Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a93227a1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
a93227a1
编写于
11月 22, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine code
上级
e5bf9c56
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
42 addition
and
44 deletion
+42
-44
paddle/operators/conv_op.h
paddle/operators/conv_op.h
+22
-22
paddle/operators/conv_transpose_op.h
paddle/operators/conv_transpose_op.h
+20
-22
未找到文件。
paddle/operators/conv_op.h
浏览文件 @
a93227a1
...
...
@@ -99,20 +99,20 @@ class GemmConvKernel : public framework::OpKernel<T> {
// use col_shape in the im2col calculation
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
// o_h, o_w}
s
td
::
vector
<
int64_t
>
col_shape_vec
(
filter_shape_vec
.
size
()
+
output_shape_vec
.
size
()
-
3
);
col_shape_vec
.
assign
(
1
,
input
->
dims
()[
1
]
/
groups
)
;
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
()
+
2
,
filter_shape_vec
.
end
())
;
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
output_shape_vec
.
begin
()
+
2
,
output_shape_vec
.
end
());
s
ize_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
]
;
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
// o_h * o_w)
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
-
2
+
1
);
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
...
...
@@ -155,13 +155,13 @@ class GemmConvKernel : public framework::OpKernel<T> {
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
filter_shape_vec
.
size
()
==
4
)
{
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
filter_shape_vec
.
size
()
==
5
)
{
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
...
...
@@ -211,13 +211,13 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
// use col_shape in the im2col calculation
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
// o_h, o_w}
s
td
::
vector
<
int64_t
>
col_shape_vec
(
filter_shape_vec
.
size
()
+
output_shape_vec
.
size
()
-
3
);
col_shape_vec
.
assign
(
1
,
input
->
dims
()[
1
]
/
groups
)
;
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
()
+
2
,
filter_shape_vec
.
end
())
;
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
output_shape_vec
.
begin
()
+
2
,
output_shape_vec
.
end
());
s
ize_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
]
;
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
...
...
@@ -225,7 +225,7 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
// or
// (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
-
2
+
1
);
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
...
...
@@ -286,12 +286,12 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
out_grad_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
));
if
(
is_expand
&&
filter_shape_vec
.
size
()
==
4
)
{
if
(
is_expand
&&
data_dim
==
2U
)
{
col2im
(
context
.
device_context
(),
col
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
in_grad_slice
);
}
else
if
(
is_expand
&&
filter_shape_vec
.
size
()
==
5
)
{
}
else
if
(
is_expand
&&
data_dim
==
3U
)
{
col2vol
(
context
.
device_context
(),
col
,
dilations
,
strides
,
paddings
,
&
in_grad_slice
);
}
...
...
@@ -320,12 +320,12 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
filter_shape_vec
.
size
()
==
4
)
{
}
else
if
(
data_dim
==
2U
)
{
im2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
filter_shape_vec
.
size
()
==
5
)
{
}
else
if
(
data_dim
==
3U
)
{
vol2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
...
...
paddle/operators/conv_transpose_op.h
浏览文件 @
a93227a1
...
...
@@ -76,19 +76,18 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
s
td
::
vector
<
int64_t
>
col_shape_vec
(
filter_shape_vec
.
size
()
+
input_shape_vec
.
size
()
-
3
);
col_shape_vec
.
assign
(
1
,
output
->
dims
()[
1
])
;
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
()
+
2
,
filter_shape_vec
.
end
())
;
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
input_shape_vec
.
begin
()
+
2
,
input_shape_vec
.
end
());
s
ize_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
output
->
dims
()[
1
]
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
]
;
col_shape_vec
[
j
+
1
+
data_dim
]
=
input_shape_vec
[
j
+
2
];
}
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
-
2
+
1
);
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
...
...
@@ -133,7 +132,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
input_batch
,
false
,
static_cast
<
T
>
(
1.0
),
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
if
(
filter_shape_vec
.
size
()
==
4
)
{
if
(
data_dim
==
2U
)
{
// col2im: col_matrix -> dy
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
col2im
(
context
.
device_context
(),
col
,
...
...
@@ -141,7 +140,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
output_batch
);
}
else
if
(
filter_shape_vec
.
size
()
==
5
)
{
}
else
if
(
data_dim
==
3U
)
{
// col2vol: col_matrix -> dy
// from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
col2vol
(
context
.
device_context
(),
col
,
dilations
,
strides
,
paddings
,
...
...
@@ -181,19 +180,18 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
s
td
::
vector
<
int64_t
>
col_shape_vec
(
filter_shape_vec
.
size
()
+
input_shape_vec
.
size
()
-
3
);
col_shape_vec
.
assign
(
1
,
output_grad
->
dims
()[
1
])
;
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
()
+
2
,
filter_shape_vec
.
end
())
;
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
input_shape_vec
.
begin
()
+
2
,
input_shape_vec
.
end
());
s
ize_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
output_grad
->
dims
()[
1
]
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
]
;
col_shape_vec
[
j
+
1
+
data_dim
]
=
input_shape_vec
[
j
+
2
];
}
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
-
2
+
1
);
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
DDim
output_shape
=
framework
::
slice_ddim
(
output_grad
->
dims
(),
1
,
...
...
@@ -242,7 +240,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
Tensor
output_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
if
(
filter_shape_vec
.
size
()
==
4
)
{
if
(
data_dim
==
2U
)
{
// im2col: dy -> col matrix
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
im2col
(
context
.
device_context
(),
output_grad_batch
,
...
...
@@ -250,7 +248,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
filter_shape_vec
.
size
()
==
5
)
{
}
else
if
(
data_dim
==
3U
)
{
// vol2col: dy -> col_matrix
// from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
vol2col
(
context
.
device_context
(),
output_grad_batch
,
dilations
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录