Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
aaee28bf
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
aaee28bf
编写于
6月 29, 2017
作者:
Q
qingqing01
提交者:
GitHub
6月 29, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2664 from qingqing01/from_tar
Init partial network parameters from another saved model.
上级
9af8d86b
23d6c594
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
87 addition
and
16 deletion
+87
-16
paddle/py_paddle/dataprovider_converter.py
paddle/py_paddle/dataprovider_converter.py
+1
-1
python/paddle/v2/parameters.py
python/paddle/v2/parameters.py
+34
-10
python/paddle/v2/tests/test_parameters.py
python/paddle/v2/tests/test_parameters.py
+52
-5
未找到文件。
paddle/py_paddle/dataprovider_converter.py
浏览文件 @
aaee28bf
...
...
@@ -144,7 +144,7 @@ class DenseScanner(IScanner):
if
len
(
self
.
__shape__
)
>
1
:
# The last-two dimenstions are the frame height and width.
# For example, the layout is CHW for 3-D feature of image.
# The H and W are the fram height and width.
# The H and W are the fram
e
height and width.
h
,
w
=
self
.
__shape__
[
-
2
:]
argument
.
setSlotFrameHeight
(
self
.
pos
,
h
)
argument
.
setSlotFrameWidth
(
self
.
pos
,
w
)
...
...
python/paddle/v2/parameters.py
浏览文件 @
aaee28bf
...
...
@@ -51,7 +51,7 @@ class Parameters(object):
def
__init__
(
self
):
self
.
__param_conf__
=
dict
()
self
.
__gradient_machines__
=
[]
self
.
__tmp_params__
=
[]
self
.
__tmp_params__
=
dict
()
def
__append_config__
(
self
,
param_conf
):
"""
...
...
@@ -128,13 +128,10 @@ class Parameters(object):
if
len
(
self
.
__gradient_machines__
)
==
0
:
# create new parameter in python numpy.
if
len
(
self
.
__tmp_params__
)
!=
0
:
ret_list
=
[
mat
for
name
,
mat
in
self
.
__tmp_params__
if
name
==
key
]
if
len
(
ret_list
)
==
1
:
return
ret_list
[
0
]
return
np
.
ndarray
(
shape
=
shape
,
dtype
=
np
.
float32
)
if
key
in
self
.
__tmp_params__
:
return
self
.
__tmp_params__
[
key
]
else
:
return
np
.
ndarray
(
shape
=
shape
,
dtype
=
np
.
float32
)
else
:
for
each_gradient_machine
in
self
.
__gradient_machines__
:
param
=
__get_parameter_in_gradient_machine__
(
...
...
@@ -187,7 +184,7 @@ class Parameters(object):
(
shape
,
value
.
shape
))
if
len
(
self
.
__gradient_machines__
)
==
0
:
self
.
__tmp_params__
.
append
((
key
,
value
))
self
.
__tmp_params__
[
key
]
=
value
else
:
for
each_gradient_machine
in
self
.
__gradient_machines__
:
__copy_parameter_to_gradient_machine__
(
each_gradient_machine
,
...
...
@@ -231,7 +228,7 @@ class Parameters(object):
raise
ValueError
(
"gradient_machine should be api.GradientMachine"
)
if
len
(
self
.
__tmp_params__
)
!=
0
:
for
name
,
val
in
self
.
__tmp_params__
:
for
name
,
val
in
self
.
__tmp_params__
.
iteritems
()
:
try
:
__copy_parameter_to_gradient_machine__
(
gradient_machine
,
name
,
val
)
...
...
@@ -287,6 +284,18 @@ class Parameters(object):
@
staticmethod
def
from_tar
(
f
):
"""
Create a `Parameters` object from the given file. And
the `Parameters` only contains the parameters in this
file. It is adapted the parameters are same in the
defined network and the given file. For example, it
can be used in the inference.
:param f: the initialized model file.
:type f: tar file
:return: A Parameters object.
:rtype: Parameters.
"""
params
=
Parameters
()
tar
=
tarfile
.
TarFile
(
fileobj
=
f
,
mode
=
'r'
)
for
finfo
in
tar
:
...
...
@@ -302,6 +311,21 @@ class Parameters(object):
params
.
deserialize
(
param_name
,
f
)
return
params
def
init_from_tar
(
self
,
f
):
"""
Different from `from_tar`, this interface can be used to
init partial network parameters from another saved model.
:param f: the initialized model file.
:type f: tar file
:return: Nothing.
"""
tar_param
=
Parameters
.
from_tar
(
f
)
for
pname
in
tar_param
.
names
():
if
pname
in
self
.
names
():
self
.
set
(
pname
,
tar_param
.
get
(
pname
))
def
__get_parameter_in_gradient_machine__
(
gradient_machine
,
name
):
"""
...
...
python/paddle/v2/tests/test_parameters.py
浏览文件 @
aaee28bf
...
...
@@ -20,14 +20,17 @@ import cStringIO
import
numpy
def
__rand_param_config__
(
name
):
def
__rand_param_config__
(
name
,
psize
=
None
):
conf
=
ParameterConfig
()
conf
.
name
=
name
size
=
1
for
i
in
xrange
(
2
):
dim
=
random
.
randint
(
1
,
1000
)
conf
.
dims
.
append
(
dim
)
size
*=
dim
if
psize
is
None
:
for
i
in
xrange
(
2
):
dim
=
random
.
randint
(
1
,
1000
)
conf
.
dims
.
append
(
dim
)
size
*=
dim
else
:
size
=
psize
conf
.
size
=
size
assert
conf
.
IsInitialized
()
return
conf
...
...
@@ -77,6 +80,50 @@ class TestParameters(unittest.TestCase):
expected
=
numpy
.
array
([[
1
,
1
],
[
1
,
2
],
[
1
,
1
]],
numpy
.
float32
)
assert
numpy
.
logical_and
.
reduce
(
numpy
.
reshape
(
val
==
expected
,
6
))
def
test_init_from_tar
(
self
):
def
get_param
(
names
,
size
):
p
=
parameters
.
Parameters
()
for
k
,
v
in
zip
(
names
,
size
):
p
.
__append_config__
(
__rand_param_config__
(
k
,
v
))
for
name
in
p
.
names
():
param
=
p
.
get
(
name
)
param
[:]
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
size
=
p
.
get_shape
(
name
))
p
.
set
(
name
,
param
)
return
p
def
get_parames
():
name1
=
[
'param_0'
,
'param_1'
]
size1
=
[
128
,
256
]
p1
=
get_param
(
name1
,
size1
)
file1
=
cStringIO
.
StringIO
()
p1
.
to_tar
(
file1
)
file1
.
seek
(
0
)
name2
=
[
'param_0'
,
'param_1'
,
'param_2'
]
size2
=
[
128
,
256
,
288
]
p2
=
get_param
(
name2
,
size2
)
file2
=
cStringIO
.
StringIO
()
p2
.
to_tar
(
file2
)
file2
.
seek
(
0
)
return
p1
,
file1
,
p2
,
file2
p1
,
file1
,
p2
,
file2
=
get_parames
()
p2
.
init_from_tar
(
file1
)
for
name
in
p1
.
names
():
self
.
assertEqual
(
p1
.
get_shape
(
name
),
p2
.
get_shape
(
name
))
v1
=
p1
.
get
(
name
)
v2
=
p2
.
get
(
name
)
self
.
assertTrue
(
numpy
.
isclose
(
v1
,
v2
).
all
())
p1
,
file1
,
p2
,
file2
=
get_parames
()
p1
.
init_from_tar
(
file2
)
for
name
in
p1
.
names
():
self
.
assertEqual
(
p1
.
get_shape
(
name
),
p2
.
get_shape
(
name
))
v1
=
p1
.
get
(
name
)
v2
=
p2
.
get
(
name
)
self
.
assertTrue
(
numpy
.
isclose
(
v1
,
v2
).
all
())
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录