Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a89296ac
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a89296ac
编写于
1月 12, 2019
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add repeated fc relu pass
上级
f347d6e4
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
454 addition
and
1 deletion
+454
-1
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.cc
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.cc
+409
-0
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.h
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.h
+41
-0
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
+2
-1
paddle/fluid/inference/api/paddle_pass_builder.h
paddle/fluid/inference/api/paddle_pass_builder.h
+1
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
a89296ac
...
...
@@ -43,6 +43,7 @@ pass_library(multi_batch_merge_pass base)
pass_library
(
conv_bn_fuse_pass inference
)
pass_library
(
seqconv_eltadd_relu_fuse_pass inference
)
pass_library
(
seqpool_concat_fuse_pass inference
)
pass_library
(
repeated_fc_relu_fuse_pass inference
)
pass_library
(
is_test_pass base
)
pass_library
(
conv_elementwise_add_act_fuse_pass inference
)
pass_library
(
conv_elementwise_add2_act_fuse_pass inference
)
...
...
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.cc
0 → 100644
浏览文件 @
a89296ac
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.h"
#include <algorithm> // for max
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#define MAX_NUM_FC 10
namespace
paddle
{
namespace
framework
{
namespace
ir
{
PDNode
*
BuildRepeatedFCReluPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
int
num_fc
)
{
auto
var_next_is_fc_act
=
[
=
](
Node
*
x
,
const
std
::
string
&
act_type
=
"relu"
,
bool
check_in_has_only_one_out
=
true
,
int
fc_idx
=
0
)
->
bool
{
bool
next_is_fc
=
x
&&
x
->
IsVar
()
&&
VarLinksToOp
(
x
,
"fc"
);
if
(
check_in_has_only_one_out
)
{
next_is_fc
=
next_is_fc
&&
x
->
outputs
.
size
()
==
1
;
}
if
(
!
next_is_fc
)
{
return
false
;
}
auto
*
fc_op
=
x
->
outputs
[
fc_idx
];
bool
next_is_act
=
fc_op
&&
fc_op
->
IsOp
()
&&
fc_op
->
outputs
.
size
()
==
1
&&
fc_op
->
outputs
[
0
]
&&
fc_op
->
outputs
[
0
]
->
IsVar
()
&&
VarLinksToOp
(
fc_op
->
outputs
[
0
],
act_type
)
&&
fc_op
->
outputs
[
0
]
->
outputs
.
size
()
==
1
;
if
(
!
next_is_act
)
{
return
false
;
}
auto
*
act_op
=
fc_op
->
outputs
[
0
]
->
outputs
[
0
];
return
act_op
&&
act_op
->
IsOp
()
&&
act_op
->
outputs
.
size
()
==
1
;
};
auto
find_fc_idx
=
[
=
](
Node
*
x
,
const
std
::
string
&
act_type
=
"relu"
)
->
int
{
bool
next_is_fc
=
x
&&
x
->
IsVar
()
&&
VarLinksToOp
(
x
,
"fc"
);
if
(
!
next_is_fc
)
{
return
0
;
}
for
(
size_t
k
=
0
;
k
<
x
->
outputs
.
size
();
++
k
)
{
auto
*
fc_op
=
x
->
outputs
[
k
];
bool
next_is_act
=
fc_op
&&
fc_op
->
IsOp
()
&&
fc_op
->
outputs
.
size
()
==
1
&&
fc_op
->
outputs
[
0
]
&&
fc_op
->
outputs
[
0
]
->
IsVar
()
&&
VarLinksToOp
(
fc_op
->
outputs
[
0
],
act_type
)
&&
fc_op
->
outputs
[
0
]
->
outputs
.
size
()
==
1
;
if
(
!
next_is_act
)
{
continue
;
}
auto
*
act_op
=
fc_op
->
outputs
[
0
]
->
outputs
[
0
];
if
(
act_op
&&
act_op
->
IsOp
()
&&
act_op
->
outputs
.
size
()
==
1
)
{
return
k
;
}
}
return
0
;
};
auto
next_var_of_part
=
[
=
](
Node
*
x
,
int
fc_idx
=
0
)
->
Node
*
{
return
x
->
outputs
[
fc_idx
]
->
outputs
[
0
]
->
outputs
[
0
]
->
outputs
[
0
];
};
auto
var_next_is_fc_act_repeated_n_times
=
[
=
](
Node
*
x
,
int
repeated_times
,
const
std
::
string
&
act_type
=
"relu"
,
bool
check_in_has_only_one_out
=
true
)
->
bool
{
for
(
int
i
=
0
;
i
<
repeated_times
;
++
i
)
{
if
(
!
var_next_is_fc_act
(
x
,
act_type
,
i
==
0
&&
check_in_has_only_one_out
))
{
return
false
;
}
x
=
next_var_of_part
(
x
);
}
return
true
;
};
auto
var_before_is_fc_act
=
[
=
](
Node
*
x
,
const
std
::
string
&
act_type
=
"relu"
,
bool
at_top
=
false
)
->
bool
{
bool
before_is_act
=
x
&&
x
->
IsVar
()
&&
x
->
inputs
.
size
()
==
1
&&
VarLinksFromOp
(
x
,
"relu"
);
if
(
!
before_is_act
)
{
return
false
;
}
auto
*
relu_op
=
x
->
inputs
[
0
];
// std::cout << "xxxx" << std::endl;
bool
before_is_fc
=
relu_op
->
IsOp
()
&&
relu_op
->
inputs
.
size
()
==
1
&&
relu_op
->
inputs
[
0
]
->
IsVar
()
&&
VarLinksFromOp
(
relu_op
->
inputs
[
0
],
"fc"
)
&&
relu_op
->
inputs
[
0
]
->
inputs
.
size
()
==
1
;
if
(
!
before_is_fc
)
{
return
false
;
}
auto
*
fc_op
=
relu_op
->
inputs
[
0
]
->
inputs
[
0
];
bool
is_fc
=
fc_op
->
IsOp
()
&&
fc_op
->
inputs
.
size
()
==
3
;
// std::cout << "*****" << fc_op->inputs.size() << std::endl;
if
(
!
is_fc
)
{
return
false
;
}
for
(
size_t
kkk
=
0
;
kkk
<
3
;
++
kkk
)
{
// std::cout << "++++++" << kkk << std::endl;
if
(
!
fc_op
->
inputs
[
kkk
]
->
inputs
.
empty
())
{
if
(
at_top
)
{
return
true
;
}
else
{
bool
res
=
VarLinksFromOp
(
fc_op
->
inputs
[
kkk
],
"relu"
);
// std::cout << fc_op->inputs[kkk]->Name() << "++++++-----" << kkk <<
// ":"
// << res << std::endl;
return
res
;
}
}
}
// for (auto* fc_i : fc_op->inputs) {
// if (!fc_i->inputs.empty()) {
// std::cout << "++++++" << fc_op->inputs.size()<<std::endl;
// return VarLinksFromOp(fc_i, "relu");
// }
// }
return
false
;
};
auto
before_var_of_part
=
[
=
](
Node
*
x
)
->
Node
*
{
auto
*
fc_op
=
x
->
inputs
[
0
]
->
inputs
[
0
];
for
(
auto
*
fc_i
:
fc_op
->
inputs
)
{
if
(
!
fc_i
->
inputs
.
empty
())
{
return
fc_i
->
inputs
[
0
];
}
}
return
nullptr
;
};
auto
var_before_is_fc_act_repeated_n_times
=
[
=
](
Node
*
x
,
int
repeated_times
,
const
std
::
string
&
act_type
=
"relu"
)
->
bool
{
for
(
int
i
=
0
;
i
<
repeated_times
;
++
i
)
{
// std::cout << "----" << i << std::endl;
if
(
!
var_before_is_fc_act
(
x
,
act_type
,
i
==
repeated_times
-
1
))
{
return
false
;
}
x
=
before_var_of_part
(
x
);
}
return
true
;
};
std
::
vector
<
PDNode
*>
fc_input_var
(
num_fc
);
std
::
vector
<
PDNode
*>
fc_output_var
(
num_fc
);
std
::
vector
<
PDNode
*>
fc_weight_var
(
num_fc
);
std
::
vector
<
PDNode
*>
fc_bias_var
(
num_fc
);
std
::
vector
<
PDNode
*>
fc_ops
(
num_fc
);
std
::
vector
<
PDNode
*>
relu_ops
(
num_fc
);
for
(
int
i
=
0
;
i
<
num_fc
;
++
i
)
{
fc_input_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
if
(
i
==
0
&&
x
->
outputs
.
size
()
>
0
)
{
bool
ok
=
x
->
inputs
.
size
()
>
0
;
if
(
!
ok
)
{
return
false
;
}
int
idx
=
find_fc_idx
(
x
);
if
(
idx
==
0
)
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
);
}
else
{
x
=
next_var_of_part
(
x
,
idx
);
return
var_next_is_fc_act_repeated_n_times
(
x
,
std
::
max
(
1
,
num_fc
-
i
-
1
),
"relu"
);
}
}
else
{
bool
part1
=
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
)
&&
x
->
inputs
.
size
()
>
0
;
if
(
x
->
Name
()
==
"fc_0.tmp_1"
&&
x
->
IsVar
()
&&
part1
)
{
// std::cout << "testes" << std::endl;
}
bool
part2
=
var_before_is_fc_act_repeated_n_times
(
x
,
i
,
"relu"
);
if
(
x
->
Name
()
==
"fc_0.tmp_1"
)
{
// std::cout << "========" << part1 << "," << part2 << std::endl;
}
return
part1
&&
part2
;
}
},
name_scope
+
"/fc_in_"
+
std
::
to_string
(
i
));
fc_weight_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
)
&&
x
->
inputs
.
empty
()
&&
var_before_is_fc_act_repeated_n_times
(
x
->
outputs
[
0
]
->
inputs
[
0
],
i
,
"relu"
)
&&
x
->
Name
()
==
x
->
outputs
[
0
]
->
Op
()
->
Input
(
"W"
)[
0
];
},
name_scope
+
"/fc_weight_"
+
std
::
to_string
(
i
));
fc_bias_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
)
&&
x
->
inputs
.
empty
()
&&
var_before_is_fc_act_repeated_n_times
(
x
->
outputs
[
0
]
->
inputs
[
0
],
i
,
"relu"
)
&&
x
->
Name
()
==
x
->
outputs
[
0
]
->
Op
()
->
Input
(
"Bias"
)[
0
];
},
name_scope
+
"/fc_bias_"
+
std
::
to_string
(
i
));
fc_output_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
bool
basic
=
x
&&
x
->
IsVar
()
&&
VarLinksFromOp
(
x
,
"fc"
)
&&
VarLinksToOp
(
x
,
"relu"
)
&&
x
->
inputs
.
size
()
==
1
&&
x
->
inputs
[
0
]
->
inputs
.
size
()
==
3
;
if
(
!
basic
)
{
return
false
;
}
x
=
x
->
inputs
[
0
]
->
inputs
[
0
];
if
(
i
==
0
&&
x
->
outputs
.
size
()
>
0
)
{
bool
ok
=
x
->
inputs
.
size
()
>
0
;
if
(
!
ok
)
{
return
false
;
}
int
idx
=
find_fc_idx
(
x
);
if
(
idx
==
0
)
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
);
}
else
{
x
=
next_var_of_part
(
x
,
idx
);
return
var_next_is_fc_act_repeated_n_times
(
x
,
std
::
max
(
1
,
num_fc
-
i
-
1
),
"relu"
);
}
}
else
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
)
&&
x
->
inputs
.
size
()
>
0
&&
var_before_is_fc_act_repeated_n_times
(
x
,
i
,
"relu"
);
}
},
name_scope
+
"/fc_out_"
+
std
::
to_string
(
i
));
fc_ops
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
bool
basic
=
x
&&
x
->
IsOp
()
&&
x
->
Op
()
->
Type
()
==
"fc"
&&
x
->
inputs
.
size
()
==
3
&&
x
->
outputs
.
size
()
==
1
;
if
(
!
basic
)
{
return
false
;
}
auto
*
fc_out_var
=
x
->
outputs
[
0
];
return
fc_out_var
&&
fc_out_var
->
IsVar
()
&&
fc_out_var
->
outputs
.
size
()
==
1
&&
VarLinksToOp
(
fc_out_var
,
"relu"
)
&&
fc_out_var
->
outputs
[
0
]
->
outputs
.
size
()
==
1
&&
var_next_is_fc_act_repeated_n_times
(
fc_out_var
->
outputs
[
0
]
->
outputs
[
0
],
num_fc
-
i
-
1
,
"relu"
)
&&
var_before_is_fc_act_repeated_n_times
(
fc_out_var
->
outputs
[
0
]
->
outputs
[
0
],
i
+
1
,
"relu"
);
},
name_scope
+
"/fc_op_"
+
std
::
to_string
(
i
));
relu_ops
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
x
&&
x
->
IsOp
()
&&
x
->
Op
()
->
Type
()
==
"relu"
&&
x
->
inputs
.
size
()
==
1
&&
x
->
outputs
.
size
()
==
1
&&
x
->
inputs
[
0
]
->
IsVar
()
&&
VarLinksFromOp
(
x
->
inputs
[
0
],
"fc"
)
&&
x
->
outputs
[
0
]
->
IsVar
()
&&
var_next_is_fc_act_repeated_n_times
(
x
->
outputs
[
0
],
num_fc
-
i
-
1
,
"relu"
)
&&
var_before_is_fc_act_repeated_n_times
(
x
->
outputs
[
0
],
i
+
1
,
"relu"
);
},
name_scope
+
"/act_op_"
+
std
::
to_string
(
i
));
fc_ops
[
i
]
->
LinksFrom
({
fc_input_var
[
i
],
fc_weight_var
[
i
],
fc_bias_var
[
i
]})
.
LinksTo
({
fc_output_var
[
i
]});
relu_ops
[
i
]
->
LinksFrom
({
fc_output_var
[
i
]});
}
auto
*
last_out_var
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
var_before_is_fc_act_repeated_n_times
(
x
,
num_fc
,
"relu"
);
},
name_scope
+
"/act_out"
);
for
(
int
i
=
0
;
i
<
num_fc
-
1
;
++
i
)
{
relu_ops
[
i
]
->
LinksTo
({
fc_input_var
[
i
+
1
]});
}
relu_ops
[
num_fc
-
1
]
->
LinksTo
({
last_out_var
});
return
last_out_var
;
}
static
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
int
num_fc
)
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
BuildRepeatedFCReluPattern
(
pattern
,
name_scope
,
num_fc
);
auto
retrieve_node
=
[](
const
std
::
string
&
name
,
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
const
PDPattern
&
pat
)
->
Node
*
{
PADDLE_ENFORCE
(
subgraph
.
count
(
pat
.
RetrieveNode
(
name
)),
"pattern has no Node called %s"
,
name
.
c_str
());
Node
*
p
=
subgraph
.
at
(
pat
.
RetrieveNode
(
name
));
PADDLE_ENFORCE_NOT_NULL
(
p
,
"subgraph has no node %s"
,
name
.
c_str
());
return
p
;
};
int
fusion_count
{
0
};
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
LOG
(
INFO
)
<<
"handle Repeated FC Act fuse"
;
std
::
vector
<
Node
*>
weights_vars
(
num_fc
);
std
::
vector
<
Node
*>
bias_vars
(
num_fc
);
std
::
vector
<
Node
*>
relu_vars
(
num_fc
-
1
);
std
::
vector
<
std
::
string
>
weight_names
(
num_fc
);
std
::
vector
<
std
::
string
>
bias_names
(
num_fc
);
std
::
vector
<
std
::
string
>
relu_names
(
num_fc
-
1
);
auto
&
fused_pattern
=
gpd
.
pattern
();
for
(
int
i
=
0
;
i
<
num_fc
;
++
i
)
{
if
(
i
>=
1
)
{
relu_vars
[
i
-
1
]
=
retrieve_node
(
name_scope
+
"/fc_in_"
+
std
::
to_string
(
i
),
subgraph
,
fused_pattern
);
relu_names
[
i
-
1
]
=
relu_vars
[
i
-
1
]
->
Name
();
}
weights_vars
[
i
]
=
retrieve_node
(
name_scope
+
"/fc_weight_"
+
std
::
to_string
(
i
),
subgraph
,
fused_pattern
);
weight_names
[
i
]
=
weights_vars
[
i
]
->
Name
();
bias_vars
[
i
]
=
retrieve_node
(
name_scope
+
"/fc_bias_"
+
std
::
to_string
(
i
),
subgraph
,
fused_pattern
);
bias_names
[
i
]
=
bias_vars
[
i
]
->
Name
();
}
auto
*
input_var
=
retrieve_node
(
name_scope
+
"/fc_in_0"
,
subgraph
,
fused_pattern
);
auto
*
last_out_var
=
retrieve_node
(
name_scope
+
"/act_out"
,
subgraph
,
fused_pattern
);
// Create New OpDesc
OpDesc
op_desc
;
op_desc
.
SetType
(
"fusion_repeated_fc_relu"
);
op_desc
.
SetInput
(
"X"
,
{
input_var
->
Name
()});
op_desc
.
SetInput
(
"W"
,
weight_names
);
op_desc
.
SetInput
(
"Bias"
,
bias_names
);
op_desc
.
SetOutput
(
"ReluOut"
,
relu_names
);
op_desc
.
SetOutput
(
"Out"
,
{
last_out_var
->
Name
()});
auto
*
op
=
graph
->
CreateOpNode
(
&
op_desc
);
IR_NODE_LINK_TO
(
input_var
,
op
);
for
(
size_t
i
=
0
;
i
<
weights_vars
.
size
();
++
i
)
{
IR_NODE_LINK_TO
(
weights_vars
[
i
],
op
);
IR_NODE_LINK_TO
(
bias_vars
[
i
],
op
);
}
for
(
size_t
i
=
0
;
i
<
relu_vars
.
size
();
++
i
)
{
IR_NODE_LINK_TO
(
op
,
relu_vars
[
i
]);
}
IR_NODE_LINK_TO
(
op
,
last_out_var
);
std
::
unordered_set
<
const
Node
*>
marked_nodes
;
for
(
auto
&
item
:
subgraph
)
{
marked_nodes
.
insert
(
item
.
second
);
}
for
(
size_t
i
=
0
;
i
<
weights_vars
.
size
();
++
i
)
{
marked_nodes
.
erase
(
weights_vars
[
i
]);
marked_nodes
.
erase
(
bias_vars
[
i
]);
}
for
(
size_t
i
=
0
;
i
<
relu_vars
.
size
();
++
i
)
{
marked_nodes
.
erase
(
relu_vars
[
i
]);
}
marked_nodes
.
erase
(
input_var
);
marked_nodes
.
erase
(
last_out_var
);
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
++
fusion_count
;
};
gpd
(
graph
,
handler
);
return
fusion_count
;
}
std
::
unique_ptr
<
ir
::
Graph
>
RepeatedFCReluFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
int
fusion_count
=
0
;
for
(
int
i
=
MAX_NUM_FC
;
i
>
1
;
--
i
)
{
fusion_count
+=
BuildFusion
(
graph
.
get
(),
name_scope_
+
"/"
+
std
::
to_string
(
3
),
3
);
}
AddStatis
(
fusion_count
);
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
repeated_fc_relu_fuse_pass
,
paddle
::
framework
::
ir
::
RepeatedFCReluFusePass
);
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.h
0 → 100644
浏览文件 @
a89296ac
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/**
* Fuse Repeated FC Relu
*/
class
RepeatedFCReluFusePass
:
public
FusePassBase
{
public:
virtual
~
RepeatedFCReluFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
const
std
::
string
name_scope_
{
"repeated_fc_relu"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
浏览文件 @
a89296ac
...
...
@@ -129,7 +129,8 @@ PDNode* BuildSeqPoolConcatPattern(PDPattern* pattern,
return
concat_out_var
;
}
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
int
num_inputs
)
{
static
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
int
num_inputs
)
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
BuildSeqPoolConcatPattern
(
pattern
,
name_scope
,
num_inputs
);
...
...
paddle/fluid/inference/api/paddle_pass_builder.h
浏览文件 @
a89296ac
...
...
@@ -98,6 +98,7 @@ class CpuPassStrategy : public PassStrategy {
"mul_gru_fuse_pass"
,
//
"seq_concat_fc_fuse_pass"
,
//
"fc_fuse_pass"
,
//
"repeated_fc_relu_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
"is_test_pass"
,
//
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录