Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ad44a3eb
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ad44a3eb
编写于
3月 01, 2017
作者:
L
liaogang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update vgg and resnet via api v2
上级
d227f447
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
139 addition
and
41 deletion
+139
-41
demo/image_classification/api_v2_resnet.py
demo/image_classification/api_v2_resnet.py
+74
-0
demo/image_classification/api_v2_train.py
demo/image_classification/api_v2_train.py
+18
-41
demo/image_classification/api_v2_vgg.py
demo/image_classification/api_v2_vgg.py
+47
-0
未找到文件。
demo/image_classification/
train
_v2_resnet.py
→
demo/image_classification/
api
_v2_resnet.py
浏览文件 @
ad44a3eb
...
...
@@ -14,12 +14,7 @@
import
paddle.v2
as
paddle
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
)
__all__
=
[
'resnet_cifar10'
]
def
conv_bn_layer
(
input
,
...
...
@@ -43,7 +38,6 @@ def conv_bn_layer(input,
def
shortcut
(
ipt
,
n_in
,
n_out
,
stride
):
if
n_in
!=
n_out
:
print
(
"n_in != n_out"
)
return
conv_bn_layer
(
ipt
,
n_out
,
1
,
stride
,
0
,
paddle
.
activation
.
Linear
())
else
:
...
...
@@ -51,22 +45,13 @@ def shortcut(ipt, n_in, n_out, stride):
def
basicblock
(
ipt
,
ch_out
,
stride
):
ch_in
=
ipt
.
num_filters
ch_in
=
ch_out
*
2
tmp
=
conv_bn_layer
(
ipt
,
ch_out
,
3
,
stride
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
paddle
.
activation
.
Linear
())
short
=
shortcut
(
ipt
,
ch_in
,
ch_out
,
stride
)
return
paddle
.
layer
.
addto
(
input
=
[
tmp
,
short
],
act
=
paddle
.
activation
.
Relu
())
def
bottleneck
(
ipt
,
ch_out
,
stride
):
ch_in
=
ipt
.
num_filter
tmp
=
conv_bn_layer
(
ipt
,
ch_out
,
1
,
stride
,
0
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
*
4
,
1
,
1
,
0
,
paddle
.
activation
.
Linear
())
short
=
shortcut
(
ipt
,
ch_in
,
ch_out
*
4
,
stride
)
return
paddle
.
layer
.
addto
(
input
=
[
tmp
,
short
],
act
=
paddle
.
activation
.
Relu
())
def
layer_warp
(
block_func
,
ipt
,
features
,
count
,
stride
):
tmp
=
block_func
(
ipt
,
features
,
stride
)
for
i
in
range
(
1
,
count
):
...
...
@@ -74,29 +59,6 @@ def layer_warp(block_func, ipt, features, count, stride):
return
tmp
def
resnet_imagenet
(
ipt
,
depth
=
50
):
cfg
=
{
18
:
([
2
,
2
,
2
,
1
],
basicblock
),
34
:
([
3
,
4
,
6
,
3
],
basicblock
),
50
:
([
3
,
4
,
6
,
3
],
bottleneck
),
101
:
([
3
,
4
,
23
,
3
],
bottleneck
),
152
:
([
3
,
8
,
36
,
3
],
bottleneck
)
}
stages
,
block_func
=
cfg
[
depth
]
tmp
=
conv_bn_layer
(
ipt
,
ch_in
=
3
,
ch_out
=
64
,
filter_size
=
7
,
stride
=
2
,
padding
=
3
)
tmp
=
paddle
.
layer
.
img_pool
(
input
=
tmp
,
pool_size
=
3
,
stride
=
2
)
tmp
=
layer_warp
(
block_func
,
tmp
,
64
,
stages
[
0
],
1
)
tmp
=
layer_warp
(
block_func
,
tmp
,
128
,
stages
[
1
],
2
)
tmp
=
layer_warp
(
block_func
,
tmp
,
256
,
stages
[
2
],
2
)
tmp
=
layer_warp
(
block_func
,
tmp
,
512
,
stages
[
3
],
2
)
tmp
=
paddle
.
layer
.
img_pool
(
input
=
tmp
,
pool_size
=
7
,
stride
=
1
,
pool_type
=
paddle
.
pooling
.
Avg
())
tmp
=
paddle
.
layer
.
fc
(
input
=
tmp
,
size
=
1000
,
act
=
paddle
.
activation
.
Softmax
())
return
tmp
def
resnet_cifar10
(
ipt
,
depth
=
32
):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert
(
depth
-
2
)
%
6
==
0
...
...
@@ -110,49 +72,3 @@ def resnet_cifar10(ipt, depth=32):
pool
=
paddle
.
layer
.
img_pool
(
input
=
res3
,
pool_size
=
8
,
stride
=
1
,
pool_type
=
paddle
.
pooling
.
Avg
())
return
pool
def
main
():
datadim
=
3
*
32
*
32
classdim
=
10
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
image
=
paddle
.
layer
.
data
(
name
=
"image"
,
type
=
paddle
.
data_type
.
dense_vector
(
datadim
))
net
=
resnet_cifar10
(
image
,
depth
=
32
)
out
=
paddle
.
layer
.
fc
(
input
=
net
,
size
=
classdim
,
act
=
paddle
.
activation
.
Softmax
())
lbl
=
paddle
.
layer
.
data
(
name
=
"label"
,
type
=
paddle
.
data_type
.
integer_value
(
classdim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
out
,
label
=
lbl
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
momentum_optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0.9
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
0.0002
*
128
),
learning_rate
=
0.1
/
128.0
,
learning_rate_decay_a
=
0.1
,
learning_rate_decay_b
=
50000
*
100
,
learning_rate_schedule
=
'discexp'
,
batch_size
=
128
)
trainer
=
paddle
.
trainer
.
SGD
(
update_equation
=
momentum_optimizer
)
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
3072
),
batch_size
=
128
),
cost
=
cost
,
num_passes
=
1
,
parameters
=
parameters
,
event_handler
=
event_handler
,
reader_dict
=
{
'image'
:
0
,
'label'
:
1
},
)
if
__name__
==
'__main__'
:
main
()
demo/image_classification/
train_v2_vgg
.py
→
demo/image_classification/
api_v2_train
.py
浏览文件 @
ad44a3eb
...
...
@@ -10,9 +10,10 @@
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
.
# limitations under the License
import
paddle.v2
as
paddle
from
api_v2_vgg
import
resnet_cifar10
from
api_v2_resnet
import
vgg_bn_drop
def
event_handler
(
event
):
...
...
@@ -22,46 +23,21 @@ def event_handler(event):
event
.
cost
)
def
vgg_bn_drop
(
input
):
def
conv_block
(
ipt
,
num_filter
,
groups
,
dropouts
,
num_channels
=
None
):
return
paddle
.
layer
.
img_conv_group
(
input
=
ipt
,
num_channels
=
num_channels
,
pool_size
=
2
,
pool_stride
=
2
,
conv_num_filter
=
[
num_filter
]
*
groups
,
conv_filter_size
=
3
,
conv_act
=
paddle
.
activation
.
Relu
(),
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
paddle
.
pooling
.
Max
())
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
],
3
)
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
])
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
])
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
])
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
])
drop
=
paddle
.
layer
.
dropout
(
input
=
conv5
,
dropout_rate
=
0.5
)
fc1
=
paddle
.
layer
.
fc
(
input
=
drop
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
bn
=
paddle
.
layer
.
batch_norm
(
input
=
fc1
,
act
=
paddle
.
activation
.
Relu
(),
layer_attr
=
ExtraAttr
(
drop_rate
=
0.5
))
fc2
=
paddle
.
layer
.
fc
(
input
=
bn
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
return
fc2
def
main
():
datadim
=
3
*
32
*
32
classdim
=
10
paddle
.
init
(
use_gpu
=
Fals
e
,
trainer_count
=
1
)
paddle
.
init
(
use_gpu
=
Tru
e
,
trainer_count
=
1
)
image
=
paddle
.
layer
.
data
(
name
=
"image"
,
type
=
paddle
.
data_type
.
dense_vector
(
datadim
))
# option 1. resnet
net
=
resnet_cifar10
(
image
,
depth
=
32
)
# option 2. vgg
# net = vgg_bn_drop(image)
out
=
paddle
.
layer
.
fc
(
input
=
image
,
out
=
paddle
.
layer
.
fc
(
input
=
net
,
size
=
classdim
,
act
=
paddle
.
activation
.
Softmax
())
...
...
@@ -70,27 +46,28 @@ def main():
cost
=
paddle
.
layer
.
classification_cost
(
input
=
out
,
label
=
lbl
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
momentum_optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0.9
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
0.000
5
*
128
),
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
0.000
2
*
128
),
learning_rate
=
0.1
/
128.0
,
learning_rate_decay_a
=
0.1
,
learning_rate_decay_b
=
50000
*
100
,
learning_rate_schedule
=
'discexp'
,
batch_size
=
128
)
trainer
=
paddle
.
trainer
.
SGD
(
update_equation
=
momentum_optimizer
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
momentum_optimizer
)
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
3072
),
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
50000
),
batch_size
=
128
),
cost
=
cost
,
num_passes
=
1
,
parameters
=
parameters
,
num_passes
=
5
,
event_handler
=
event_handler
,
reader_dict
=
{
'image'
:
0
,
'label'
:
1
}
,
)
'label'
:
1
})
if
__name__
==
'__main__'
:
...
...
demo/image_classification/api_v2_vgg.py
0 → 100644
浏览文件 @
ad44a3eb
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.v2
as
paddle
__all__
=
[
'vgg_bn_drop'
]
def
vgg_bn_drop
(
input
):
def
conv_block
(
ipt
,
num_filter
,
groups
,
dropouts
,
num_channels
=
None
):
return
paddle
.
networks
.
img_conv_group
(
input
=
ipt
,
num_channels
=
num_channels
,
pool_size
=
2
,
pool_stride
=
2
,
conv_num_filter
=
[
num_filter
]
*
groups
,
conv_filter_size
=
3
,
conv_act
=
paddle
.
activation
.
Relu
(),
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
paddle
.
pooling
.
Max
())
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
],
3
)
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
])
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
])
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
])
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
])
drop
=
paddle
.
layer
.
dropout
(
input
=
conv5
,
dropout_rate
=
0.5
)
fc1
=
paddle
.
layer
.
fc
(
input
=
drop
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
bn
=
paddle
.
layer
.
batch_norm
(
input
=
fc1
,
act
=
paddle
.
activation
.
Relu
(),
layer_attr
=
paddle
.
attr
.
Extra
(
drop_rate
=
0.5
))
fc2
=
paddle
.
layer
.
fc
(
input
=
bn
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
return
fc2
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录