提交 ad44a3eb 编写于 作者: L liaogang

Update vgg and resnet via api v2

上级 d227f447
......@@ -14,12 +14,7 @@
import paddle.v2 as paddle
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id,
event.cost)
__all__ = ['resnet_cifar10']
def conv_bn_layer(input,
......@@ -43,7 +38,6 @@ def conv_bn_layer(input,
def shortcut(ipt, n_in, n_out, stride):
if n_in != n_out:
print("n_in != n_out")
return conv_bn_layer(ipt, n_out, 1, stride, 0,
paddle.activation.Linear())
else:
......@@ -51,22 +45,13 @@ def shortcut(ipt, n_in, n_out, stride):
def basicblock(ipt, ch_out, stride):
ch_in = ipt.num_filters
ch_in = ch_out * 2
tmp = conv_bn_layer(ipt, ch_out, 3, stride, 1)
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, paddle.activation.Linear())
short = shortcut(ipt, ch_in, ch_out, stride)
return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu())
def bottleneck(ipt, ch_out, stride):
ch_in = ipt.num_filter
tmp = conv_bn_layer(ipt, ch_out, 1, stride, 0)
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1)
tmp = conv_bn_layer(tmp, ch_out * 4, 1, 1, 0, paddle.activation.Linear())
short = shortcut(ipt, ch_in, ch_out * 4, stride)
return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu())
def layer_warp(block_func, ipt, features, count, stride):
tmp = block_func(ipt, features, stride)
for i in range(1, count):
......@@ -74,29 +59,6 @@ def layer_warp(block_func, ipt, features, count, stride):
return tmp
def resnet_imagenet(ipt, depth=50):
cfg = {
18: ([2, 2, 2, 1], basicblock),
34: ([3, 4, 6, 3], basicblock),
50: ([3, 4, 6, 3], bottleneck),
101: ([3, 4, 23, 3], bottleneck),
152: ([3, 8, 36, 3], bottleneck)
}
stages, block_func = cfg[depth]
tmp = conv_bn_layer(
ipt, ch_in=3, ch_out=64, filter_size=7, stride=2, padding=3)
tmp = paddle.layer.img_pool(input=tmp, pool_size=3, stride=2)
tmp = layer_warp(block_func, tmp, 64, stages[0], 1)
tmp = layer_warp(block_func, tmp, 128, stages[1], 2)
tmp = layer_warp(block_func, tmp, 256, stages[2], 2)
tmp = layer_warp(block_func, tmp, 512, stages[3], 2)
tmp = paddle.layer.img_pool(
input=tmp, pool_size=7, stride=1, pool_type=paddle.pooling.Avg())
tmp = paddle.layer.fc(input=tmp, size=1000, act=paddle.activation.Softmax())
return tmp
def resnet_cifar10(ipt, depth=32):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert (depth - 2) % 6 == 0
......@@ -110,49 +72,3 @@ def resnet_cifar10(ipt, depth=32):
pool = paddle.layer.img_pool(
input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg())
return pool
def main():
datadim = 3 * 32 * 32
classdim = 10
paddle.init(use_gpu=False, trainer_count=1)
image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(datadim))
net = resnet_cifar10(image, depth=32)
out = paddle.layer.fc(input=net,
size=classdim,
act=paddle.activation.Softmax())
lbl = paddle.layer.data(
name="label", type=paddle.data_type.integer_value(classdim))
cost = paddle.layer.classification_cost(input=out, label=lbl)
parameters = paddle.parameters.create(cost)
momentum_optimizer = paddle.optimizer.Momentum(
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
learning_rate=0.1 / 128.0,
learning_rate_decay_a=0.1,
learning_rate_decay_b=50000 * 100,
learning_rate_schedule='discexp',
batch_size=128)
trainer = paddle.trainer.SGD(update_equation=momentum_optimizer)
trainer.train(
reader=paddle.reader.batched(
paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=3072),
batch_size=128),
cost=cost,
num_passes=1,
parameters=parameters,
event_handler=event_handler,
reader_dict={'image': 0,
'label': 1}, )
if __name__ == '__main__':
main()
......@@ -10,9 +10,10 @@
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License
import paddle.v2 as paddle
from api_v2_vgg import resnet_cifar10
from api_v2_resnet import vgg_bn_drop
def event_handler(event):
......@@ -22,46 +23,21 @@ def event_handler(event):
event.cost)
def vgg_bn_drop(input):
def conv_block(ipt, num_filter, groups, dropouts, num_channels=None):
return paddle.layer.img_conv_group(
input=ipt,
num_channels=num_channels,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act=paddle.activation.Relu(),
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type=paddle.pooling.Max())
conv1 = conv_block(input, 64, 2, [0.3, 0], 3)
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5)
fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear())
bn = paddle.layer.batch_norm(
input=fc1,
act=paddle.activation.Relu(),
layer_attr=ExtraAttr(drop_rate=0.5))
fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear())
return fc2
def main():
datadim = 3 * 32 * 32
classdim = 10
paddle.init(use_gpu=False, trainer_count=1)
paddle.init(use_gpu=True, trainer_count=1)
image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(datadim))
# option 1. resnet
net = resnet_cifar10(image, depth=32)
# option 2. vgg
# net = vgg_bn_drop(image)
out = paddle.layer.fc(input=image,
out = paddle.layer.fc(input=net,
size=classdim,
act=paddle.activation.Softmax())
......@@ -70,27 +46,28 @@ def main():
cost = paddle.layer.classification_cost(input=out, label=lbl)
parameters = paddle.parameters.create(cost)
momentum_optimizer = paddle.optimizer.Momentum(
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128),
regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
learning_rate=0.1 / 128.0,
learning_rate_decay_a=0.1,
learning_rate_decay_b=50000 * 100,
learning_rate_schedule='discexp',
batch_size=128)
trainer = paddle.trainer.SGD(update_equation=momentum_optimizer)
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=momentum_optimizer)
trainer.train(
reader=paddle.reader.batched(
paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=3072),
paddle.dataset.cifar.train10(), buf_size=50000),
batch_size=128),
cost=cost,
num_passes=1,
parameters=parameters,
num_passes=5,
event_handler=event_handler,
reader_dict={'image': 0,
'label': 1}, )
'label': 1})
if __name__ == '__main__':
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2 as paddle
__all__ = ['vgg_bn_drop']
def vgg_bn_drop(input):
def conv_block(ipt, num_filter, groups, dropouts, num_channels=None):
return paddle.networks.img_conv_group(
input=ipt,
num_channels=num_channels,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act=paddle.activation.Relu(),
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type=paddle.pooling.Max())
conv1 = conv_block(input, 64, 2, [0.3, 0], 3)
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5)
fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear())
bn = paddle.layer.batch_norm(
input=fc1,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear())
return fc2
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册