Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a948eea3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
a948eea3
编写于
1月 04, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
clean unused code.
上级
58827e3e
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
64 addition
and
557 deletion
+64
-557
paddle/cuda/include/hl_matrix.h
paddle/cuda/include/hl_matrix.h
+0
-42
paddle/cuda/include/stub/hl_matrix_stub.h
paddle/cuda/include/stub/hl_matrix_stub.h
+0
-19
paddle/cuda/src/hl_cuda_matrix.cu
paddle/cuda/src/hl_cuda_matrix.cu
+0
-171
paddle/function/CosSimOp.cpp
paddle/function/CosSimOp.cpp
+27
-25
paddle/function/CosSimOp.h
paddle/function/CosSimOp.h
+10
-10
paddle/function/CosSimOpTest.cpp
paddle/function/CosSimOpTest.cpp
+12
-12
paddle/gserver/layers/CosSimLayer.cpp
paddle/gserver/layers/CosSimLayer.cpp
+6
-6
paddle/gserver/layers/CosSimVecMatLayer.cpp
paddle/gserver/layers/CosSimVecMatLayer.cpp
+7
-7
paddle/gserver/layers/CosSimVecMatLayer.h
paddle/gserver/layers/CosSimVecMatLayer.h
+2
-0
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+0
-152
paddle/math/Matrix.h
paddle/math/Matrix.h
+0
-36
paddle/math/tests/test_Matrix.cpp
paddle/math/tests/test_Matrix.cpp
+0
-22
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+0
-55
未找到文件。
paddle/cuda/include/hl_matrix.h
浏览文件 @
a948eea3
...
...
@@ -188,48 +188,6 @@ extern void hl_param_relu_backward_diff(real* grad_o,
int
width
,
int
height
,
int
partial_sum
);
/**
* @brief cos sim forward
*
* @param[out] output output data
* @param[in] input1 input1 data(matrix)
* @param[in] input2 input2 data(matrix or vector)
* @param[in] width matrix width
* @param[in] input1_height input1_height
* @param[in] input2_height input2_height
* @param[in] scale scale factor
*/
extern
void
hl_cossim
(
real
*
output
,
real
*
input1
,
real
*
input2
,
int
width
,
int
input1_height
,
int
input2_height
,
real
scale
);
/**
* @brief cos sim derivate
*
* @param[in] grad output grad
* @param[in] output output data
* @param[in] prevOutX input1 data
* @param[in] prevOutY input2 data
* @param[out] prevGradX input1 grad
* @param[out] prevGradY input2 grad
* @param[in] width matrix width
* @param[in] input1_height input1 height
* @param[in] input2_height input2 height
* @param[in] scale scale factor
*/
extern
void
hl_cossim_derivative
(
real
*
grad
,
real
*
output
,
real
*
prevOutX
,
real
*
prevOutY
,
real
*
prevGradX
,
real
*
prevGradY
,
int
width
,
int
input1_height
,
int
input2_height
,
real
scale
);
/**
* @brief Matrix addition: A_d[i][j] += scale * B_d[j/channel].
...
...
paddle/cuda/include/stub/hl_matrix_stub.h
浏览文件 @
a948eea3
...
...
@@ -74,25 +74,6 @@ inline void hl_param_relu_backward_diff(real* grad_o,
int
height
,
int
partial_sum
)
{}
inline
void
hl_cossim
(
real
*
output
,
real
*
input1
,
real
*
input2
,
int
width
,
int
input1_height
,
int
input2_height
,
real
scale
)
{}
inline
void
hl_cossim_derivative
(
real
*
grad
,
real
*
output
,
real
*
prevOutX
,
real
*
prevOutY
,
real
*
prevGradX
,
real
*
prevGradY
,
int
width
,
int
input1_height
,
int
input2_height
,
real
scale
)
{}
inline
void
hl_matrix_add_shared_bias
(
real
*
A_d
,
real
*
B_d
,
const
int
channel
,
...
...
paddle/cuda/src/hl_cuda_matrix.cu
浏览文件 @
a948eea3
...
...
@@ -584,177 +584,6 @@ void hl_param_relu_backward_diff(real* grad_o,
CHECK_SYNC
(
"hl_param_relu_backward_diff failed"
);
}
template
<
int
blockSize
>
__global__
void
KeCosSim
(
real
*
output
,
real
*
input1
,
real
*
input2
,
int
width
,
int
input1_height
,
int
input2_height
,
real
scale
)
{
const
int
ty
=
blockIdx
.
y
;
int
tid
=
threadIdx
.
x
;
__shared__
real
xx
[
blockSize
];
__shared__
real
yy
[
blockSize
];
__shared__
real
xy
[
blockSize
];
xx
[
tid
]
=
0.0
;
yy
[
tid
]
=
0.0
;
xy
[
tid
]
=
0.0
;
__syncthreads
();
input1
+=
ty
*
width
;
if
(
input2_height
>
1
)
{
input2
+=
ty
*
width
;
}
for
(
int
index
=
tid
;
index
<
width
;
index
+=
blockSize
)
{
real
x
=
input1
[
index
];
real
y
=
input2
[
index
];
xx
[
tid
]
+=
x
*
x
;
yy
[
tid
]
+=
y
*
y
;
xy
[
tid
]
+=
x
*
y
;
}
__syncthreads
();
for
(
int
s
=
blockSize
/
2
;
s
>
0
;
s
>>=
1
)
{
if
(
tid
<
s
)
{
xx
[
tid
]
+=
xx
[
tid
+
s
];
yy
[
tid
]
+=
yy
[
tid
+
s
];
xy
[
tid
]
+=
xy
[
tid
+
s
];
}
__syncthreads
();
}
if
(
tid
==
0
)
{
output
[
ty
]
=
scale
*
xy
[
0
]
/
(
sqrt
(
xx
[
0
])
*
sqrt
(
yy
[
0
]));
}
}
void
hl_cossim
(
real
*
output
,
real
*
input1
,
real
*
input2
,
int
width
,
int
input1_height
,
int
input2_height
,
real
scale
)
{
CHECK_NOTNULL
(
output
);
CHECK_NOTNULL
(
input1
);
CHECK_NOTNULL
(
input2
);
const
int
blockSize
=
256
;
dim3
threads
(
blockSize
,
1
);
dim3
grid
(
1
,
input1_height
);
KeCosSim
<
blockSize
><<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
output
,
input1
,
input2
,
width
,
input1_height
,
input2_height
,
scale
);
CHECK_SYNC
(
"hl_cossim failed"
);
}
template
<
int
blockSize
>
__global__
void
KeCosSimDerivative
(
real
*
grad
,
real
*
output
,
real
*
prevOutX
,
real
*
prevOutY
,
real
*
prevGradX
,
real
*
prevGradY
,
int
width
,
int
input1_height
,
int
input2_height
,
real
scale
)
{
const
int
ty
=
blockIdx
.
y
;
int
tid
=
threadIdx
.
x
;
__shared__
real
xx
[
blockSize
];
__shared__
real
yy
[
blockSize
];
__shared__
real
xy
[
blockSize
];
xx
[
tid
]
=
0.0
;
yy
[
tid
]
=
0.0
;
xy
[
tid
]
=
0.0
;
__syncthreads
();
prevOutX
+=
ty
*
width
;
prevGradX
+=
ty
*
width
;
if
(
input2_height
>
1
)
{
prevOutY
+=
ty
*
width
;
prevGradY
+=
ty
*
width
;
}
for
(
int
index
=
tid
;
index
<
width
;
index
+=
blockSize
)
{
real
x
=
prevOutX
[
index
];
real
y
=
prevOutY
[
index
];
xx
[
tid
]
+=
x
*
x
;
yy
[
tid
]
+=
y
*
y
;
xy
[
tid
]
+=
x
*
y
;
}
__syncthreads
();
for
(
int
s
=
blockSize
/
2
;
s
>
0
;
s
>>=
1
)
{
if
(
tid
<
s
)
{
xx
[
tid
]
+=
xx
[
tid
+
s
];
yy
[
tid
]
+=
yy
[
tid
+
s
];
xy
[
tid
]
+=
xy
[
tid
+
s
];
}
__syncthreads
();
}
if
(
xy
[
0
]
==
0
)
{
real
reciprocal
=
1.0
/
(
sqrt
(
xx
[
0
])
*
sqrt
(
yy
[
0
]));
for
(
int
index
=
tid
;
index
<
width
;
index
+=
blockSize
)
{
prevGradX
[
index
]
+=
scale
*
grad
[
ty
]
*
prevOutY
[
index
]
*
reciprocal
;
if
(
input2_height
>
1
)
{
prevGradY
[
index
]
+=
scale
*
grad
[
ty
]
*
prevOutX
[
index
]
*
reciprocal
;
}
else
{
paddle
::
paddleAtomicAdd
(
prevGradY
+
index
,
scale
*
grad
[
ty
]
*
prevOutX
[
index
]
*
reciprocal
);
}
}
}
else
{
real
reciprocalXY
=
1.0
/
xy
[
0
];
real
reciprocalSquareSumX
=
1.0
/
xx
[
0
];
real
reciprocalSquareSumY
=
1.0
/
yy
[
0
];
for
(
int
index
=
tid
;
index
<
width
;
index
+=
blockSize
)
{
prevGradX
[
index
]
+=
output
[
ty
]
*
grad
[
ty
]
*
(
prevOutY
[
index
]
*
reciprocalXY
-
prevOutX
[
index
]
*
reciprocalSquareSumX
);
if
(
input2_height
>
1
)
{
prevGradY
[
index
]
+=
output
[
ty
]
*
grad
[
ty
]
*
(
prevOutX
[
index
]
*
reciprocalXY
-
prevOutY
[
index
]
*
reciprocalSquareSumY
);
}
else
{
paddle
::
paddleAtomicAdd
(
prevGradY
+
index
,
output
[
ty
]
*
grad
[
ty
]
*
(
prevOutX
[
index
]
*
reciprocalXY
-
prevOutY
[
index
]
*
reciprocalSquareSumY
));
}
}
}
}
void
hl_cossim_derivative
(
real
*
grad
,
real
*
output
,
real
*
prevOutX
,
real
*
prevOutY
,
real
*
prevGradX
,
real
*
prevGradY
,
int
width
,
int
input1_height
,
int
input2_height
,
real
scale
)
{
CHECK_NOTNULL
(
grad
);
CHECK_NOTNULL
(
output
);
CHECK_NOTNULL
(
prevOutX
);
CHECK_NOTNULL
(
prevOutY
);
CHECK_NOTNULL
(
prevGradX
);
CHECK_NOTNULL
(
prevGradY
);
const
int
blockSize
=
256
;
dim3
threads
(
blockSize
,
1
);
dim3
grid
(
1
,
input1_height
);
KeCosSimDerivative
<
blockSize
><<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
grad
,
output
,
prevOutX
,
prevOutY
,
prevGradX
,
prevGradY
,
width
,
input1_height
,
input2_height
,
scale
);
CHECK_SYNC
(
"hl_cossim_derivate failed"
);
}
__global__
void
KeMatrixAddSharedBias
(
real
*
A
,
real
*
B
,
const
int
channel
,
...
...
paddle/function/CosSimOp.cpp
浏览文件 @
a948eea3
...
...
@@ -34,7 +34,6 @@ void CosSimForward<DEVICE_TYPE_CPU>(CpuMatrix* out_mat,
CHECK
(
in2_mat
->
getHeight
()
==
1LU
||
in2_mat
->
getHeight
()
==
num_samples
);
size_t
inc
=
(
in2_mat
->
getHeight
()
==
1LU
)
?
0
:
dim
;
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
,
x
+=
dim
,
y
+=
inc
)
{
/// for each row, todo(tianbing), use TensorExpression square2 ?
real
square_sum_x
=
0
;
real
square_sum_y
=
0
;
real
xy
=
0
;
...
...
@@ -147,12 +146,15 @@ void CosSimBackward<DEVICE_TYPE_CPU>(const CpuMatrix* out_grad,
}
/**
* \param inputs[0] output value 1, size: nSamples * 1.
* \param inputs[1] input value 1, size: nSamples * dim.
* \param inputs[2] input value 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
* \param inputs[3] input grad 1, size: nSamples * dim.
* \param inputs[4] input grad 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
* \param outputs[0] output grad, size : nSamples * 1.
* \param inouts[0] forward input grad 1, size: nSamples * dim.
* \param inouts[1] forward input grad 2,
* size: n2 * dim (n2 == 1 or n2 == nSamples).
*
* \param inputs[0] backward loss output grad, size : nSamples * 1.
* \param inputs[1] forward output value, size: nSamples * 1.
* \param inputs[2] forward input value 1, size: nSamples * dim.
* \param inputs[3] forward input value 2,
* size: n2 * dim (n2 == 1 or n2 == nSamples).
*/
template
<
DeviceType
Device
>
class
CosSimBackwardFunc
:
public
FunctionBase
{
...
...
@@ -163,35 +165,35 @@ class CosSimBackwardFunc : public FunctionBase {
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
CHECK_EQ
(
inputs
.
size
(),
5
);
CHECK_EQ
(
outputs
.
size
(),
1
);
CHECK_EQ
(
inouts
.
size
(),
0
);
CHECK_EQ
(
inputs
.
size
(),
4
);
CHECK_EQ
(
outputs
.
size
(),
0
);
CHECK_EQ
(
inouts
.
size
(),
2
);
/// dim of out_grad and out_val == 1, column vector
CHECK_EQ
(
outputs
[
0
].
dims_
[
1
],
1UL
);
CHECK_EQ
(
inputs
[
0
].
dims_
[
1
],
1UL
);
CHECK_EQ
(
inputs
[
1
].
dims_
[
1
],
1UL
);
/// nSamples of out_grad == out_val == in_val1 == in_grad1
CHECK_EQ
(
inputs
[
0
].
dims_
[
0
],
out
puts
[
0
].
dims_
[
0
]);
CHECK_EQ
(
inputs
[
1
].
dims_
[
0
],
out
puts
[
0
].
dims_
[
0
]);
CHECK_EQ
(
in
puts
[
3
].
dims_
[
0
],
out
puts
[
0
].
dims_
[
0
]);
CHECK_EQ
(
inputs
[
1
].
dims_
[
0
],
in
puts
[
0
].
dims_
[
0
]);
CHECK_EQ
(
inputs
[
0
].
dims_
[
0
],
in
puts
[
0
].
dims_
[
0
]);
CHECK_EQ
(
in
outs
[
0
].
dims_
[
0
],
in
puts
[
0
].
dims_
[
0
]);
/// dim of in1_val1 == in_val2 == in_grad1 == in_grad2
CHECK_EQ
(
inputs
[
2
].
dims_
[
1
],
inputs
[
1
].
dims_
[
1
]);
CHECK_EQ
(
in
puts
[
3
].
dims_
[
1
],
inputs
[
1
].
dims_
[
1
]);
CHECK_EQ
(
in
puts
[
4
].
dims_
[
1
],
inputs
[
1
].
dims_
[
1
]);
CHECK_EQ
(
inputs
[
3
].
dims_
[
1
],
inputs
[
2
].
dims_
[
1
]);
CHECK_EQ
(
in
outs
[
0
].
dims_
[
1
],
inputs
[
2
].
dims_
[
1
]);
CHECK_EQ
(
in
outs
[
1
].
dims_
[
1
],
inputs
[
2
].
dims_
[
1
]);
CHECK
(
outputs
[
0
].
getData
()
&&
inputs
[
0
].
getData
()
&&
inputs
[
1
].
getData
()
&&
inputs
[
2
].
getData
()
&&
inputs
[
3
].
getData
()
&&
inputs
[
4
].
getData
());
CHECK
(
inputs
[
0
].
getData
()
&&
inputs
[
1
].
getData
()
&&
inputs
[
2
].
getData
()
&&
inputs
[
3
].
getData
()
&&
inouts
[
0
].
getData
()
&&
inouts
[
1
].
getData
());
const
auto
out_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
outputs
[
0
].
getData
(),
outputs
[
0
].
dims_
[
0
],
outputs
[
0
].
dims_
[
1
]);
const
auto
out_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
0
].
getData
(),
inputs
[
0
].
dims_
[
0
],
inputs
[
0
].
dims_
[
1
]);
const
auto
in1
_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
const
auto
out
_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
1
].
getData
(),
inputs
[
1
].
dims_
[
0
],
inputs
[
1
].
dims_
[
1
]);
const
auto
in
2
_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
const
auto
in
1
_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
2
].
getData
(),
inputs
[
2
].
dims_
[
0
],
inputs
[
2
].
dims_
[
1
]);
auto
in1_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
const
auto
in2_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
3
].
getData
(),
inputs
[
3
].
dims_
[
0
],
inputs
[
3
].
dims_
[
1
]);
auto
in1_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inouts
[
0
].
getData
(),
inouts
[
0
].
dims_
[
0
],
inouts
[
0
].
dims_
[
1
]);
auto
in2_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
in
puts
[
4
].
getData
(),
inputs
[
4
].
dims_
[
0
],
inputs
[
4
].
dims_
[
1
]);
in
outs
[
1
].
getData
(),
inouts
[
1
].
dims_
[
0
],
inouts
[
1
].
dims_
[
1
]);
CosSimBackward
<
Device
>
(
out_grad
.
get
(),
out_val
.
get
(),
...
...
paddle/function/CosSimOp.h
浏览文件 @
a948eea3
...
...
@@ -25,9 +25,9 @@ namespace paddle {
* = scale * \sum_j (in1[i][j] * in2[i][j]) /
* sqrt(sum_j (in1[i][j]^2) * sum_j (in2[i][j])^2)
*
* \param[out] output output
data
.
* \param[in] intput1 input
data
.
* \param[in] intput2 input
data
.
* \param[out] output output
value
.
* \param[in] intput1 input
value
.
* \param[in] intput2 input
value
.
* \param[in] scale default 1.0.
*
*/
...
...
@@ -40,13 +40,13 @@ void CosSimForward(typename MatrixT<Device>::type* output,
/**
* \brief Cosine Similarity BackWard for Derivative.
*
* \param[
out] output1
backward loss output grad.
* \param[in]
input1
forward-output value.
* \param[in]
input2
forward input value 1.
* \param[in]
input3
forward input value 2.
* \param[in
] input4
forward input grad 1.
* \param[in
] input5
forward input grad 2.
* \param[in]
scale
default 1.0.
* \param[
in] output grad
backward loss output grad.
* \param[in]
output val
forward-output value.
* \param[in]
input val1
forward input value 1.
* \param[in]
input val2
forward input value 2.
* \param[in
/out] input grad
forward input grad 1.
* \param[in
/out] input grad
forward input grad 2.
* \param[in]
scale
default 1.0.
*
*/
template
<
DeviceType
Device
>
...
...
paddle/function/CosSimOpTest.cpp
浏览文件 @
a948eea3
...
...
@@ -97,22 +97,22 @@ void testCosSimBackward(size_t height_x,
gpu_in2_grad
.
copyFrom
(
cpu_in2_grad
);
compare
.
getCpuFunction
()
->
calc
(
{
Tensor
(
cpu_out_val
.
getData
(),
Dims
{
height_x
,
1
}),
{
Tensor
(
cpu_out_grad
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
cpu_out_val
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
cpu_in1_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_in2_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_in1_grad
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_in2_grad
.
getData
(),
Dims
{
height_x
,
width
})},
{
Tensor
(
cpu_out_grad
.
getData
(),
Dims
{
height_x
,
1
})},
{});
Tensor
(
cpu_in2_val
.
getData
(),
Dims
{
height_x
,
width
})},
{},
{
Tensor
(
cpu_in1_grad
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_in2_grad
.
getData
(),
Dims
{
height_x
,
width
})});
compare
.
getGpuFunction
()
->
calc
(
{
Tensor
(
gpu_out_val
.
getData
(),
Dims
{
height_x
,
1
}),
{
Tensor
(
gpu_out_grad
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
gpu_out_val
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
gpu_in1_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_in2_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_in1_grad
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_in2_grad
.
getData
(),
Dims
{
height_x
,
width
})},
{
Tensor
(
gpu_out_grad
.
getData
(),
Dims
{
height_x
,
1
})},
{});
Tensor
(
gpu_in2_val
.
getData
(),
Dims
{
height_x
,
width
})},
{},
{
Tensor
(
gpu_in1_grad
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_in2_grad
.
getData
(),
Dims
{
height_x
,
width
})});
autotest
::
TensorCheckErr
(
cpu_in1_grad
,
gpu_in1_grad
);
autotest
::
TensorCheckErr
(
cpu_in2_grad
,
gpu_in2_grad
);
...
...
paddle/gserver/layers/CosSimLayer.cpp
浏览文件 @
a948eea3
...
...
@@ -79,13 +79,13 @@ void CosSimLayer::backward(const UpdateCallback& callback) {
auto
inG2
=
this
->
getInputGrad
(
1
);
CHECK
(
outG
&&
outV
&&
inV1
&&
inV2
&&
inG1
&&
inG2
);
backward_
[
0
]
->
calc
(
{
Tensor
(
outV
->
getData
(),
Dims
{
outV
->
getHeight
(),
outV
->
getWidth
()}),
{
Tensor
(
outG
->
getData
(),
Dims
{
outG
->
getHeight
(),
outG
->
getWidth
()}),
Tensor
(
outV
->
getData
(),
Dims
{
outV
->
getHeight
(),
outV
->
getWidth
()}),
Tensor
(
inV1
->
getData
(),
Dims
{
inV1
->
getHeight
(),
inV1
->
getWidth
()}),
Tensor
(
inV2
->
getData
(),
Dims
{
inV2
->
getHeight
(),
inV2
->
getWidth
()}),
Tensor
(
inG1
->
getData
(),
Dims
{
inG1
->
getHeight
(),
inG1
->
getWidth
()}),
Tensor
(
inG2
->
getData
(),
Dims
{
inG2
->
getHeight
(),
inG2
->
getWidth
()})},
{
Tensor
(
outG
->
getData
(),
Dims
{
outG
->
getHeight
(),
outG
->
getWidth
()})},
{});
Tensor
(
inV2
->
getData
(),
Dims
{
inV2
->
getHeight
(),
inV2
->
getWidth
()})},
{},
{
Tensor
(
inG1
->
getData
(),
Dims
{
inG1
->
getHeight
(),
inG1
->
getWidth
()}),
Tensor
(
inG2
->
getData
(),
Dims
{
inG2
->
getHeight
(),
inG2
->
getWidth
()})});
}
}
...
...
paddle/gserver/layers/CosSimVecMatLayer.cpp
浏览文件 @
a948eea3
...
...
@@ -169,19 +169,19 @@ void CosSimVecMatLayer::backward(const UpdateCallback& callback) {
tmpRow3
->
setData
(
outG
->
rowBuf
(
i
));
backward_
[
0
]
->
calc
(
{
Tensor
(
tmpRow2
->
getData
(),
{
Tensor
(
tmpRow3
->
getData
(),
Dims
{
tmpRow3
->
getHeight
(),
tmpRow3
->
getWidth
()}),
Tensor
(
tmpRow2
->
getData
(),
Dims
{
tmpRow2
->
getHeight
(),
tmpRow2
->
getWidth
()}),
Tensor
(
tmpMtx0
->
getData
(),
Dims
{
tmpMtx0
->
getHeight
(),
tmpMtx0
->
getWidth
()}),
Tensor
(
tmpRow0
->
getData
(),
Dims
{
tmpRow0
->
getHeight
(),
tmpRow0
->
getWidth
()}),
Tensor
(
tmpMtx1
->
getData
(),
Dims
{
tmpRow0
->
getHeight
(),
tmpRow0
->
getWidth
()})},
{},
{
Tensor
(
tmpMtx1
->
getData
(),
Dims
{
tmpMtx1
->
getHeight
(),
tmpMtx1
->
getWidth
()}),
Tensor
(
tmpRow1
->
getData
(),
Dims
{
tmpRow1
->
getHeight
(),
tmpRow1
->
getWidth
()})},
{
Tensor
(
tmpRow3
->
getData
(),
Dims
{
tmpRow3
->
getHeight
(),
tmpRow3
->
getWidth
()})},
{});
Dims
{
tmpRow1
->
getHeight
(),
tmpRow1
->
getWidth
()})});
}
}
...
...
paddle/gserver/layers/CosSimVecMatLayer.h
浏览文件 @
a948eea3
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
#include "paddle/math/Matrix.h"
...
...
paddle/math/Matrix.cpp
浏览文件 @
a948eea3
...
...
@@ -941,59 +941,6 @@ void GpuMatrix::softreluDerivative(Matrix& output) {
void
GpuMatrix
::
scaledTanh
(
Matrix
&
output
,
real
p1
,
real
p2
)
{
BaseMatrix
::
scaledTanh
(
output
,
p1
,
p2
);
}
void
GpuMatrix
::
cosSim
(
Matrix
&
output1
,
Matrix
&
output2
,
real
scale
)
{
CHECK
(
output1
.
useGpu_
==
true
&&
output2
.
useGpu_
==
true
)
<<
"Matrix type are not equal"
;
size_t
numSamples
=
getHeight
();
size_t
dim
=
output1
.
getWidth
();
CHECK_EQ
(
getWidth
(),
1UL
);
CHECK_EQ
(
output1
.
getHeight
(),
numSamples
);
CHECK_EQ
(
output1
.
getWidth
(),
output2
.
getWidth
());
real
*
out
=
getData
();
real
*
x
=
output1
.
getData
();
real
*
y
=
output2
.
getData
();
hl_cossim
(
out
,
x
,
y
,
dim
,
output1
.
getHeight
(),
output2
.
getHeight
(),
scale
);
}
void
GpuMatrix
::
cosSimDerivative
(
Matrix
&
output
,
Matrix
&
prevOut1
,
Matrix
&
prevOut2
,
Matrix
&
prevGrad1
,
Matrix
&
prevGrad2
,
real
scale
)
{
CHECK
(
output
.
useGpu_
==
true
&&
prevOut1
.
useGpu_
==
true
&&
prevOut2
.
useGpu_
==
true
&&
prevGrad1
.
useGpu_
==
true
&&
prevGrad2
.
useGpu_
==
true
)
<<
"Matrix type are not equal"
;
CHECK_EQ
(
getWidth
(),
1UL
);
CHECK_EQ
(
output
.
getWidth
(),
1UL
);
size_t
numSamples
=
getHeight
();
CHECK_EQ
(
output
.
getHeight
(),
numSamples
);
CHECK_EQ
(
prevOut1
.
getHeight
(),
numSamples
);
CHECK_EQ
(
prevGrad1
.
getHeight
(),
numSamples
);
size_t
dim
=
prevOut1
.
getWidth
();
CHECK_EQ
(
prevOut2
.
getWidth
(),
dim
);
CHECK_EQ
(
prevGrad1
.
getWidth
(),
dim
);
CHECK_EQ
(
prevGrad2
.
getWidth
(),
dim
);
real
*
grad
=
getData
();
real
*
out
=
output
.
getData
();
real
*
prevOutX
=
prevOut1
.
getData
();
real
*
prevOutY
=
prevOut2
.
getData
();
real
*
prevGradX
=
prevGrad1
.
getData
();
real
*
prevGradY
=
prevGrad2
.
getData
();
hl_cossim_derivative
(
grad
,
out
,
prevOutX
,
prevOutY
,
prevGradX
,
prevGradY
,
dim
,
prevOut1
.
getHeight
(),
prevOut2
.
getHeight
(),
scale
);
}
void
GpuMatrix
::
randomizeUniform
()
{
CHECK
(
isContiguous
());
...
...
@@ -3470,105 +3417,6 @@ void CpuMatrix::softmaxDerivative(Matrix& output, Matrix& sftmaxSum) {
}
}
void
CpuMatrix
::
cosSim
(
Matrix
&
output1
,
Matrix
&
output2
,
real
scale
)
{
size_t
numSamples
=
getHeight
();
size_t
dim
=
output1
.
getWidth
();
CHECK_EQ
(
getWidth
(),
1UL
);
CHECK_EQ
(
output1
.
getHeight
(),
numSamples
);
CHECK_EQ
(
output1
.
getWidth
(),
output2
.
getWidth
());
real
*
out
=
getData
();
const
real
*
x
=
output1
.
getData
();
const
real
*
y
=
output2
.
getData
();
size_t
yInc
=
dim
;
if
(
output2
.
getHeight
()
==
1LU
)
{
yInc
=
0
;
}
else
{
CHECK_EQ
(
output2
.
getHeight
(),
numSamples
);
}
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
,
x
+=
dim
,
y
+=
yInc
)
{
real
squareSumX
=
0
;
real
squareSumY
=
0
;
real
xy
=
0
;
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
squareSumX
+=
_square
(
x
[
j
]);
squareSumY
+=
_square
(
y
[
j
]);
xy
+=
x
[
j
]
*
y
[
j
];
}
CHECK
(
squareSumX
>
0
&&
squareSumY
>
0
);
out
[
i
]
=
scale
*
xy
/
(
std
::
sqrt
(
squareSumX
)
*
std
::
sqrt
(
squareSumY
));
}
}
void
CpuMatrix
::
cosSimDerivative
(
Matrix
&
output
,
Matrix
&
prevOut1
,
Matrix
&
prevOut2
,
Matrix
&
prevGrad1
,
Matrix
&
prevGrad2
,
real
scale
)
{
CHECK
(
output
.
useGpu_
==
false
)
<<
"Matrix type are not equal"
;
CHECK_EQ
(
getWidth
(),
1UL
);
CHECK_EQ
(
output
.
getWidth
(),
1UL
);
size_t
numSamples
=
getHeight
();
CHECK_EQ
(
output
.
getHeight
(),
numSamples
);
CHECK_EQ
(
prevOut1
.
getHeight
(),
numSamples
);
CHECK_EQ
(
prevGrad1
.
getHeight
(),
numSamples
);
size_t
dim
=
prevOut1
.
getWidth
();
CHECK_EQ
(
prevOut2
.
getWidth
(),
dim
);
CHECK_EQ
(
prevGrad1
.
getWidth
(),
dim
);
CHECK_EQ
(
prevGrad2
.
getWidth
(),
dim
);
const
real
*
grad
=
getData
();
const
real
*
out
=
output
.
getData
();
const
real
*
prevOutX
=
prevOut1
.
getData
();
const
real
*
prevOutY
=
prevOut2
.
getData
();
real
*
prevGradX
=
prevGrad1
.
getData
();
real
*
prevGradY
=
prevGrad2
.
getData
();
size_t
yInc
=
dim
;
if
(
prevOut2
.
getHeight
()
==
1LU
)
{
yInc
=
0
;
CHECK_EQ
(
prevGrad2
.
getHeight
(),
1LU
);
}
else
{
CHECK_EQ
(
prevOut2
.
getHeight
(),
numSamples
);
CHECK_EQ
(
prevGrad2
.
getHeight
(),
numSamples
);
}
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
,
prevOutX
+=
dim
,
prevOutY
+=
yInc
,
prevGradX
+=
dim
,
prevGradY
+=
yInc
)
{
real
squareSumX
=
0
;
real
squareSumY
=
0
;
real
xy
=
0
;
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
squareSumX
+=
_square
(
prevOutX
[
j
]);
squareSumY
+=
_square
(
prevOutY
[
j
]);
xy
+=
prevOutX
[
j
]
*
prevOutY
[
j
];
}
CHECK
(
squareSumX
>
0
&&
squareSumY
>
0
);
if
(
xy
==
0
)
{
real
reciprocal
=
1.0
f
/
(
std
::
sqrt
(
squareSumX
)
*
std
::
sqrt
(
squareSumY
));
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
prevGradX
[
j
]
+=
scale
*
grad
[
i
]
*
prevOutY
[
j
]
*
reciprocal
;
prevGradY
[
j
]
+=
scale
*
grad
[
i
]
*
prevOutX
[
j
]
*
reciprocal
;
}
}
else
{
real
reciprocalXY
=
1.0
f
/
xy
;
real
reciprocalSquareSumX
=
1.0
f
/
squareSumX
;
real
reciprocalSquareSumY
=
1.0
f
/
squareSumY
;
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
prevGradX
[
j
]
+=
out
[
i
]
*
grad
[
i
]
*
(
prevOutY
[
j
]
*
reciprocalXY
-
prevOutX
[
j
]
*
reciprocalSquareSumX
);
prevGradY
[
j
]
+=
out
[
i
]
*
grad
[
i
]
*
(
prevOutX
[
j
]
*
reciprocalXY
-
prevOutY
[
j
]
*
reciprocalSquareSumY
);
}
}
}
}
void
CpuMatrix
::
sumOfSquares
(
Matrix
&
output
,
Matrix
&
label
)
{
CHECK
(
output
.
useGpu_
==
false
&&
label
.
useGpu_
==
false
)
<<
"Matrix type are not equal"
;
...
...
paddle/math/Matrix.h
浏览文件 @
a948eea3
...
...
@@ -799,26 +799,6 @@ public:
LOG
(
FATAL
)
<<
"Not implemented"
;
}
/**
* cosine similarity, for each row i,
* this[i] = cos(output1[i], output2[i])
*
* output2 can only have one row, then for each row i,
* this[i] = cos(output1[i], output2[0])
*/
virtual
void
cosSim
(
Matrix
&
output1
,
Matrix
&
output2
,
real
scale
=
1.0
f
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
virtual
void
cosSimDerivative
(
Matrix
&
output
,
Matrix
&
prevOut1
,
Matrix
&
prevOut2
,
Matrix
&
prevGrad1
,
Matrix
&
prevGrad2
,
real
scale
=
1.0
f
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
/// print out the values of elements to os
virtual
void
print
(
std
::
ostream
&
os
)
const
{
LOG
(
FATAL
)
<<
"Not implemented"
;
...
...
@@ -1324,14 +1304,6 @@ public:
void
softreluDerivative
(
Matrix
&
output
);
void
scaledTanh
(
Matrix
&
output
,
real
p1
,
real
p2
);
void
cosSim
(
Matrix
&
output1
,
Matrix
&
output2
,
real
scale
);
void
cosSimDerivative
(
Matrix
&
output
,
Matrix
&
prevOut1
,
Matrix
&
prevOut2
,
Matrix
&
prevGrad1
,
Matrix
&
prevGrad2
,
real
scale
);
virtual
void
print
(
std
::
ostream
&
os
)
const
;
virtual
void
print
(
std
::
ostream
&
os
,
size_t
height
,
size_t
width
)
const
;
...
...
@@ -1752,14 +1724,6 @@ public:
void
softreluDerivative
(
Matrix
&
output
);
void
scaledTanh
(
Matrix
&
output
,
real
p1
,
real
p2
);
void
cosSim
(
Matrix
&
output1
,
Matrix
&
output2
,
real
scale
);
void
cosSimDerivative
(
Matrix
&
output
,
Matrix
&
prevOut1
,
Matrix
&
prevOut2
,
Matrix
&
prevGrad1
,
Matrix
&
prevGrad2
,
real
scale
);
void
print
(
std
::
ostream
&
os
)
const
;
void
print
(
std
::
ostream
&
os
,
size_t
height
,
size_t
width
)
const
;
void
printOneRow
(
std
::
ostream
&
os
,
size_t
idx
)
const
;
...
...
paddle/math/tests/test_Matrix.cpp
浏览文件 @
a948eea3
...
...
@@ -181,28 +181,6 @@ TEST(Matrix, copyByRowIndex) {
}
}
void
testCosSim
(
int
heightX
,
int
heightY
,
int
width
,
real
scale
)
{
AutoCompare
test
(
heightX
,
1
);
CpuMatrix
arg1
(
heightX
,
width
);
CpuMatrix
arg2
(
heightY
,
width
);
arg1
.
randomizeUniform
();
arg2
.
randomizeUniform
();
arg2
.
add
(
-
0.5
);
test
.
cmpWithArg
(
&
Matrix
::
cosSim
,
arg1
,
arg2
,
scale
);
}
TEST
(
Matrix
,
cosSim
)
{
for
(
auto
heightX
:
{
10
,
100
,
1000
})
{
for
(
auto
heightY
:
{
1
,
heightX
})
{
for
(
auto
width
:
{
10
,
100
,
1000
})
{
for
(
auto
scale
:
{
1.0
,
2.0
})
{
testCosSim
(
heightX
,
heightY
,
width
,
scale
);
}
}
}
}
}
void
testParamReluForward
(
int
height
,
int
width
,
int
w_height
,
int
w_width
)
{
AutoCompare
test
(
height
,
width
);
CpuMatrix
arg1
(
height
,
width
);
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
a948eea3
...
...
@@ -720,61 +720,6 @@ TEST(Matrix, sequenceAvgForward) {
}
}
void
testCosSimDerivate
(
int
heightX
,
int
heightY
,
int
width
,
real
scale
)
{
MatrixPtr
prevOutX
=
CpuMatrix
::
create
(
heightX
,
width
,
false
,
false
);
MatrixPtr
prevOutY
=
CpuMatrix
::
create
(
heightY
,
width
,
false
,
false
);
MatrixPtr
grad
=
CpuMatrix
::
create
(
heightX
,
1
,
false
,
false
);
MatrixPtr
output
=
CpuMatrix
::
create
(
heightX
,
1
,
false
,
false
);
MatrixPtr
prevGradX
=
CpuMatrix
::
create
(
heightX
,
width
,
false
,
false
);
MatrixPtr
prevGradY
=
CpuMatrix
::
create
(
heightY
,
width
,
false
,
false
);
prevOutX
->
randomizeUniform
();
prevOutY
->
randomizeUniform
();
grad
->
randomizeUniform
();
output
->
randomizeUniform
();
prevGradX
->
randomizeUniform
();
prevGradY
->
randomizeUniform
();
MatrixPtr
prevOutXGpu
=
GpuMatrix
::
create
(
heightX
,
width
,
false
,
true
);
MatrixPtr
prevOutYGpu
=
GpuMatrix
::
create
(
heightY
,
width
,
false
,
true
);
MatrixPtr
gradGpu
=
GpuMatrix
::
create
(
heightX
,
1
,
false
,
true
);
MatrixPtr
outputGpu
=
GpuMatrix
::
create
(
heightX
,
1
,
false
,
true
);
MatrixPtr
prevGradXGpu
=
GpuMatrix
::
create
(
heightX
,
width
,
false
,
true
);
MatrixPtr
prevGradYGpu
=
GpuMatrix
::
create
(
heightY
,
width
,
false
,
true
);
prevOutXGpu
->
copyFrom
(
*
prevOutX
);
prevOutYGpu
->
copyFrom
(
*
prevOutY
);
gradGpu
->
copyFrom
(
*
grad
);
outputGpu
->
copyFrom
(
*
output
);
prevGradXGpu
->
copyFrom
(
*
prevGradX
);
prevGradYGpu
->
copyFrom
(
*
prevGradY
);
grad
->
cosSimDerivative
(
*
output
,
*
prevOutX
,
*
prevOutY
,
*
prevGradX
,
*
prevGradY
,
scale
);
gradGpu
->
cosSimDerivative
(
*
outputGpu
,
*
prevOutXGpu
,
*
prevOutYGpu
,
*
prevGradXGpu
,
*
prevGradYGpu
,
scale
);
TensorCheckErr
(
*
prevGradX
,
*
prevGradXGpu
);
TensorCheckErr
(
*
prevGradY
,
*
prevGradYGpu
);
}
TEST
(
Matrix
,
cosSimDerivate
)
{
for
(
auto
heightX
:
{
1
,
10
,
100
})
{
for
(
auto
heightY
:
{
1
,
heightX
})
{
for
(
auto
width
:
{
1
,
10
,
100
})
{
for
(
auto
scale
:
{
1.0
,
2.0
})
{
testCosSimDerivate
(
heightX
,
heightY
,
width
,
scale
);
}
}
}
}
}
void
testParamReluBackwardDiff
(
int
height
,
int
width
,
int
w_height
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录