Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ab953bae
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ab953bae
编写于
5月 29, 2018
作者:
Q
Qiao Longfei
提交者:
GitHub
5月 29, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10973 from jacquesqiao/fix-prefetch
Fix and optimize async distribute lookup table
上级
38af7bca
0858a501
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
83 addition
and
59 deletion
+83
-59
paddle/fluid/framework/selected_rows.cc
paddle/fluid/framework/selected_rows.cc
+20
-15
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+1
-1
paddle/fluid/operators/detail/grpc_server.cc
paddle/fluid/operators/detail/grpc_server.cc
+4
-7
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+1
-0
paddle/fluid/operators/lookup_sparse_table_op.cc
paddle/fluid/operators/lookup_sparse_table_op.cc
+1
-1
paddle/fluid/operators/sgd_op.h
paddle/fluid/operators/sgd_op.h
+6
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+2
-1
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+48
-32
未找到文件。
paddle/fluid/framework/selected_rows.cc
浏览文件 @
ab953bae
...
...
@@ -121,24 +121,29 @@ bool SelectedRows::HasKey(int64_t key) const {
}
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
SelectedRows
::
Get
(
std
::
vector
<
int64_t
>
keys
,
framework
::
Tensor
*
value
)
const
{
const
std
::
vector
<
int64_t
>&
keys
,
framework
::
Tensor
*
value
)
const
{
PADDLE_ENFORCE
(
value
->
IsInitialized
(),
"The value tensor should be initialized."
);
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
non_keys_pair
;
int64_t
value_width
=
value_
->
numel
()
/
value_
->
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
value_width
,
value
->
numel
()
/
value
->
dims
()[
0
],
"output tensor should have the same shape with table "
"execpt the dims[0]."
);
for
(
size_t
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
int64_t
index
=
Index
(
keys
[
i
]);
if
(
index
==
-
1
)
{
non_keys_pair
.
push_back
(
std
::
make_pair
(
keys
[
i
],
static_cast
<
int64_t
>
(
i
)));
}
else
{
framework
::
VisitDataType
(
framework
::
ToDataType
(
value_
->
type
()),
TensorCopyVisitor
(
value
,
i
*
value_width
,
*
value_
.
get
(),
index
*
value_width
,
value_width
));
if
(
keys
.
empty
())
{
VLOG
(
3
)
<<
"keys is empty, please check data!"
;
}
else
{
int64_t
value_width
=
value_
->
numel
()
/
value_
->
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
value_width
,
value
->
numel
()
/
value
->
dims
()[
0
],
"output tensor should have the same shape with table "
"except the dims[0]."
);
for
(
size_t
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
int64_t
index
=
Index
(
keys
[
i
]);
if
(
index
==
-
1
)
{
non_keys_pair
.
push_back
(
std
::
make_pair
(
keys
[
i
],
static_cast
<
int64_t
>
(
i
)));
}
else
{
framework
::
VisitDataType
(
framework
::
ToDataType
(
value_
->
type
()),
TensorCopyVisitor
(
value
,
i
*
value_width
,
*
value_
.
get
(),
index
*
value_width
,
value_width
));
}
}
}
return
non_keys_pair
;
...
...
paddle/fluid/framework/selected_rows.h
浏览文件 @
ab953bae
...
...
@@ -82,7 +82,7 @@ class SelectedRows {
* @return a list of pair which contains the non-exists key and the index in
* the value
*/
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
Get
(
std
::
vector
<
int64_t
>
keys
,
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
Get
(
const
std
::
vector
<
int64_t
>&
keys
,
framework
::
Tensor
*
value
)
const
;
/*
...
...
paddle/fluid/operators/detail/grpc_server.cc
浏览文件 @
ab953bae
...
...
@@ -177,11 +177,8 @@ class RequestPrefetch final : public RequestBase {
program_
(
program
),
prefetch_ctx_
(
prefetch_ctx
),
req_id_
(
req_id
)
{
if
(
sync_mode_
)
{
request_
.
reset
(
new
VariableResponse
(
scope
,
dev_ctx_
,
false
));
}
else
{
request_
.
reset
(
new
VariableResponse
(
scope
,
dev_ctx_
,
true
));
}
// prefetch always create a new sub scope
request_
.
reset
(
new
VariableResponse
(
scope
,
dev_ctx_
,
true
));
int
method_id
=
static_cast
<
int
>
(
detail
::
GrpcMethod
::
kPrefetchVariable
);
service_
->
RequestAsyncUnary
(
method_id
,
&
ctx_
,
request_
.
get
(),
&
responder_
,
cq_
,
cq_
,
...
...
@@ -198,10 +195,10 @@ class RequestPrefetch final : public RequestBase {
std
::
string
var_name
=
request_
->
OutVarname
();
VLOG
(
3
)
<<
"RequestPrefetch "
<<
var_name
;
auto
var_desc
=
program_
->
Block
(
0
).
FindVar
(
var_name
);
framework
::
Scope
*
local_scope
=
&
scope_
->
New
Scope
();
framework
::
Scope
*
local_scope
=
request_
->
GetMutableLocal
Scope
();
auto
*
var
=
local_scope
->
FindVar
(
var_name
);
InitializeVariable
(
var
,
var_desc
->
GetType
());
executor_
->
RunPreparedContext
(
prefetch_ctx_
,
scope_
);
executor_
->
RunPreparedContext
(
prefetch_ctx_
,
local_scope
);
SerializeToByteBuffer
(
var_name
,
var
,
*
dev_ctx_
,
&
reply_
);
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
ab953bae
...
...
@@ -207,6 +207,7 @@ static void AsyncUpdateThread(
while
(
!
exit_flag
)
{
const
detail
::
ReceivedMessage
v
=
queue
->
Pop
();
auto
recv_var_name
=
v
.
first
;
VLOG
(
4
)
<<
"async update "
<<
recv_var_name
;
auto
var
=
v
.
second
->
GetVar
();
if
(
var
==
nullptr
)
{
LOG
(
ERROR
)
<<
"Can not find server side var: "
<<
recv_var_name
;
...
...
paddle/fluid/operators/lookup_sparse_table_op.cc
浏览文件 @
ab953bae
...
...
@@ -127,7 +127,7 @@ class LookupSparseTableOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
-
1.0
f
);
AddAttr
<
float
>
(
"max"
,
"(float, default 1.0) "
"Maximu
n
value of uniform random"
)
"Maximu
m
value of uniform random"
)
.
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"(int, default 0) "
...
...
paddle/fluid/operators/sgd_op.h
浏览文件 @
ab953bae
...
...
@@ -96,8 +96,12 @@ class SGDOpKernel : public framework::OpKernel<T> {
return
;
}
size_t
param_row_width
=
param
.
value
().
numel
()
/
param
.
rows
().
size
();
size_t
grad_row_width
=
grad
.
value
().
numel
()
/
grad
.
rows
().
size
();
auto
param_row_width
=
param
.
value
().
dims
()[
1
];
auto
grad_row_width
=
grad
.
value
().
dims
()[
1
];
VLOG
(
4
)
<<
" param rows: "
<<
param
.
rows
().
size
()
<<
" param memory rows: "
<<
param
.
value
().
dims
()[
0
]
<<
" grad rows: "
<<
grad
.
rows
().
size
()
<<
" grad memory rows: "
<<
grad
.
value
().
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
param_row_width
,
grad_row_width
,
"param_row should have the same size with grad_row"
);
...
...
python/paddle/fluid/framework.py
浏览文件 @
ab953bae
...
...
@@ -797,7 +797,7 @@ class Block(object):
Rename variable in vars and ops' inputs and outputs
"""
if
not
self
.
has_var
(
name
):
raise
ValueError
(
"var %s is not in current"
%
name
)
raise
ValueError
(
"var %s is not in current
block
"
%
name
)
v
=
self
.
var
(
name
)
if
type
(
v
)
==
Parameter
:
var_type
=
"Parameter"
...
...
@@ -843,6 +843,7 @@ class Block(object):
self
.
vars
[
new_name
]
=
var
del
self
.
vars
[
name
]
self
.
sync_with_cpp
()
return
var
def
remove_var
(
self
,
name
):
self
.
sync_with_cpp
()
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
ab953bae
...
...
@@ -273,15 +273,25 @@ class DistributeTranspiler:
if
param_grad
[
0
].
name
==
self
.
table_name
][
0
]
table_grad_var
=
self
.
table_param_grad
[
1
]
self
.
table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d.pserver_%d"
%
(
table_grad_var
.
name
,
trainer_id
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
if
self
.
sync_mode
:
self
.
trainer_side_table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d.pserver_%d"
%
(
table_grad_var
.
name
,
trainer_id
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
else
:
self
.
trainer_side_table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.pserver_%d"
%
(
table_grad_var
.
name
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
grad_blocks
=
split_dense_variable
(
grad_list
,
len
(
pserver_endpoints
))
param_blocks
=
split_dense_variable
(
param_list
,
len
(
pserver_endpoints
))
...
...
@@ -400,7 +410,8 @@ class DistributeTranspiler:
attrs
=
{
"axis"
:
0
})
if
self
.
has_distributed_lookup_table
:
self
.
_replace_lookup_table_op_with_prefetch
(
program
,
eplist
)
self
.
_replace_lookup_table_op_with_prefetch
(
program
,
pserver_endpoints
)
self
.
_split_table_grad_and_add_send_vars
(
program
,
pserver_endpoints
)
def
get_trainer_program
(
self
):
...
...
@@ -537,7 +548,7 @@ class DistributeTranspiler:
if
self
.
has_distributed_lookup_table
:
pserver_index
=
self
.
pserver_endpoints
.
index
(
endpoint
)
table_opt_block
=
self
.
_create_table_optimize_block
(
pserver_index
,
pserver_program
,
pre_block_idx
)
pserver_index
,
pserver_program
,
pre_block_idx
,
grad_to_block_id
)
prefetch_block
=
self
.
_create_prefetch_block
(
pserver_index
,
pserver_program
,
table_opt_block
)
...
...
@@ -621,7 +632,8 @@ class DistributeTranspiler:
return
s_prog
# transpiler function for dis lookup_table
def
_replace_lookup_table_op_with_prefetch
(
self
,
program
,
eplist
):
def
_replace_lookup_table_op_with_prefetch
(
self
,
program
,
pserver_endpoints
):
# 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
self
.
prefetch_input_vars
=
None
self
.
prefetch_output_vars
=
None
...
...
@@ -670,7 +682,7 @@ class DistributeTranspiler:
inputs
=
{
'X'
:
self
.
prefetch_input_vars
},
outputs
=
{
"Out"
:
self
.
prefetch_output_vars
},
attrs
=
{
"epmap"
:
eplist
,
"epmap"
:
pserver_endpoints
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
...
...
@@ -707,11 +719,11 @@ class DistributeTranspiler:
inputs
=
{
'Ids'
:
[
program
.
global_block
().
vars
[
table_grad_name
]]
},
outputs
=
{
"Out"
:
self
.
table_grad_list
})
outputs
=
{
"Out"
:
self
.
t
rainer_side_t
able_grad_list
})
program
.
global_block
().
insert_op
(
index
=
op_index
+
2
,
type
=
"send_vars"
,
inputs
=
{
'X'
:
self
.
table_grad_list
},
inputs
=
{
'X'
:
self
.
t
rainer_side_t
able_grad_list
},
outputs
=
{},
attrs
=
{
"sync_send"
:
True
,
...
...
@@ -750,16 +762,7 @@ class DistributeTranspiler:
return
prefetch_block
def
_create_table_optimize_block
(
self
,
pserver_index
,
pserver_program
,
pre_block_idx
):
def
_clone_var
(
block
,
var
,
persistable
=
True
):
assert
isinstance
(
var
,
Variable
)
return
block
.
create_var
(
name
=
var
.
name
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
,
type
=
var
.
type
,
persistable
=
persistable
)
pre_block_idx
,
grad_to_block_id
):
# STEP: create table optimize block
# create table param and grad var in pserver program
origin_param_var
=
self
.
origin_program
.
global_block
().
vars
[
...
...
@@ -770,11 +773,11 @@ class DistributeTranspiler:
dtype
=
origin_param_var
.
dtype
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
,
persistable
=
True
)
grad_var
=
_clone_var
(
pserver_program
.
global_block
(),
# parameter must be selected rows
param_var
.
desc
.
set_type
(
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
grad_var
=
pserver_program
.
global_block
().
clone_variable
(
self
.
origin_program
.
global_block
().
vars
[
grad_var_name
(
self
.
table_name
)],
persistable
=
False
)
self
.
table_name
)])
# create table optimize block in pserver program
table_opt_op
=
[
...
...
@@ -788,7 +791,7 @@ class DistributeTranspiler:
if
self
.
sync_mode
:
# create grad vars in pserver program
table_grad_var
=
self
.
table_param_grad
[
1
]
table_grad_list
=
[
pserver_side_
table_grad_list
=
[
pserver_program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d.pserver_%d"
%
(
table_grad_var
.
name
,
index
,
pserver_index
),
...
...
@@ -798,11 +801,21 @@ class DistributeTranspiler:
for
index
in
range
(
self
.
trainer_num
)
]
# append sum op for table_grad_list
# append sum op for
pserver_side_
table_grad_list
table_opt_block
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
table_grad_list
},
inputs
=
{
"X"
:
pserver_side_
table_grad_list
},
outputs
=
{
"Out"
:
[
grad_var
]})
else
:
# in async_mode, for table gradient, it also need to be splited to each parameter server
origin_grad_name
=
grad_var
.
name
splited_grad_name
=
self
.
trainer_side_table_grad_list
[
pserver_index
].
name
if
not
splited_grad_name
.
startswith
(
origin_grad_name
):
raise
ValueError
(
"origin_grad_var: "
+
splited_grad_name
+
" grad_var:"
+
grad_var
.
name
)
grad_var
=
pserver_program
.
global_block
().
rename_var
(
origin_grad_name
,
splited_grad_name
)
lr_var
=
pserver_program
.
global_block
().
vars
[
table_opt_op
.
input
(
"LearningRate"
)[
0
]]
...
...
@@ -818,6 +831,9 @@ class DistributeTranspiler:
outputs
=
outputs
,
attrs
=
table_opt_op
.
attrs
)
# add table parameter gradient and it's block id to grad_to_block_id
grad_to_block_id
.
append
(
grad_var
.
name
+
":"
+
str
(
table_opt_block
.
idx
))
return
table_opt_block
# ====================== private transpiler functions =====================
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录