未验证 提交 aa834b2e 编写于 作者: W wanghuancoder 提交者: GitHub

refine PaddleDetection benchmard print (#1556)

* refine PaddleDetection benchmard print, test=develop

* refine PaddleDetection benchmard print, test=develop

* refine PaddleDetection benchmard print, test=develop

* refine PaddleDetection benchmard print, test=develop
上级 7d3a89f6
architecture: CascadeRCNN architecture: CascadeRCNN
use_gpu: true use_gpu: true
max_iters: 180000 max_iters: 180000
log_smooth_window: 50 log_iter: 50
save_dir: output save_dir: output
snapshot_iter: 10000 snapshot_iter: 10000
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/resnet50.pdparams pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/resnet50.pdparams
......
architecture: FasterRCNN architecture: FasterRCNN
use_gpu: true use_gpu: true
max_iters: 180000 max_iters: 180000
log_smooth_window: 50 log_iter: 50
save_dir: output save_dir: output
snapshot_iter: 10000 snapshot_iter: 10000
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/resnet50.pdparams pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/resnet50.pdparams
......
architecture: MaskRCNN architecture: MaskRCNN
use_gpu: true use_gpu: true
max_iters: 180000 max_iters: 180000
log_smooth_window: 50 log_iter: 50
save_dir: output save_dir: output
snapshot_iter: 10000 snapshot_iter: 10000
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/resnet50.pdparams pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/resnet50.pdparams
......
architecture: MaskRCNN architecture: MaskRCNN
use_gpu: true use_gpu: true
max_iters: 180000 max_iters: 180000
log_smooth_window: 20 log_iter: 20
save_dir: output save_dir: output
snapshot_iter: 10000 snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
architecture: YOLOv3 architecture: YOLOv3
use_gpu: true use_gpu: true
max_iters: 500000 max_iters: 500000
log_smooth_window: 20 log_iter: 20
save_dir: output save_dir: output
snapshot_iter: 50000 snapshot_iter: 50000
metric: COCO metric: COCO
......
...@@ -132,7 +132,7 @@ def run(FLAGS, cfg): ...@@ -132,7 +132,7 @@ def run(FLAGS, cfg):
train_reader = create_reader( train_reader = create_reader(
cfg.TrainReader, (cfg.max_iters - start_iter), cfg, devices_num=1) cfg.TrainReader, (cfg.max_iters - start_iter), cfg, devices_num=1)
time_stat = deque(maxlen=cfg.log_smooth_window) time_stat = deque(maxlen=cfg.log_iter)
start_time = time.time() start_time = time.time()
end_time = time.time() end_time = time.time()
# Run Train # Run Train
...@@ -167,13 +167,13 @@ def run(FLAGS, cfg): ...@@ -167,13 +167,13 @@ def run(FLAGS, cfg):
if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0: if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0:
# Log state # Log state
if iter_id == 0: if iter_id == 0:
train_stats = TrainingStats(cfg.log_smooth_window, train_stats = TrainingStats(cfg.log_iter, outputs.keys())
outputs.keys())
train_stats.update(outputs) train_stats.update(outputs)
logs = train_stats.log() logs = train_stats.log()
if iter_id % cfg.log_iter == 0: if iter_id % cfg.log_iter == 0:
strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( ips = float(cfg['TrainReader']['batch_size']) / time_cost
iter_id, curr_lr, logs, time_cost, eta) strs = 'iter: {}, lr: {:.6f}, {}, eta: {}, batch_cost: {:.5f} sec, ips: {:.5f} images/sec'.format(
iter_id, curr_lr, logs, eta, time_cost, ips)
logger.info(strs) logger.info(strs)
# Save Stage # Save Stage
if iter_id > 0 and iter_id % int( if iter_id > 0 and iter_id % int(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册