
batch_num
and
batch_num
!=
-
1
:
break
static_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
batch_size
,
1
])
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
fetch_list
.
extend
(
static_grad_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_grad_value
=
{}
static_out
=
out
[
0
]
param_start_pos
=
1
grad_start_pos
=
len
(
static_param_name_list
)
+
param_start_pos
for
i
in
range
(
param_start_pos
,
len
(
static_param_name_list
)
+
param_start_pos
):
static_param_value
[
static_param_name_list
[
i
-
param_start_pos
]]
=
out
[
i
]
for
i
in
range
(
grad_start_pos
,
len
(
static_grad_name_list
)
+
grad_start_pos
):
static_grad_value
[
static_grad_name_list
[
i
-
grad_start_pos
]]
=
out
[
i
]
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
self
.
assertEqual
(
len
(
dy_param_init_value
),
len
(
static_param_init_value
))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
isfinite
(
value
.
all
()))
self
.
assertFalse
(
np
.
isnan
(
value
.
any
()))
# FIXME(Yancey1989): np.array(_ivar.value().get_tensor()) leads to memory lake
#self.assertEqual(len(dy_grad_value), len(static_grad_value))
#for key, value in six.iteritems(static_grad_value):
# self.assertTrue(np.allclose(value, dy_grad_value[key]))
# self.assertTrue(np.isfinite(value.all()))
# self.assertFalse(np.isnan(value.any()))
self
.
assertEqual
(
len
(
dy_param_value
),
len
(
static_param_value
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
]))
self
.
assertTrue
(
np
.
isfinite
(
value
.
all
()))
self
.
assertFalse
(
np
.
isnan
(
value
.
any
()))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录