Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
aa770198
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
aa770198
编写于
12月 08, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dilation in c++ code
上级
23e38216
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
12 addition
and
9 deletion
+12
-9
paddle/operators/conv_transpose_op.cc
paddle/operators/conv_transpose_op.cc
+6
-1
paddle/operators/conv_transpose_op.h
paddle/operators/conv_transpose_op.h
+6
-8
未找到文件。
paddle/operators/conv_transpose_op.cc
浏览文件 @
aa770198
...
@@ -29,6 +29,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -29,6 +29,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"dilations"
);
PADDLE_ENFORCE
(
in_dims
.
size
()
==
4
||
in_dims
.
size
()
==
5
,
PADDLE_ENFORCE
(
in_dims
.
size
()
==
4
||
in_dims
.
size
()
==
5
,
"ConvTransposeOp intput should be 4-D or 5-D tensor."
);
"ConvTransposeOp intput should be 4-D or 5-D tensor."
);
...
@@ -41,14 +42,18 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -41,14 +42,18 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
strides
.
size
(),
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
strides
.
size
(),
"ConvTransposeOp paddings dimension and strides "
"ConvTransposeOp paddings dimension and strides "
"dimension should be the same."
);
"dimension should be the same."
);
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
dilations
.
size
(),
"ConvTransposeOp paddings dimension and dilations "
"dimension should be the same."
);
PADDLE_ENFORCE_EQ
(
in_dims
[
1
],
filter_dims
[
0
],
PADDLE_ENFORCE_EQ
(
in_dims
[
1
],
filter_dims
[
0
],
"In ConvTransposeOp, The input channel should be the same "
"In ConvTransposeOp, The input channel should be the same "
"as the number of filters."
);
"as the number of filters."
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
1
]});
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
1
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
auto
filter_extent
=
dilations
[
i
]
*
(
filter_dims
[
i
+
2
]
-
1
)
+
1
;
output_shape
.
push_back
((
in_dims
[
i
+
2
]
-
1
)
*
strides
[
i
]
-
2
*
paddings
[
i
]
+
output_shape
.
push_back
((
in_dims
[
i
+
2
]
-
1
)
*
strides
[
i
]
-
2
*
paddings
[
i
]
+
filter_
dims
[
i
+
2
]
);
filter_
extent
);
}
}
ctx
->
SetOutputDim
(
"Output"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Output"
,
framework
::
make_ddim
(
output_shape
));
}
}
...
...
paddle/operators/conv_transpose_op.h
浏览文件 @
aa770198
...
@@ -63,6 +63,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -63,6 +63,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
// groups will alway be disabled in conv2dtranspose.
// groups will alway be disabled in conv2dtranspose.
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
...
@@ -114,7 +115,6 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -114,7 +115,6 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
col2im
;
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
col2im
;
math
::
Col2VolFunctor
<
Place
,
T
>
col2vol
;
math
::
Col2VolFunctor
<
Place
,
T
>
col2vol
;
std
::
vector
<
int
>
dilations
({
1
,
1
,
1
});
// convolution transpose: gemm + col2im or col2vol (similar to conv-backward
// convolution transpose: gemm + col2im or col2vol (similar to conv-backward
// on input)
// on input)
...
@@ -134,8 +134,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -134,8 +134,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
if
(
data_dim
==
2U
)
{
if
(
data_dim
==
2U
)
{
// col2im: col_matrix -> dy
// col2im: col_matrix -> dy
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
col2im
(
context
.
device_context
(),
col
,
col2im
(
context
.
device_context
(),
col
,
dilations
,
strides
,
std
::
vector
<
int
>
{
dilations
[
0
],
dilations
[
1
]},
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
paddings
[
1
]},
&
output_batch
);
&
output_batch
);
...
@@ -168,6 +167,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -168,6 +167,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
...
@@ -221,7 +221,6 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -221,7 +221,6 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
std
::
vector
<
int
>
dilations
({
1
,
1
,
1
});
if
(
input_grad
)
{
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
@@ -242,10 +241,9 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -242,10 +241,9 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
if
(
data_dim
==
2U
)
{
if
(
data_dim
==
2U
)
{
// im2col: dy -> col matrix
// im2col: dy -> col matrix
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
im2col
(
context
.
device_context
(),
output_grad_batch
,
im2col
(
context
.
device_context
(),
output_grad_batch
,
dilations
,
std
::
vector
<
int
>
{
dilations
[
0
],
dilations
[
1
]},
strides
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
0
],
paddings
[
1
]},
paddings
[
1
]},
&
col
);
&
col
);
}
else
if
(
data_dim
==
3U
)
{
}
else
if
(
data_dim
==
3U
)
{
// vol2col: dy -> col_matrix
// vol2col: dy -> col_matrix
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录