Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a7d5b1ab
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
a7d5b1ab
编写于
8月 04, 2017
作者:
Y
Yi Wang
提交者:
GitHub
8月 04, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3217 from wangkuiyi/const
Move constants from framework::OperatorBase to framework::
上级
ef8de515
1ff8b8dd
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
99 addition
and
137 deletion
+99
-137
paddle/framework/backward.cc
paddle/framework/backward.cc
+10
-12
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+25
-52
paddle/framework/grad_op_builder.cc
paddle/framework/grad_op_builder.cc
+4
-6
paddle/framework/grad_op_builder_test.cc
paddle/framework/grad_op_builder_test.cc
+28
-36
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+1
-1
paddle/framework/operator.h
paddle/framework/operator.h
+20
-19
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+2
-2
paddle/operators/fc_op.cc
paddle/operators/fc_op.cc
+1
-1
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+1
-1
paddle/operators/mean_op.h
paddle/operators/mean_op.h
+2
-2
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+3
-3
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+2
-2
未找到文件。
paddle/framework/backward.cc
浏览文件 @
a7d5b1ab
...
...
@@ -59,19 +59,17 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take
// too much time for calculation, but it is useful for simplifying logic.
if
(
AllInSet
(
forwardOp
.
inputs_
,
OperatorBase
::
GRAD_VAR_SUFFIX
(),
no_grad_names
))
{
if
(
AllInSet
(
forwardOp
.
inputs_
,
kGradVarSuffix
,
no_grad_names
))
{
return
NOP
();
}
// All output gradients of forwarding operator do not need to calculate.
// Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP.
if
(
AllInSet
(
forwardOp
.
outputs_
,
OperatorBase
::
GRAD_VAR_SUFFIX
(),
no_grad_names
))
{
if
(
AllInSet
(
forwardOp
.
outputs_
,
kGradVarSuffix
,
no_grad_names
))
{
for
(
auto
&
name
:
forwardOp
.
inputs_
)
{
// Mark all input is not need
no_grad_names
.
insert
(
name
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
no_grad_names
.
insert
(
name
+
kGradVarSuffix
);
}
return
NOP
();
}
...
...
@@ -134,9 +132,9 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
std
::
shared_ptr
<
OperatorBase
>
grad_op
=
OpRegistry
::
CreateGradOp
(
forwardOp
);
for
(
std
::
string
&
grad_input
:
grad_op
->
inputs_
)
{
if
(
no_grad_names
.
count
(
grad_input
))
{
std
::
string
prefix
=
grad_input
.
substr
(
0
,
grad_input
.
size
()
-
OperatorBase
::
GRAD_VAR_SUFFIX
()
.
size
());
grad_input
=
prefix
+
OperatorBase
::
ZERO_VAR_SUFFIX
()
;
std
::
string
prefix
=
grad_input
.
substr
(
0
,
grad_input
.
size
()
-
kGradVarSuffix
.
size
());
grad_input
=
prefix
+
kZeroVarSuffix
;
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
...
...
@@ -147,7 +145,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
for
(
std
::
string
&
grad_output
:
grad_op
->
outputs_
)
{
if
(
no_grad_names
.
count
(
grad_output
))
{
grad_output
=
OperatorBase
::
EMPTY_VAR_NAME
()
;
grad_output
=
kEmptyVarName
;
}
}
...
...
@@ -168,14 +166,14 @@ std::shared_ptr<OperatorBase> Backward(
std
::
unordered_set
<
std
::
string
>
no_grad_names
;
no_grad_names
.
reserve
(
no_grad_vars
.
size
());
no_grad_names
.
insert
(
OperatorBase
::
EMPTY_VAR_NAME
()
+
OperatorBase
::
GRAD_VAR_SUFFIX
());
no_grad_names
.
insert
(
kEmptyVarName
+
kGradVarSuffix
);
for
(
auto
&
name
:
no_grad_vars
)
{
no_grad_names
.
insert
(
name
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
no_grad_names
.
insert
(
name
+
kGradVarSuffix
);
}
size_t
uid
=
0
;
return
BackwardRecursive
(
forwardOp
,
no_grad_names
,
uid
);
}
}
// namespace framework
}
// namespace paddle
paddle/framework/backward_test.cc
浏览文件 @
a7d5b1ab
...
...
@@ -78,14 +78,14 @@ class FcOp : public ops::NetOp {
{
Output
(
"mul_result"
)},
{}));
auto
b_name
=
Input
(
"b"
);
std
::
string
before_act
=
"mul_result"
;
if
(
b_name
!=
EMPTY_VAR_NAME
()
)
{
if
(
b_name
!=
kEmptyVarName
)
{
AddOp
(
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{
Output
(
"mul_result"
),
b_name
},
{
Output
(
"add_result"
)},
{}));
before_act
=
"add_result"
;
}
else
{
auto
out_varname
=
Output
(
"add_result"
);
if
(
out_varname
!=
EMPTY_VAR_NAME
()
)
{
this
->
Rename
(
out_varname
,
EMPTY_VAR_NAME
()
);
if
(
out_varname
!=
kEmptyVarName
)
{
this
->
Rename
(
out_varname
,
kEmptyVarName
);
}
}
...
...
@@ -163,13 +163,12 @@ TEST(Backward, simple_op_grad) {
ASSERT_NE
(
fwd
,
nullptr
);
auto
gop
=
f
::
OpRegistry
::
CreateGradOp
(
*
fwd
);
ASSERT_EQ
(
4UL
,
gop
->
inputs_
.
size
());
ASSERT_EQ
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
()
,
gop
->
inputs_
[
0
]);
ASSERT_EQ
(
f
::
kEmptyVarName
,
gop
->
inputs_
[
0
]);
ASSERT_EQ
(
"rowwise_add_grad"
,
gop
->
type_
);
ASSERT_EQ
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
,
gop
->
outputs_
[
0
]);
ASSERT_EQ
(
"b"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
,
gop
->
outputs_
[
1
]);
ASSERT_EQ
(
"X"
+
f
::
kGradVarSuffix
,
gop
->
outputs_
[
0
]);
ASSERT_EQ
(
"b"
+
f
::
kGradVarSuffix
,
gop
->
outputs_
[
1
]);
ASSERT_EQ
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
gop
->
Output
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()));
ASSERT_EQ
(
"X"
+
f
::
kGradVarSuffix
,
gop
->
Output
(
"X"
+
f
::
kGradVarSuffix
));
}
TEST
(
Backward
,
simple_op_not_need_grad
)
{
...
...
@@ -177,7 +176,7 @@ TEST(Backward, simple_op_not_need_grad) {
ASSERT_NE
(
fwd
,
nullptr
);
auto
gop
=
f
::
Backward
(
*
fwd
,
{
"X"
});
ASSERT_EQ
(
std
::
find
(
gop
->
outputs_
.
begin
(),
gop
->
outputs_
.
end
(),
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
),
"X"
+
f
::
kGradVarSuffix
),
gop
->
outputs_
.
end
());
auto
no_input_gop
=
f
::
Backward
(
*
fwd
,
{
"X"
,
"b"
});
...
...
@@ -210,9 +209,9 @@ TEST(Backward, net_fc_backward_normal) {
}
TEST
(
Backward
,
net_fc_backward_not_have_b
)
{
std
::
shared_ptr
<
f
::
OperatorBase
>
fwd
=
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"X"
,
"w"
,
f
::
OperatorBase
::
EMPTY_VAR_NAME
()
},
{
"mul_result"
,
"add_result"
,
"tmp"
},
{});
std
::
shared_ptr
<
f
::
OperatorBase
>
fwd
=
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"X"
,
"w"
,
f
::
kEmptyVarName
},
{
"mul_result"
,
"add_result"
,
"tmp"
},
{});
ASSERT_NE
(
fwd
,
nullptr
);
std
::
shared_ptr
<
f
::
OperatorBase
>
gop
=
f
::
Backward
(
*
fwd
,
{});
ASSERT_TRUE
(
gop
->
IsNetOp
());
...
...
@@ -242,24 +241,21 @@ TEST(Backward, net_input_of_network_not_need_grad) {
std
::
unordered_set
<
std
::
string
>
all_output
=
std
::
unordered_set
<
std
::
string
>
(
bwd_net
->
outputs_
.
begin
(),
bwd_net
->
outputs_
.
end
());
all_output
.
erase
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
()
);
all_output
.
erase
(
f
::
kEmptyVarName
);
for
(
auto
&
out
:
{
"W1"
,
"b1"
,
"hidden0"
,
"W2"
,
"b2"
})
{
ASSERT_NE
(
all_output
.
find
(
out
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
all_output
.
end
());
ASSERT_NE
(
all_output
.
find
(
out
+
f
::
kGradVarSuffix
),
all_output
.
end
());
}
// Not Generated X
ASSERT_EQ
(
all_output
.
find
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
all_output
.
end
());
ASSERT_EQ
(
all_output
.
find
(
"X"
+
f
::
kGradVarSuffix
),
all_output
.
end
());
ASSERT_EQ
(
2UL
,
bwd_net
->
ops_
.
size
());
ASSERT_TRUE
(
bwd_net
->
ops_
[
1
]
->
IsNetOp
());
auto
first_fc_grad
=
static_cast
<
ops
::
NetOp
*>
(
bwd_net
->
ops_
[
1
].
get
());
ASSERT_EQ
(
3UL
,
first_fc_grad
->
ops_
.
size
());
ASSERT_EQ
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
(),
first_fc_grad
->
ops_
[
2
]
->
Output
(
"A"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()));
ASSERT_EQ
(
f
::
kEmptyVarName
,
first_fc_grad
->
ops_
[
2
]
->
Output
(
"A"
+
f
::
kGradVarSuffix
));
}
TEST
(
Backward
,
net_shared_weight
)
{
...
...
@@ -311,17 +307,15 @@ TEST(Backward, op_part_of_output_are_not_need) {
ASSERT_EQ
(
1UL
,
fill_zero
.
inputs_
.
size
());
ASSERT_EQ
(
"Z"
,
fill_zero
.
inputs_
[
0
]);
ASSERT_EQ
(
1UL
,
fill_zero
.
outputs_
.
size
());
ASSERT_EQ
(
"Z"
+
f
::
OperatorBase
::
ZERO_VAR_SUFFIX
()
,
fill_zero
.
outputs_
[
0
]);
ASSERT_EQ
(
"Z"
+
f
::
kZeroVarSuffix
,
fill_zero
.
outputs_
[
0
]);
auto
&
d_many_out
=
*
net
->
ops_
[
1
];
ASSERT_EQ
(
"many_output_op_grad"
,
d_many_out
.
type_
);
ASSERT_EQ
(
1UL
+
2UL
+
2UL
,
d_many_out
.
inputs_
.
size
());
// I/O/OG
ASSERT_EQ
(
"Z"
+
f
::
OperatorBase
::
ZERO_VAR_SUFFIX
(),
d_many_out
.
Input
(
"z"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()));
ASSERT_EQ
(
"Y"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
d_many_out
.
Input
(
"y"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()));
ASSERT_EQ
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
d_many_out
.
Output
(
"x"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()));
ASSERT_EQ
(
"Z"
+
f
::
kZeroVarSuffix
,
d_many_out
.
Input
(
"z"
+
f
::
kGradVarSuffix
));
ASSERT_EQ
(
"Y"
+
f
::
kGradVarSuffix
,
d_many_out
.
Input
(
"y"
+
f
::
kGradVarSuffix
));
ASSERT_EQ
(
"X"
+
f
::
kGradVarSuffix
,
d_many_out
.
Output
(
"x"
+
f
::
kGradVarSuffix
));
}
TEST
(
Backward
,
op_part_of_input_are_not_need
)
{
...
...
@@ -331,12 +325,10 @@ TEST(Backward, op_part_of_input_are_not_need) {
ASSERT_EQ
(
grad_mul
.
type_
,
"mul_grad"
);
ASSERT_EQ
(
grad_mul
.
inputs_
.
size
(),
2UL
+
1UL
+
1UL
);
ASSERT_EQ
(
grad_mul
.
outputs_
.
size
(),
2UL
);
ASSERT_EQ
(
grad_mul
.
Output
(
"A"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
f
::
OperatorBase
::
EMPTY_VAR_NAME
());
ASSERT_EQ
(
grad_mul
.
Output
(
"B"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"b"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
ASSERT_EQ
(
grad_mul
.
Input
(
"Out"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"out"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
ASSERT_EQ
(
grad_mul
.
Output
(
"A"
+
f
::
kGradVarSuffix
),
f
::
kEmptyVarName
);
ASSERT_EQ
(
grad_mul
.
Output
(
"B"
+
f
::
kGradVarSuffix
),
"b"
+
f
::
kGradVarSuffix
);
ASSERT_EQ
(
grad_mul
.
Input
(
"Out"
+
f
::
kGradVarSuffix
),
"out"
+
f
::
kGradVarSuffix
);
ASSERT_EQ
(
grad_mul
.
Input
(
"A"
),
"a"
);
ASSERT_EQ
(
grad_mul
.
Input
(
"B"
),
"b"
);
ASSERT_EQ
(
grad_mul
.
Input
(
"Out"
),
"out"
);
...
...
@@ -368,23 +360,4 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
EXPECT_EQ
(
bwd_net
->
ops_
[
1
]
->
outputs_
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
inputs_
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
outputs_
.
size
(),
0UL
);
/*
EXPECT_EQ(grad_fc.Output("X" + f::OperatorBase::GRAD_VAR_SUFFIX()),
f::OperatorBase::EMPTY_VAR_NAME());
EXPECT_EQ(grad_fc.Output("W" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"w3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Output("b" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"b3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Output("mul_result" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"mul_out3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Input("Out" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Input("X"), "out2");
EXPECT_EQ(grad_fc.Input("W"), "w3");
EXPECT_EQ(grad_fc.Input("mul_result"), "mul_out3");
EXPECT_EQ(grad_fc.Input("add_result"), "tmp_out3");
EXPECT_EQ(grad_fc.Input("Out"), "out3");
*/
}
paddle/framework/grad_op_builder.cc
浏览文件 @
a7d5b1ab
...
...
@@ -56,8 +56,7 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
for
(
const
auto
&
arg
:
src_arg_list
)
{
std
::
string
src_name
=
arg
.
name
();
std
::
string
dst_name
=
is_grad
?
src_name
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
:
src_name
;
std
::
string
dst_name
=
is_grad
?
src_name
+
kGradVarSuffix
:
src_name
;
(
*
dst_op
->
in_out_idxs_
)[
dst_name
]
=
idx
++
;
int
src_arg_idx
=
src_op
->
in_out_idxs_
->
at
(
src_name
);
int
src_begin
=
...
...
@@ -65,10 +64,9 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
int
src_end
=
src_format
==
nullptr
?
src_arg_idx
+
1
:
src_format
->
at
(
src_arg_idx
+
1
);
for
(
int
i
=
src_begin
;
i
<
src_end
;
++
i
)
{
std
::
string
s
=
is_grad
?
src_inout
[
i
]
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
:
arg
.
ignore_gradient
()
?
OperatorBase
::
EMPTY_VAR_NAME
()
:
src_inout
[
i
];
std
::
string
s
=
is_grad
?
src_inout
[
i
]
+
kGradVarSuffix
:
(
arg
.
ignore_gradient
()
?
kEmptyVarName
:
src_inout
[
i
]);
dst_inout
.
emplace_back
(
s
);
}
if
(
dst_format
!=
nullptr
)
{
...
...
paddle/framework/grad_op_builder_test.cc
浏览文件 @
a7d5b1ab
...
...
@@ -83,24 +83,21 @@ TEST(GradOpBuilder, MutiInOut) {
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out1"
),
"out1"
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out2_mult"
),
std
::
vector
<
std
::
string
>
({
"out2_1"
,
"out2_2"
}));
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"out1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out2_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
(
{
"out2_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"out2_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out1"
+
f
::
kGradVarSuffix
),
"out1"
+
f
::
kGradVarSuffix
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out2_mult"
+
f
::
kGradVarSuffix
),
std
::
vector
<
std
::
string
>
(
{
"out2_1"
+
f
::
kGradVarSuffix
,
"out2_2"
+
f
::
kGradVarSuffix
}));
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
5UL
);
EXPECT_EQ
(
grad_test_op
->
Output
(
"In1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"in1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
EXPECT_EQ
(
grad_test_op
->
Outputs
(
"In2_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
({
"in2_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"in2_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"in2_3"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
EXPECT_EQ
(
grad_test_op
->
Output
(
"In3"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"in3"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
EXPECT_EQ
(
grad_test_op
->
Output
(
"In1"
+
f
::
kGradVarSuffix
),
"in1"
+
f
::
kGradVarSuffix
);
EXPECT_EQ
(
grad_test_op
->
Outputs
(
"In2_mult"
+
f
::
kGradVarSuffix
),
std
::
vector
<
std
::
string
>
({
"in2_1"
+
f
::
kGradVarSuffix
,
"in2_2"
+
f
::
kGradVarSuffix
,
"in2_3"
+
f
::
kGradVarSuffix
}));
EXPECT_EQ
(
grad_test_op
->
Output
(
"In3"
+
f
::
kGradVarSuffix
),
"in3"
+
f
::
kGradVarSuffix
);
}
TEST
(
GradOpBuilder
,
IOIgnoredInGradient
)
{
...
...
@@ -116,30 +113,25 @@ TEST(GradOpBuilder, IOIgnoredInGradient) {
ASSERT_EQ
(
grad_test_op
->
inputs_
.
size
(),
5UL
+
3UL
+
3UL
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"In1"
),
"in1"
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In2_mult"
),
std
::
vector
<
std
::
string
>
({
f
::
OperatorBase
::
EMPTY_VAR_NAME
(),
f
::
OperatorBase
::
EMPTY_VAR_NAME
()}));
std
::
vector
<
std
::
string
>
({
f
::
kEmptyVarName
,
f
::
kEmptyVarName
}));
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In3_mult"
),
std
::
vector
<
std
::
string
>
({
"in3_1"
,
"in3_2"
}));
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out1_mult"
),
std
::
vector
<
std
::
string
>
({
"out1_1"
,
"out1_2"
}));
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out2"
),
f
::
OperatorBase
::
EMPTY_VAR_NAME
());
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out1_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
(
{
"out1_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"out1_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"out2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out2"
),
f
::
kEmptyVarName
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"Out1_mult"
+
f
::
kGradVarSuffix
),
std
::
vector
<
std
::
string
>
(
{
"out1_1"
+
f
::
kGradVarSuffix
,
"out1_2"
+
f
::
kGradVarSuffix
}));
EXPECT_EQ
(
grad_test_op
->
Input
(
"Out2"
+
f
::
kGradVarSuffix
),
"out2"
+
f
::
kGradVarSuffix
);
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
5UL
);
EXPECT_EQ
(
grad_test_op
->
Output
(
"In1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
"in1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
());
EXPECT_EQ
(
grad_test_op
->
Outputs
(
"In2_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
({
"in2_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"in2_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
EXPECT_EQ
(
grad_test_op
->
Outputs
(
"In3_mult"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
std
::
vector
<
std
::
string
>
({
"in3_1"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
(),
"in3_2"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()}));
EXPECT_EQ
(
grad_test_op
->
Output
(
"In1"
+
f
::
kGradVarSuffix
),
"in1"
+
f
::
kGradVarSuffix
);
EXPECT_EQ
(
grad_test_op
->
Outputs
(
"In2_mult"
+
f
::
kGradVarSuffix
),
std
::
vector
<
std
::
string
>
(
{
"in2_1"
+
f
::
kGradVarSuffix
,
"in2_2"
+
f
::
kGradVarSuffix
}));
EXPECT_EQ
(
grad_test_op
->
Outputs
(
"In3_mult"
+
f
::
kGradVarSuffix
),
std
::
vector
<
std
::
string
>
(
{
"in3_1"
+
f
::
kGradVarSuffix
,
"in3_2"
+
f
::
kGradVarSuffix
}));
}
paddle/framework/op_registry.h
浏览文件 @
a7d5b1ab
...
...
@@ -341,7 +341,7 @@ class OpRegistry {
static
void
GenerateTempVariableName
(
OperatorBase
*
op
)
{
static
std
::
atomic
<
size_t
>
gUniqId
(
0UL
);
for
(
auto
&
outname
:
op
->
outputs_
)
{
if
(
outname
==
OperatorBase
::
TMP_VAR_NAME
()
)
{
if
(
outname
==
kTempVarName
)
{
outname
+=
op
->
type_
;
outname
+=
"@"
;
outname
+=
std
::
to_string
(
gUniqId
.
fetch_add
(
1
));
...
...
paddle/framework/operator.h
浏览文件 @
a7d5b1ab
...
...
@@ -32,9 +32,29 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
/// If a variable is a empty variable, that name will be used.
const
std
::
string
kEmptyVarName
=
"@EMPTY@"
;
/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
const
std
::
string
kTempVarName
=
"@TEMP@"
;
/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
const
std
::
string
kGradVarSuffix
=
"@GRAD"
;
/// Variables with this suffix are supposed to be filled up with zeros.
const
std
::
string
kZeroVarSuffix
=
"@ZERO"
;
inline
std
::
string
GradVarName
(
const
std
::
string
&
var_name
)
{
return
var_name
+
kGradVarSuffix
;
}
class
OperatorBase
;
class
InferShapeContext
;
class
ExecutionContext
;
/**
* OperatorBase has the basic element that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
...
...
@@ -43,25 +63,6 @@ class ExecutionContext;
*/
class
OperatorBase
{
public:
/// If a variable is a empty variable, that name will be used.
static
std
::
string
EMPTY_VAR_NAME
()
{
return
"@EMPTY@"
;
}
/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
static
std
::
string
TMP_VAR_NAME
()
{
return
"@TEMP@"
;
}
/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
static
std
::
string
GRAD_VAR_SUFFIX
()
{
return
"@GRAD"
;
}
static
std
::
string
GRAD_VAR_NAME
(
const
std
::
string
&
name
)
{
return
name
+
GRAD_VAR_SUFFIX
();
}
/// Variables with this suffix are supposed to be filled up with zeros.
static
std
::
string
ZERO_VAR_SUFFIX
()
{
return
"@ZERO"
;
}
virtual
~
OperatorBase
()
{}
template
<
typename
T
>
...
...
paddle/framework/pybind.cc
浏览文件 @
a7d5b1ab
...
...
@@ -163,8 +163,8 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def_submodule
(
"var_names"
,
"The module will return special predefined variable name in Paddle"
)
.
def
(
"empty"
,
OperatorBase
::
EMPTY_VAR_NAME
)
.
def
(
"temp"
,
OperatorBase
::
TMP_VAR_NAME
);
.
def
(
"empty"
,
[]()
{
return
kEmptyVarName
;
}
)
.
def
(
"temp"
,
[]()
{
return
kTempVarName
;
}
);
// clang-format off
py
::
class_
<
paddle
::
platform
::
DeviceContext
>
(
m
,
"DeviceContext"
)
.
def_static
(
"create"
,
...
...
paddle/operators/fc_op.cc
浏览文件 @
a7d5b1ab
...
...
@@ -27,7 +27,7 @@ public:
{
Output
(
"before_act"
)},
{}));
auto
b
=
Input
(
"b"
);
if
(
b
!=
EMPTY_VAR_NAME
()
)
{
if
(
b
!=
framework
::
kEmptyVarName
)
{
AddOp
(
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{
Output
(
"before_act"
),
Input
(
"b"
)},
{
Output
(
"before_act"
)},
...
...
paddle/operators/mean_op.cc
浏览文件 @
a7d5b1ab
...
...
@@ -41,7 +41,7 @@ public:
class
MeanGradOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
"X"
+
GRAD_VAR_SUFFIX
()
)
ctx
.
Output
<
Tensor
>
(
"X"
+
framework
::
kGradVarSuffix
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
paddle/operators/mean_op.h
浏览文件 @
a7d5b1ab
...
...
@@ -39,10 +39,10 @@ template <typename Place, typename T>
class
MeanGradKernel
:
public
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
auto
OG
=
context
.
Input
<
Tensor
>
(
"Out"
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
auto
OG
=
context
.
Input
<
Tensor
>
(
"Out"
+
framework
::
kGradVarSuffix
);
PADDLE_ENFORCE
(
framework
::
product
(
OG
->
dims
())
==
1
,
"Mean Gradient should be scalar"
);
auto
IG
=
context
.
Output
<
Tensor
>
(
"X"
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
auto
IG
=
context
.
Output
<
Tensor
>
(
"X"
+
framework
::
kGradVarSuffix
);
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
ig_size
=
(
T
)
framework
::
product
(
IG
->
dims
());
...
...
paddle/operators/softmax_op.cc
浏览文件 @
a7d5b1ab
...
...
@@ -48,12 +48,12 @@ protected:
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1UL
,
"Output of SoftmaxOpGrad should be 1"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
"Y"
)
!=
nullptr
,
"Input(Y) should not be null"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
GRAD_VAR_NAME
(
"Y"
))
!=
nullptr
,
PADDLE_ENFORCE
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
))
!=
nullptr
,
"Input(Y@GRAD) should not be null"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
()
==
ctx
.
Input
<
Tensor
>
(
GRAD_VAR_NAME
(
"Y"
))
->
dims
(),
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
))
->
dims
(),
"the shape of Input(0) and Input(1) should be the same"
);
ctx
.
Output
<
Tensor
>
(
GRAD_VAR_NAME
(
"X"
))
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
}
};
...
...
paddle/operators/softmax_op.h
浏览文件 @
a7d5b1ab
...
...
@@ -68,8 +68,8 @@ public:
std
::
shared_ptr
<
Tensor
>
scale_
=
std
::
make_shared
<
Tensor
>
();
auto
Y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
dY
=
context
.
Input
<
Tensor
>
(
OperatorBase
::
GRAD_VAR_NAME
(
"Y"
));
auto
dX
=
context
.
Output
<
Tensor
>
(
OperatorBase
::
GRAD_VAR_NAME
(
"X"
));
auto
dY
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
batch_size
=
Y
->
dims
()[
0
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录