Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ad1ad738
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ad1ad738
编写于
6月 17, 2018
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gpu support for concat
上级
9c128fe6
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
26 addition
and
17 deletion
+26
-17
paddle/fluid/operators/math/concat.cc
paddle/fluid/operators/math/concat.cc
+1
-1
paddle/fluid/operators/math/concat.cu
paddle/fluid/operators/math/concat.cu
+25
-16
未找到文件。
paddle/fluid/operators/math/concat.cc
浏览文件 @
ad1ad738
...
...
@@ -98,7 +98,7 @@ class ConcatGradFunctor<platform::CPUDeviceContext, T> {
int
col_idx
=
0
;
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
output_cols
[
j
];
auto
*
out_tensor
=
(
*
outputs
)[
j
]
;
auto
*
out_tensor
=
outputs
->
at
(
j
)
;
if
(
out_tensor
!=
nullptr
)
{
T
*
dst_ptr
=
out_tensor
->
data
<
T
>
()
+
k
*
col_len
;
memory
::
Copy
(
cpu_place
,
dst_ptr
,
cpu_place
,
src_ptr
+
col_idx
,
...
...
paddle/fluid/operators/math/concat.cu
浏览文件 @
ad1ad738
...
...
@@ -102,10 +102,12 @@ __global__ void KernelConcatGrad(const T* input_data, const int in_row,
int
local_col
=
tid_x
-
curr_offset
;
int
segment_width
=
curr_col_offset
-
curr_offset
;
T
*
output_ptr
=
outputs_data
[
curr_segment
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
segment_width
+
local_col
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
if
(
output_ptr
!=
nullptr
)
{
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
segment_width
+
local_col
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
}
}
}
...
...
@@ -118,10 +120,12 @@ __global__ void KernelConcatGrad(const T* input_data, const int in_row,
int
split
=
tid_x
/
fixed_out_col
;
int
in_offset
=
tid_x
-
split
*
fixed_out_col
;
T
*
output_ptr
=
outputs_data
[
split
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
fixed_out_col
+
in_offset
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
if
(
output_ptr
!=
nullptr
)
{
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
fixed_out_col
+
in_offset
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
}
}
}
...
...
@@ -203,17 +207,18 @@ template <typename T>
class
ConcatGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
int
axis
,
std
::
vector
<
framework
::
Tensor
>*
outputs
)
{
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
const
framework
::
Tensor
*>&
ref_inputs
,
const
int
axis
,
std
::
vector
<
framework
::
Tensor
*>*
outputs
)
{
// TODO(zcd): Add input data validity checking
int
o_num
=
outputs
->
size
();
int
out_row
=
1
;
auto
dim_0
=
outputs
->
at
(
0
).
dims
();
auto
dim_0
=
ref_inputs
[
0
]
->
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
out_row
*=
dim_0
[
i
];
}
int
out
_col
=
outputs
->
at
(
0
).
numel
()
/
out_row
;
int
out
0_col
=
ref_inputs
[
0
]
->
numel
()
/
out_row
;
int
in_col
=
0
,
in_row
=
out_row
;
bool
sameShape
=
true
;
...
...
@@ -223,13 +228,17 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
outputs_cols
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
o_num
;
++
i
)
{
int
t_col
=
outputs
->
at
(
i
)
.
numel
()
/
out_row
;
int
t_col
=
outputs
->
at
(
i
)
->
numel
()
/
out_row
;
if
(
sameShape
)
{
if
(
t_col
!=
out_col
)
sameShape
=
false
;
if
(
t_col
!=
out
0
_col
)
sameShape
=
false
;
}
in_col
+=
t_col
;
outputs_cols
[
i
+
1
]
=
in_col
;
outputs_ptr
[
i
]
=
outputs
->
at
(
i
).
data
<
T
>
();
if
(
outputs
->
at
(
i
)
!=
nullptr
)
{
outputs_ptr
[
i
]
=
outputs
->
at
(
i
)
->
data
<
T
>
();
}
else
{
outputs_ptr
[
i
]
=
nullptr
;
}
}
T
**
dev_out_gpu_data
=
...
...
@@ -255,7 +264,7 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
if
(
sameShape
)
{
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
input
.
data
<
T
>
(),
in_row
,
in_col
,
out_col
,
dev_out_gpu_data
);
input
.
data
<
T
>
(),
in_row
,
in_col
,
out
0
_col
,
dev_out_gpu_data
);
}
else
{
const
int
*
dev_outs_col_data
=
outputs_cols
.
CUDAData
(
context
.
GetPlace
());
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录