Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a6ac4266
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a6ac4266
编写于
12月 03, 2018
作者:
T
Tao Luo
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into update_pass
上级
c856ac87
4f71a6ee
变更
55
隐藏空白更改
内联
并排
Showing
55 changed file
with
3847 addition
and
161 deletion
+3847
-161
paddle/fluid/API.spec
paddle/fluid/API.spec
+8
-0
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+11
-6
paddle/fluid/framework/async_executor.cc
paddle/fluid/framework/async_executor.cc
+138
-0
paddle/fluid/framework/async_executor.h
paddle/fluid/framework/async_executor.h
+58
-0
paddle/fluid/framework/data_feed.cc
paddle/fluid/framework/data_feed.cc
+386
-0
paddle/fluid/framework/data_feed.h
paddle/fluid/framework/data_feed.h
+269
-0
paddle/fluid/framework/data_feed.proto
paddle/fluid/framework/data_feed.proto
+30
-0
paddle/fluid/framework/data_feed_factory.cc
paddle/fluid/framework/data_feed_factory.cc
+64
-0
paddle/fluid/framework/data_feed_factory.h
paddle/fluid/framework/data_feed_factory.h
+29
-0
paddle/fluid/framework/data_feed_test.cc
paddle/fluid/framework/data_feed_test.cc
+337
-0
paddle/fluid/framework/details/op_registry.h
paddle/fluid/framework/details/op_registry.h
+17
-3
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
...id/framework/details/scope_buffered_ssa_graph_executor.cc
+1
-1
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+1
-30
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+0
-1
paddle/fluid/framework/executor_thread_worker.cc
paddle/fluid/framework/executor_thread_worker.cc
+223
-0
paddle/fluid/framework/executor_thread_worker.h
paddle/fluid/framework/executor_thread_worker.h
+88
-0
paddle/fluid/framework/naive_executor.cc
paddle/fluid/framework/naive_executor.cc
+1
-32
paddle/fluid/framework/op_info.h
paddle/fluid/framework/op_info.h
+7
-0
paddle/fluid/framework/type_defs.h
paddle/fluid/framework/type_defs.h
+2
-0
paddle/fluid/framework/variable_helper.cc
paddle/fluid/framework/variable_helper.cc
+60
-0
paddle/fluid/framework/variable_helper.h
paddle/fluid/framework/variable_helper.h
+22
-0
paddle/fluid/inference/analysis/analysis_pass.h
paddle/fluid/inference/analysis/analysis_pass.h
+0
-2
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+8
-4
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+3
-3
paddle/fluid/inference/api/details/reset_tensor_array.cc
paddle/fluid/inference/api/details/reset_tensor_array.cc
+23
-0
paddle/fluid/inference/api/details/reset_tensor_array.h
paddle/fluid/inference/api/details/reset_tensor_array.h
+17
-0
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+8
-1
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
+44
-29
paddle/fluid/operators/cudnn_lstm_op.cc
paddle/fluid/operators/cudnn_lstm_op.cc
+218
-0
paddle/fluid/operators/cudnn_lstm_op.cu.cc
paddle/fluid/operators/cudnn_lstm_op.cu.cc
+485
-0
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+6
-0
paddle/fluid/operators/distributed/request_handler_impl.cc
paddle/fluid/operators/distributed/request_handler_impl.cc
+2
-1
paddle/fluid/operators/lookup_table_op.cu
paddle/fluid/operators/lookup_table_op.cu
+5
-5
paddle/fluid/operators/metrics/auc_op.h
paddle/fluid/operators/metrics/auc_op.h
+7
-2
paddle/fluid/operators/pad2d_op.cc
paddle/fluid/operators/pad2d_op.cc
+75
-13
paddle/fluid/operators/pad2d_op.cu
paddle/fluid/operators/pad2d_op.cu
+36
-5
paddle/fluid/platform/assert.h
paddle/fluid/platform/assert.h
+10
-0
paddle/fluid/platform/dynload/cudnn.h
paddle/fluid/platform/dynload/cudnn.h
+17
-1
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+2
-2
paddle/fluid/pybind/async_executor_py.cc
paddle/fluid/pybind/async_executor_py.cc
+53
-0
paddle/fluid/pybind/async_executor_py.h
paddle/fluid/pybind/async_executor_py.h
+28
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+2
-0
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+9
-1
python/paddle/fluid/async_executor.py
python/paddle/fluid/async_executor.py
+151
-0
python/paddle/fluid/data_feed_desc.py
python/paddle/fluid/data_feed_desc.py
+152
-0
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+1
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+237
-13
python/paddle/fluid/tests/demo/async_executor.py
python/paddle/fluid/tests/demo/async_executor.py
+100
-0
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+20
-2
python/paddle/fluid/tests/unittests/test_async_executor.py
python/paddle/fluid/tests/unittests/test_async_executor.py
+142
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+8
-0
python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py
python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py
+192
-0
python/paddle/fluid/tests/unittests/test_pad2d_op.py
python/paddle/fluid/tests/unittests/test_pad2d_op.py
+26
-1
python/paddle/fluid/tests/unittests/testsuite.py
python/paddle/fluid/tests/unittests/testsuite.py
+6
-1
python/paddle/reader/tests/decorator_test.py
python/paddle/reader/tests/decorator_test.py
+2
-2
未找到文件。
paddle/fluid/API.spec
浏览文件 @
a6ac4266
...
...
@@ -32,6 +32,13 @@ paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.c
paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.BuildStrategy) -> None
paddle.fluid.create_lod_tensor ArgSpec(args=['data', 'recursive_seq_lens', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.create_random_int_lodtensor ArgSpec(args=['recursive_seq_lens', 'base_shape', 'place', 'low', 'high'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.__init__ ArgSpec(args=['self', 'proto_file'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.desc ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.set_batch_size ArgSpec(args=['self', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.set_dense_slots ArgSpec(args=['self', 'dense_slots_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.set_use_slots ArgSpec(args=['self', 'use_slots_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.AsyncExecutor.run ArgSpec(args=['self', 'program', 'data_feed', 'filelist', 'thread_num', 'fetch', 'debug'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.io.save_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.io.save_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
...
...
@@ -187,6 +194,7 @@ paddle.fluid.layers.grid_sampler ArgSpec(args=['x', 'grid', 'name'], varargs=Non
paddle.fluid.layers.log_loss ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None))
paddle.fluid.layers.add_position_encoding ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
a6ac4266
...
...
@@ -34,6 +34,7 @@ add_subdirectory(ir)
add_subdirectory
(
details
)
# ddim lib
proto_library
(
framework_proto SRCS framework.proto
)
proto_library
(
async_executor_proto SRCS data_feed.proto
)
cc_library
(
ddim SRCS ddim.cc DEPS eigen3 boost
)
cc_test
(
ddim_test SRCS ddim_test.cc DEPS ddim
)
...
...
@@ -135,7 +136,7 @@ endif(NOT WIN32)
cc_library
(
op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc
)
nv_test
(
op_registry_test SRCS op_registry_test.cc DEPS op_registry
)
py_proto_compile
(
framework_py_proto SRCS framework.proto
)
py_proto_compile
(
framework_py_proto SRCS framework.proto
data_feed.proto
)
# Generate an empty __init__.py to make framework_py_proto as a valid python module.
add_custom_target
(
framework_py_proto_init ALL COMMAND
${
CMAKE_COMMAND
}
-E touch __init__.py
)
add_dependencies
(
framework_py_proto framework_py_proto_init
)
...
...
@@ -157,18 +158,19 @@ endif(NOT WIN32)
cc_library
(
lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor
)
cc_library
(
feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glog
)
cc_library
(
variable_helper SRCS variable_helper.cc DEPS lod_tensor
)
cc_library
(
naive_executor SRCS naive_executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass
)
cc_library
(
naive_executor SRCS naive_executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass
variable_helper
)
if
(
WITH_DISTRIBUTE
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method sendrecvop_grpc cares grpc++_unsecure grpc_unsecure gpr graph_to_program_pass
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method sendrecvop_grpc cares grpc++_unsecure grpc_unsecure gpr graph_to_program_pass
variable_helper
)
set
(
DISTRIBUTE_COMPILE_FLAGS
"-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor"
)
set_source_files_properties
(
executor.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
else
()
if
(
NOT WIN32
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass ngraph_operator
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass ngraph_operator
variable_helper
)
else
(
NOT WIN32
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass
variable_helper
)
endif
(
NOT WIN32
)
cc_test
(
test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op
)
endif
()
...
...
@@ -176,8 +178,11 @@ endif()
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph build_strategy
fast_threaded_ssa_graph_executor
)
fast_threaded_ssa_graph_executor
variable_helper
)
cc_library
(
async_executor SRCS async_executor.cc data_feed.cc data_feed_factory.cc executor_thread_worker.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass async_executor_proto variable_helper
)
cc_test
(
data_feed_test SRCS data_feed_test.cc DEPS async_executor
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
cc_test
(
var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry
...
...
paddle/fluid/framework/async_executor.cc
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/async_executor.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
namespace
paddle
{
namespace
framework
{
AsyncExecutor
::
AsyncExecutor
(
Scope
*
scope
,
const
platform
::
Place
&
place
)
:
root_scope_
(
scope
),
place_
(
place
)
{}
void
AsyncExecutor
::
CreateThreads
(
ExecutorThreadWorker
*
worker
,
const
ProgramDesc
&
main_program
,
const
std
::
shared_ptr
<
DataFeed
>&
reader
,
const
std
::
vector
<
std
::
string
>&
fetch_var_names
,
Scope
*
root_scope
,
const
int
thread_index
,
const
bool
debug
)
{
worker
->
SetThreadId
(
thread_index
);
worker
->
SetDebug
(
debug
);
worker
->
SetRootScope
(
root_scope
);
worker
->
CreateThreadResource
(
main_program
,
place_
);
worker
->
SetDataFeed
(
reader
);
worker
->
SetFetchVarNames
(
fetch_var_names
);
worker
->
BindingDataFeedMemory
();
}
void
PrepareReaders
(
std
::
vector
<
std
::
shared_ptr
<
DataFeed
>>&
readers
,
// NOLINT
const
int
thread_num
,
const
DataFeedDesc
&
data_feed_desc
,
const
std
::
vector
<
std
::
string
>&
filelist
)
{
readers
.
resize
(
thread_num
);
for
(
size_t
i
=
0
;
i
<
readers
.
size
();
++
i
)
{
readers
[
i
]
=
DataFeedFactory
::
CreateDataFeed
(
data_feed_desc
.
name
());
readers
[
i
]
->
Init
(
data_feed_desc
);
// set batch_size and queue_size here
}
readers
[
0
]
->
SetFileList
(
filelist
);
}
void
AsyncExecutor
::
RunFromFile
(
const
ProgramDesc
&
main_program
,
const
std
::
string
&
data_feed_desc_str
,
const
std
::
vector
<
std
::
string
>&
filelist
,
const
int
thread_num
,
const
std
::
vector
<
std
::
string
>&
fetch_var_names
,
const
bool
debug
)
{
std
::
vector
<
std
::
thread
>
threads
;
auto
&
block
=
main_program
.
Block
(
0
);
for
(
auto
var_name
:
fetch_var_names
)
{
auto
var_desc
=
block
.
FindVar
(
var_name
);
auto
shapes
=
var_desc
->
GetShape
();
PADDLE_ENFORCE
(
shapes
[
shapes
.
size
()
-
1
]
==
1
,
"var %s: Fetched var has wrong shape, "
"only variables with the last dimension size 1 supported"
,
var_name
);
}
DataFeedDesc
data_feed_desc
;
google
::
protobuf
::
TextFormat
::
ParseFromString
(
data_feed_desc_str
,
&
data_feed_desc
);
int
actual_thread_num
=
thread_num
;
int
file_cnt
=
filelist
.
size
();
PADDLE_ENFORCE
(
file_cnt
>
0
,
"File list cannot be empty"
);
if
(
actual_thread_num
>
file_cnt
)
{
VLOG
(
1
)
<<
"Thread num = "
<<
thread_num
<<
", file num = "
<<
file_cnt
<<
". Changing thread_num = "
<<
file_cnt
;
actual_thread_num
=
file_cnt
;
}
/*
readerDesc: protobuf description for reader initlization
argument: class_name, batch_size, use_slot, queue_size, buffer_size,
padding_index
reader:
1) each thread has a reader, reader will read input data and
put it into input queue
2) each reader has a Next() iterface, that can fetch an instance
from the input queue
*/
// todo: should be factory method for creating datafeed
std
::
vector
<
std
::
shared_ptr
<
DataFeed
>>
readers
;
PrepareReaders
(
readers
,
actual_thread_num
,
data_feed_desc
,
filelist
);
std
::
vector
<
std
::
shared_ptr
<
ExecutorThreadWorker
>>
workers
;
workers
.
resize
(
actual_thread_num
);
for
(
auto
&
worker
:
workers
)
{
worker
.
reset
(
new
ExecutorThreadWorker
);
}
// prepare thread resource here
for
(
int
thidx
=
0
;
thidx
<
actual_thread_num
;
++
thidx
)
{
CreateThreads
(
workers
[
thidx
].
get
(),
main_program
,
readers
[
thidx
],
fetch_var_names
,
root_scope_
,
thidx
,
debug
);
}
// start executing ops in multiple threads
for
(
int
thidx
=
0
;
thidx
<
actual_thread_num
;
++
thidx
)
{
threads
.
push_back
(
std
::
thread
(
&
ExecutorThreadWorker
::
TrainFiles
,
workers
[
thidx
].
get
()));
}
for
(
auto
&
th
:
threads
)
{
th
.
join
();
}
root_scope_
->
DropKids
();
return
;
}
}
// einit_modelnd namespace framework
}
// end namespace paddle
paddle/fluid/framework/async_executor.h
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <mutex> // NOLINT
#include <set>
#include <string>
#include <thread> // NOLINT
#include <typeinfo>
#include <vector>
#include "paddle/fluid/framework/data_feed.pb.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
namespace
paddle
{
namespace
framework
{
class
AsyncExecutor
{
public:
AsyncExecutor
(
Scope
*
scope
,
const
platform
::
Place
&
place
);
virtual
~
AsyncExecutor
()
{}
void
RunFromFile
(
const
ProgramDesc
&
main_program
,
const
std
::
string
&
data_feed_desc_str
,
const
std
::
vector
<
std
::
string
>&
filelist
,
const
int
thread_num
,
const
std
::
vector
<
std
::
string
>&
fetch_names
,
const
bool
debug
=
false
);
private:
void
CreateThreads
(
ExecutorThreadWorker
*
worker
,
const
ProgramDesc
&
main_program
,
const
std
::
shared_ptr
<
DataFeed
>&
reader
,
const
std
::
vector
<
std
::
string
>&
fetch_var_names
,
Scope
*
root_scope
,
const
int
thread_index
,
const
bool
debug
);
public:
Scope
*
root_scope_
;
platform
::
Place
place_
;
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/data_feed.cc
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
namespace
paddle
{
namespace
framework
{
std
::
vector
<
std
::
string
>
DataFeed
::
filelist_
;
size_t
DataFeed
::
file_idx_
;
std
::
mutex
DataFeed
::
mutex_for_pick_file_
;
bool
DataFeed
::
finish_set_filelist_
;
void
DataFeed
::
AddFeedVar
(
Variable
*
var
,
const
std
::
string
&
name
)
{
CheckInit
();
for
(
size_t
i
=
0
;
i
<
use_slots_
.
size
();
++
i
)
{
if
(
name
==
use_slots_
[
i
])
{
if
(
use_slots_is_dense_
[
i
])
{
feed_vec_
[
i
]
=
MixTensor
(
var
->
GetMutable
<
Tensor
>
());
}
else
{
feed_vec_
[
i
]
=
MixTensor
(
var
->
GetMutable
<
LoDTensor
>
());
}
}
}
}
bool
DataFeed
::
SetFileList
(
const
std
::
vector
<
std
::
string
>&
files
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_for_pick_file_
);
CheckInit
();
if
(
finish_set_filelist_
)
{
VLOG
(
3
)
<<
"info: you have set the filelist."
;
return
false
;
}
PADDLE_ENFORCE
(
files
.
size
(),
"You have set an empty filelist."
);
filelist_
.
assign
(
files
.
begin
(),
files
.
end
());
file_idx_
=
0
;
finish_set_filelist_
=
true
;
return
true
;
}
void
DataFeed
::
SetBatchSize
(
int
batch_size
)
{
PADDLE_ENFORCE
(
batch_size
>
0
,
"Illegal batch size: %d."
,
batch_size
);
default_batch_size_
=
batch_size
;
}
bool
DataFeed
::
PickOneFile
(
std
::
string
*
filename
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_for_pick_file_
);
if
(
file_idx_
==
filelist_
.
size
())
{
return
false
;
}
*
filename
=
filelist_
[
file_idx_
++
];
return
true
;
}
void
DataFeed
::
CheckInit
()
{
PADDLE_ENFORCE
(
finish_init_
,
"Initialization did not succeed."
);
}
void
DataFeed
::
CheckSetFileList
()
{
PADDLE_ENFORCE
(
finish_set_filelist_
,
"Set filelist did not succeed."
);
}
void
DataFeed
::
CheckStart
()
{
PADDLE_ENFORCE
(
finish_start_
,
"Datafeed has not started running yet."
);
}
template
<
typename
T
>
void
PrivateQueueDataFeed
<
T
>::
SetQueueSize
(
int
queue_size
)
{
PADDLE_ENFORCE
(
queue_size
>
0
,
"Illegal queue size: %d."
,
queue_size
);
queue_size_
=
queue_size
;
queue_
=
std
::
unique_ptr
<
paddle
::
operators
::
reader
::
BlockingQueue
<
T
>>
(
new
paddle
::
operators
::
reader
::
BlockingQueue
<
T
>
(
queue_size_
));
}
template
<
typename
T
>
bool
PrivateQueueDataFeed
<
T
>::
Start
()
{
CheckSetFileList
();
read_thread_
=
std
::
thread
(
&
PrivateQueueDataFeed
::
ReadThread
,
this
);
read_thread_
.
detach
();
finish_start_
=
true
;
return
true
;
}
template
<
typename
T
>
void
PrivateQueueDataFeed
<
T
>::
ReadThread
()
{
std
::
string
filename
;
while
(
PickOneFile
(
&
filename
))
{
file_
.
open
(
filename
.
c_str
());
// is_text_feed
PADDLE_ENFORCE
(
file_
.
good
(),
"Open file<%s> fail."
,
filename
.
c_str
());
T
instance
;
while
(
ParseOneInstance
(
&
instance
))
{
queue_
->
Send
(
instance
);
}
file_
.
close
();
}
queue_
->
Close
();
}
template
<
typename
T
>
int
PrivateQueueDataFeed
<
T
>::
Next
()
{
CheckStart
();
int
index
=
0
;
T
instance
;
T
ins_vec
;
while
(
index
<
default_batch_size_
)
{
if
(
!
queue_
->
Receive
(
&
instance
))
{
break
;
}
AddInstanceToInsVec
(
&
ins_vec
,
instance
,
index
++
);
}
batch_size_
=
index
;
if
(
batch_size_
!=
0
)
{
PutToFeedVec
(
ins_vec
);
}
return
batch_size_
;
}
#ifdef _WIN32
template
class
PrivateQueueDataFeed
<
std
::
vector
<
MultiSlotType
>
>
;
#endif
void
MultiSlotDataFeed
::
Init
(
const
paddle
::
framework
::
DataFeedDesc
&
data_feed_desc
)
{
finish_init_
=
false
;
finish_set_filelist_
=
false
;
finish_start_
=
false
;
PADDLE_ENFORCE
(
data_feed_desc
.
has_multi_slot_desc
(),
"Multi_slot_desc has not been set."
);
paddle
::
framework
::
MultiSlotDesc
multi_slot_desc
=
data_feed_desc
.
multi_slot_desc
();
SetBatchSize
(
data_feed_desc
.
batch_size
());
SetQueueSize
(
data_feed_desc
.
batch_size
());
size_t
all_slot_num
=
multi_slot_desc
.
slots_size
();
all_slots_
.
resize
(
all_slot_num
);
all_slots_type_
.
resize
(
all_slot_num
);
use_slots_index_
.
resize
(
all_slot_num
);
use_slots_
.
clear
();
use_slots_is_dense_
.
clear
();
for
(
size_t
i
=
0
;
i
<
all_slot_num
;
++
i
)
{
const
auto
&
slot
=
multi_slot_desc
.
slots
(
i
);
all_slots_
[
i
]
=
slot
.
name
();
all_slots_type_
[
i
]
=
slot
.
type
();
use_slots_index_
[
i
]
=
slot
.
is_used
()
?
use_slots_
.
size
()
:
-
1
;
if
(
slot
.
is_used
())
{
use_slots_
.
push_back
(
all_slots_
[
i
]);
use_slots_is_dense_
.
push_back
(
slot
.
is_dense
());
}
}
feed_vec_
.
resize
(
use_slots_
.
size
());
finish_init_
=
true
;
}
bool
MultiSlotDataFeed
::
CheckFile
(
const
char
*
filename
)
{
CheckInit
();
// get info of slots
std
::
ifstream
fin
(
filename
);
if
(
!
fin
.
good
())
{
VLOG
(
1
)
<<
"error: open file<"
<<
filename
<<
"> fail"
;
return
false
;
}
std
::
string
line
;
int
instance_cout
=
0
;
std
::
string
all_slots_alias
=
""
;
for
(
const
auto
&
alias
:
all_slots_
)
{
all_slots_alias
+=
alias
+
" "
;
}
std
::
string
use_slots_alias
=
""
;
for
(
const
auto
&
alias
:
use_slots_
)
{
use_slots_alias
+=
alias
+
" "
;
}
VLOG
(
3
)
<<
"total slots num: "
<<
all_slots_
.
size
();
VLOG
(
3
)
<<
"total slots alias: "
<<
all_slots_alias
;
VLOG
(
3
)
<<
"used slots num: "
<<
use_slots_
.
size
();
VLOG
(
3
)
<<
"used slots alias: "
<<
use_slots_alias
;
while
(
getline
(
fin
,
line
))
{
++
instance_cout
;
const
char
*
str
=
line
.
c_str
();
char
*
endptr
=
const_cast
<
char
*>
(
str
);
int
len
=
line
.
length
();
for
(
size_t
i
=
0
;
i
<
all_slots_
.
size
();
++
i
)
{
int
num
=
strtol
(
endptr
,
&
endptr
,
10
);
if
(
num
<
0
)
{
VLOG
(
0
)
<<
"error: the number of ids is a negative number: "
<<
num
;
VLOG
(
0
)
<<
"please check line<"
<<
instance_cout
<<
"> in file<"
<<
filename
<<
">"
;
return
false
;
}
else
if
(
num
==
0
)
{
VLOG
(
0
)
<<
"error: the number of ids can not be zero, you need "
"padding it in data generator; or if there is something wrong"
" with the data, please check if the data contains unresolvable "
"characters."
;
VLOG
(
0
)
<<
"please check line<"
<<
instance_cout
<<
"> in file<"
<<
filename
<<
">"
;
return
false
;
}
else
if
(
errno
==
ERANGE
||
num
>
INT_MAX
)
{
VLOG
(
0
)
<<
"error: the number of ids greater than INT_MAX"
;
VLOG
(
0
)
<<
"please check line<"
<<
instance_cout
<<
"> in file<"
<<
filename
<<
">"
;
return
false
;
}
if
(
all_slots_type_
[
i
]
==
"float"
)
{
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
strtof
(
endptr
,
&
endptr
);
if
(
errno
==
ERANGE
)
{
VLOG
(
0
)
<<
"error: the value is out of the range of "
"representable values for float"
;
VLOG
(
0
)
<<
"please check line<"
<<
instance_cout
<<
"> in file<"
<<
filename
<<
">"
;
return
false
;
}
if
(
i
+
1
!=
num
&&
endptr
-
str
==
len
)
{
VLOG
(
0
)
<<
"error: there is a wrong with the number of ids."
;
VLOG
(
0
)
<<
"please check line<"
<<
instance_cout
<<
"> in file<"
<<
filename
<<
">"
;
return
false
;
}
}
}
else
if
(
all_slots_type_
[
i
]
==
"uint64"
)
{
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
strtoull
(
endptr
,
&
endptr
,
10
);
if
(
errno
==
ERANGE
)
{
VLOG
(
0
)
<<
"error: the value is out of the range of "
"representable values for uint64_t"
;
VLOG
(
0
)
<<
"please check line<"
<<
instance_cout
<<
"> in file<"
<<
filename
<<
">"
;
return
false
;
}
if
(
i
+
1
!=
num
&&
endptr
-
str
==
len
)
{
VLOG
(
0
)
<<
"error: there is a wrong with the number of ids."
;
VLOG
(
0
)
<<
"please check line<"
<<
instance_cout
<<
"> in file<"
<<
filename
<<
">"
;
return
false
;
}
}
}
else
{
VLOG
(
0
)
<<
"error: this type<"
<<
all_slots_type_
[
i
]
<<
"> is not supported"
;
return
false
;
}
}
// It may be added '\t' character to the end of the output of reduce
// task when processes data by Hadoop(when the output of the reduce
// task of Hadoop has only one field, it will add a '\t' at the end
// of the line by default, and you can use this option to avoid it:
// `-D mapred.textoutputformat.ignoreseparator=true`), which does
// not affect the correctness of the data. Therefore, it should be
// judged that the data is not normal when the end of each line of
// data contains characters which are not spaces.
while
(
endptr
-
str
!=
len
)
{
if
(
!
isspace
(
*
(
endptr
++
)))
{
VLOG
(
0
)
<<
"error: there is some extra characters at the end of the line."
;
VLOG
(
0
)
<<
"please check line<"
<<
instance_cout
<<
"> in file<"
<<
filename
<<
">"
;
return
false
;
}
}
}
VLOG
(
3
)
<<
"instances cout: "
<<
instance_cout
;
VLOG
(
3
)
<<
"The file format is correct"
;
return
true
;
}
bool
MultiSlotDataFeed
::
ParseOneInstance
(
std
::
vector
<
MultiSlotType
>*
instance
)
{
std
::
string
line
;
if
(
getline
(
file_
,
line
))
{
int
use_slots_num
=
use_slots_
.
size
();
instance
->
resize
(
use_slots_num
);
// parse line
const
char
*
str
=
line
.
c_str
();
char
*
endptr
=
const_cast
<
char
*>
(
str
);
int
pos
=
0
;
for
(
size_t
i
=
0
;
i
<
use_slots_index_
.
size
();
++
i
)
{
int
idx
=
use_slots_index_
[
i
];
int
num
=
strtol
(
&
str
[
pos
],
&
endptr
,
10
);
PADDLE_ENFORCE
(
num
,
"The number of ids can not be zero, you need padding "
"it in data generator; or if there is something wrong with "
"the data, please check if the data contains unresolvable "
"characters.
\n
please check this error line: %s"
,
str
);
if
(
idx
!=
-
1
)
{
(
*
instance
)[
idx
].
Init
(
all_slots_type_
[
i
]);
if
((
*
instance
)[
idx
].
GetType
()[
0
]
==
'f'
)
{
// float
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
float
feasign
=
strtof
(
endptr
,
&
endptr
);
(
*
instance
)[
idx
].
AddValue
(
feasign
);
}
}
else
if
((
*
instance
)[
idx
].
GetType
()[
0
]
==
'u'
)
{
// uint64
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
uint64_t
feasign
=
(
uint64_t
)
strtoull
(
endptr
,
&
endptr
,
10
);
(
*
instance
)[
idx
].
AddValue
(
feasign
);
}
}
pos
=
endptr
-
str
;
}
else
{
for
(
int
j
=
0
;
j
<=
num
;
++
j
)
{
pos
=
line
.
find_first_of
(
' '
,
pos
+
1
);
}
}
}
}
else
{
return
false
;
}
return
true
;
}
void
MultiSlotDataFeed
::
AddInstanceToInsVec
(
std
::
vector
<
MultiSlotType
>*
ins_vec
,
const
std
::
vector
<
MultiSlotType
>&
instance
,
int
index
)
{
if
(
index
==
0
)
{
ins_vec
->
resize
(
instance
.
size
());
for
(
size_t
i
=
0
;
i
<
instance
.
size
();
++
i
)
{
(
*
ins_vec
)[
i
].
Init
(
instance
[
i
].
GetType
());
(
*
ins_vec
)[
i
].
InitOffset
();
}
}
for
(
size_t
i
=
0
;
i
<
instance
.
size
();
++
i
)
{
(
*
ins_vec
)[
i
].
AddIns
(
instance
[
i
]);
}
}
void
MultiSlotDataFeed
::
PutToFeedVec
(
const
std
::
vector
<
MultiSlotType
>&
ins_vec
)
{
for
(
size_t
i
=
0
;
i
<
use_slots_
.
size
();
++
i
)
{
const
auto
&
type
=
ins_vec
[
i
].
GetType
();
const
auto
&
offset
=
ins_vec
[
i
].
GetOffset
();
int
total_instance
=
static_cast
<
int
>
(
offset
.
back
());
if
(
type
[
0
]
==
'f'
)
{
// float
const
auto
&
feasign
=
ins_vec
[
i
].
GetFloatData
();
if
(
feed_vec_
[
i
].
IsDense
())
{
int
size_in_each_batch
=
total_instance
/
batch_size_
;
float
*
tensor_ptr
=
feed_vec_
[
i
].
GetTensor
()
->
mutable_data
<
float
>
(
{
batch_size_
,
size_in_each_batch
},
platform
::
CPUPlace
());
memcpy
(
tensor_ptr
,
&
feasign
[
0
],
total_instance
*
sizeof
(
float
));
}
else
{
float
*
tensor_ptr
=
feed_vec_
[
i
].
GetLoDTensor
()
->
mutable_data
<
float
>
(
{
total_instance
,
1
},
platform
::
CPUPlace
());
memcpy
(
tensor_ptr
,
&
feasign
[
0
],
total_instance
*
sizeof
(
float
));
LoD
data_lod
{
offset
};
feed_vec_
[
i
].
GetLoDTensor
()
->
set_lod
(
data_lod
);
}
}
else
if
(
type
[
0
]
==
'u'
)
{
// uint64
// no uint64_t type in paddlepaddle
const
auto
&
feasign
=
ins_vec
[
i
].
GetUint64Data
();
if
(
feed_vec_
[
i
].
IsDense
())
{
int
size_in_each_batch
=
total_instance
/
batch_size_
;
int64_t
*
tensor_ptr
=
feed_vec_
[
i
].
GetTensor
()
->
mutable_data
<
int64_t
>
(
{
batch_size_
,
size_in_each_batch
},
platform
::
CPUPlace
());
memcpy
(
tensor_ptr
,
&
feasign
[
0
],
total_instance
*
sizeof
(
int64_t
));
}
else
{
int64_t
*
tensor_ptr
=
feed_vec_
[
i
].
GetLoDTensor
()
->
mutable_data
<
int64_t
>
(
{
total_instance
,
1
},
platform
::
CPUPlace
());
memcpy
(
tensor_ptr
,
&
feasign
[
0
],
total_instance
*
sizeof
(
int64_t
));
LoD
data_lod
{
offset
};
feed_vec_
[
i
].
GetLoDTensor
()
->
set_lod
(
data_lod
);
}
}
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/data_feed.h
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <fstream>
#include <memory>
#include <mutex> // NOLINT
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "paddle/fluid/framework/data_feed.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
namespace
paddle
{
namespace
framework
{
// Pack Tensor type and LoDTensor type into MixTensor type, in order
// to record either Tensor or LoDTensor information at the same time.
class
MixTensor
{
public:
MixTensor
()
{}
explicit
MixTensor
(
LoDTensor
*
lodtensor
)
{
is_dense_
=
false
;
lodtensor_
=
lodtensor
;
}
explicit
MixTensor
(
Tensor
*
tensor
)
{
is_dense_
=
true
;
tensor_
=
tensor
;
}
bool
IsDense
()
{
return
is_dense_
;
}
LoDTensor
*
GetLoDTensor
()
{
PADDLE_ENFORCE
(
!
is_dense_
,
"Let a dense var return a LoDTensor ptr."
);
return
lodtensor_
;
}
Tensor
*
GetTensor
()
{
PADDLE_ENFORCE
(
is_dense_
,
"Let a sparse var return a Tensor ptr."
);
return
tensor_
;
}
private:
bool
is_dense_
;
LoDTensor
*
lodtensor_
;
Tensor
*
tensor_
;
};
// DataFeed is the base virtual class for all ohther DataFeeds.
// It is used to read files and parse the data for subsequent trainer.
// Example:
// DataFeed* reader =
// paddle::framework::DataFeedFactory::CreateDataFeed(data_feed_name);
// reader->Init(data_feed_desc); // data_feed_desc is a protobuf object
// reader->SetFileList(filelist);
// const std::vector<std::string> & use_slot_alias =
// reader->GetUseSlotAlias();
// for (auto name: use_slot_alias){ // for binding memory
// reader->AddFeedVar(scope->Var(name), name);
// }
// reader->Start();
// while (reader->Next()) {
// // trainer do something
// }
class
DataFeed
{
public:
DataFeed
()
{}
virtual
~
DataFeed
()
{}
virtual
void
Init
(
const
paddle
::
framework
::
DataFeedDesc
&
data_feed_desc
)
=
0
;
virtual
bool
CheckFile
(
const
char
*
filename
)
{
PADDLE_THROW
(
"This function(CheckFile) is not implemented."
);
}
// Set filelist for DataFeed.
// Pay attention that it must init all readers before call this function.
// Otherwise, Init() function will init finish_set_filelist_ flag.
virtual
bool
SetFileList
(
const
std
::
vector
<
std
::
string
>&
files
);
virtual
bool
Start
()
=
0
;
// The trainer calls the Next() function, and the DataFeed will load a new
// batch to the feed_vec. The return value of this function is the batch
// size of the current batch.
virtual
int
Next
()
=
0
;
// Get all slots' alias which defined in protofile
virtual
const
std
::
vector
<
std
::
string
>&
GetAllSlotAlias
()
{
return
all_slots_
;
}
// Get used slots' alias which defined in protofile
virtual
const
std
::
vector
<
std
::
string
>&
GetUseSlotAlias
()
{
return
use_slots_
;
}
// This function is used for binding feed_vec memory
virtual
void
AddFeedVar
(
Variable
*
var
,
const
std
::
string
&
name
);
protected:
// The following three functions are used to check if it is executed in this
// order:
// Init() -> SetFileList() -> Start() -> Next()
virtual
void
CheckInit
();
virtual
void
CheckSetFileList
();
virtual
void
CheckStart
();
virtual
void
SetBatchSize
(
int
batch
);
// batch size will be set in Init() function
// This function is used to pick one file from the global filelist(thread
// safe).
virtual
bool
PickOneFile
(
std
::
string
*
filename
);
static
std
::
vector
<
std
::
string
>
filelist_
;
static
size_t
file_idx_
;
static
std
::
mutex
mutex_for_pick_file_
;
// the alias of used slots, and its order is determined by
// data_feed_desc(proto object)
std
::
vector
<
std
::
string
>
use_slots_
;
std
::
vector
<
bool
>
use_slots_is_dense_
;
// the alias of all slots, and its order is determined by data_feed_desc(proto
// object)
std
::
vector
<
std
::
string
>
all_slots_
;
std
::
vector
<
std
::
string
>
all_slots_type_
;
std
::
vector
<
int
>
use_slots_index_
;
// -1: not used; >=0: the index of use_slots_
// The data read by DataFeed will be stored here
std
::
vector
<
MixTensor
>
feed_vec_
;
// the batch size defined by user
int
default_batch_size_
;
// current batch size
int
batch_size_
;
bool
finish_init_
;
static
bool
finish_set_filelist_
;
bool
finish_start_
;
};
// PrivateQueueDataFeed is the base virtual class for ohther DataFeeds.
// It use a read-thread to read file and parse data to a private-queue
// (thread level), and get data from this queue when trainer call Next().
template
<
typename
T
>
class
PrivateQueueDataFeed
:
public
DataFeed
{
public:
PrivateQueueDataFeed
()
{}
virtual
~
PrivateQueueDataFeed
()
{}
virtual
void
Init
(
const
paddle
::
framework
::
DataFeedDesc
&
data_feed_desc
)
=
0
;
virtual
bool
Start
();
virtual
int
Next
();
protected:
// The thread implementation function for reading file and parse.
virtual
void
ReadThread
();
// This function is used to set private-queue size, and the most
// efficient when the queue size is close to the batch size.
virtual
void
SetQueueSize
(
int
queue_size
);
// The reading and parsing method called in the ReadThread.
virtual
bool
ParseOneInstance
(
T
*
instance
)
=
0
;
// This function is used to put instance to vec_ins
virtual
void
AddInstanceToInsVec
(
T
*
vec_ins
,
const
T
&
instance
,
int
index
)
=
0
;
// This function is used to put ins_vec to feed_vec
virtual
void
PutToFeedVec
(
const
T
&
ins_vec
)
=
0
;
// The thread for read files
std
::
thread
read_thread_
;
// using ifstream one line and one line parse is faster
// than using fread one buffer and one buffer parse.
// for a 601M real data:
// ifstream one line and one line parse: 6034 ms
// fread one buffer and one buffer parse: 7097 ms
std
::
ifstream
file_
;
size_t
queue_size_
;
// The queue for store parsed data
std
::
unique_ptr
<
paddle
::
operators
::
reader
::
BlockingQueue
<
T
>>
queue_
;
};
// This class define the data type of instance(ins_vec) in MultiSlotDataFeed
class
MultiSlotType
{
public:
MultiSlotType
()
{}
~
MultiSlotType
()
{}
void
Init
(
const
std
::
string
&
type
)
{
CheckType
(
type
);
if
(
type_
[
0
]
==
'f'
)
{
float_feasign_
.
clear
();
}
else
if
(
type_
[
0
]
==
'u'
)
{
uint64_feasign_
.
clear
();
}
type_
=
type
;
}
void
InitOffset
()
{
offset_
.
resize
(
1
);
// LoDTensor' lod is counted from 0, the size of lod
// is one size larger than the size of data.
offset_
[
0
]
=
0
;
}
const
std
::
vector
<
size_t
>&
GetOffset
()
const
{
return
offset_
;
}
void
AddValue
(
const
float
v
)
{
CheckFloat
();
float_feasign_
.
push_back
(
v
);
}
void
AddValue
(
const
uint64_t
v
)
{
CheckUint64
();
uint64_feasign_
.
push_back
(
v
);
}
void
AddIns
(
const
MultiSlotType
&
ins
)
{
if
(
ins
.
GetType
()[
0
]
==
'f'
)
{
// float
CheckFloat
();
auto
&
vec
=
ins
.
GetFloatData
();
offset_
.
push_back
(
offset_
.
back
()
+
vec
.
size
());
float_feasign_
.
insert
(
float_feasign_
.
end
(),
vec
.
begin
(),
vec
.
end
());
}
else
if
(
ins
.
GetType
()[
0
]
==
'u'
)
{
// uint64
CheckUint64
();
auto
&
vec
=
ins
.
GetUint64Data
();
offset_
.
push_back
(
offset_
.
back
()
+
vec
.
size
());
uint64_feasign_
.
insert
(
uint64_feasign_
.
end
(),
vec
.
begin
(),
vec
.
end
());
}
}
const
std
::
vector
<
float
>&
GetFloatData
()
const
{
return
float_feasign_
;
}
const
std
::
vector
<
uint64_t
>&
GetUint64Data
()
const
{
return
uint64_feasign_
;
}
const
std
::
string
&
GetType
()
const
{
return
type_
;
}
private:
void
CheckType
(
const
std
::
string
&
type
)
const
{
PADDLE_ENFORCE
((
type
==
"uint64"
)
||
(
type
==
"float"
),
"There is no this type<%s>."
,
type
);
}
void
CheckFloat
()
const
{
PADDLE_ENFORCE
(
type_
[
0
]
==
'f'
,
"Add %s value to float slot."
,
type_
);
}
void
CheckUint64
()
const
{
PADDLE_ENFORCE
(
type_
[
0
]
==
'u'
,
"Add %s value to uint64 slot."
,
type_
);
}
std
::
vector
<
float
>
float_feasign_
;
std
::
vector
<
uint64_t
>
uint64_feasign_
;
std
::
string
type_
;
std
::
vector
<
size_t
>
offset_
;
};
// This DataFeed is used to feed multi-slot type data.
// The format of multi-slot type data:
// [n feasign_0 feasign_1 ... feasign_n]*
class
MultiSlotDataFeed
:
public
PrivateQueueDataFeed
<
std
::
vector
<
MultiSlotType
>>
{
public:
MultiSlotDataFeed
()
{}
virtual
~
MultiSlotDataFeed
()
{}
virtual
void
Init
(
const
paddle
::
framework
::
DataFeedDesc
&
data_feed_desc
);
virtual
bool
CheckFile
(
const
char
*
filename
);
protected:
virtual
void
AddInstanceToInsVec
(
std
::
vector
<
MultiSlotType
>*
vec_ins
,
const
std
::
vector
<
MultiSlotType
>&
instance
,
int
index
);
virtual
bool
ParseOneInstance
(
std
::
vector
<
MultiSlotType
>*
instance
);
virtual
void
PutToFeedVec
(
const
std
::
vector
<
MultiSlotType
>&
ins_vec
);
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/data_feed.proto
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
syntax
=
"proto2"
;
package
paddle
.
framework
;
message
Slot
{
required
string
name
=
1
;
required
string
type
=
2
;
optional
bool
is_dense
=
3
[
default
=
false
];
optional
bool
is_used
=
4
[
default
=
false
];
}
message
MultiSlotDesc
{
repeated
Slot
slots
=
1
;
}
message
DataFeedDesc
{
optional
string
name
=
1
;
optional
int32
batch_size
=
2
[
default
=
32
];
optional
MultiSlotDesc
multi_slot_desc
=
3
;
}
paddle/fluid/framework/data_feed_factory.cc
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_feed_factory.h"
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/data_feed.h"
namespace
paddle
{
namespace
framework
{
typedef
std
::
shared_ptr
<
DataFeed
>
(
*
Createdata_feedFunction
)();
typedef
std
::
unordered_map
<
std
::
string
,
Createdata_feedFunction
>
data_feedMap
;
data_feedMap
g_data_feed_map
;
#define REGISTER_DATAFEED_CLASS(data_feed_class) \
namespace { \
std::shared_ptr<DataFeed> Creator_##data_feed_class() { \
return std::shared_ptr<DataFeed>(new data_feed_class); \
} \
class __Registerer_##data_feed_class { \
public: \
__Registerer_##data_feed_class() { \
g_data_feed_map[#data_feed_class] = &Creator_##data_feed_class; \
} \
}; \
__Registerer_##data_feed_class g_registerer_##data_feed_class; \
} // namespace
std
::
string
DataFeedFactory
::
DataFeedTypeList
()
{
std
::
string
data_feed_types
;
for
(
auto
iter
=
g_data_feed_map
.
begin
();
iter
!=
g_data_feed_map
.
end
();
++
iter
)
{
if
(
iter
!=
g_data_feed_map
.
begin
())
{
data_feed_types
+=
", "
;
}
data_feed_types
+=
iter
->
first
;
}
return
data_feed_types
;
}
std
::
shared_ptr
<
DataFeed
>
DataFeedFactory
::
CreateDataFeed
(
std
::
string
data_feed_class
)
{
if
(
g_data_feed_map
.
count
(
data_feed_class
)
<
1
)
{
exit
(
-
1
);
}
return
g_data_feed_map
[
data_feed_class
]();
}
REGISTER_DATAFEED_CLASS
(
MultiSlotDataFeed
);
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/data_feed_factory.h
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include "paddle/fluid/framework/data_feed.h"
namespace
paddle
{
namespace
framework
{
class
DataFeedFactory
{
public:
static
std
::
string
DataFeedTypeList
();
static
std
::
shared_ptr
<
DataFeed
>
CreateDataFeed
(
std
::
string
data_feed_class
);
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/data_feed_test.cc
0 → 100644
浏览文件 @
a6ac4266
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/data_feed.h"
#include <fcntl.h>
#include <chrono> // NOLINT
#include <fstream>
#include <iostream>
#include <map>
#include <mutex> // NOLINT
#include <set>
#include <thread> // NOLINT
#include <utility>
#include <vector>
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/text_format.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
paddle
::
framework
::
DataFeedDesc
load_datafeed_param_from_file
(
const
char
*
filename
)
{
paddle
::
framework
::
DataFeedDesc
data_feed_desc
;
int
file_descriptor
=
open
(
filename
,
O_RDONLY
);
PADDLE_ENFORCE
(
file_descriptor
!=
-
1
,
"Can not open %s."
,
filename
);
google
::
protobuf
::
io
::
FileInputStream
fileInput
(
file_descriptor
);
google
::
protobuf
::
TextFormat
::
Parse
(
&
fileInput
,
&
data_feed_desc
);
close
(
file_descriptor
);
return
data_feed_desc
;
}
const
std
::
vector
<
std
::
string
>
load_filelist_from_file
(
const
char
*
filename
)
{
std
::
vector
<
std
::
string
>
filelist
;
std
::
ifstream
fin
(
filename
);
PADDLE_ENFORCE
(
fin
.
good
(),
"Can not open %s."
,
filename
);
std
::
string
line
;
while
(
getline
(
fin
,
line
))
{
filelist
.
push_back
(
line
);
}
fin
.
close
();
return
filelist
;
}
void
GenerateFileForTest
(
const
char
*
protofile
,
const
char
*
filelist
)
{
std
::
ofstream
w_protofile
(
protofile
);
w_protofile
<<
"name:
\"
MultiSlotDataFeed
\"\n
"
"batch_size: 2
\n
"
"multi_slot_desc {
\n
"
" slots {
\n
"
" name:
\"
uint64_sparse_slot
\"\n
"
" type:
\"
uint64
\"\n
"
" is_dense: false
\n
"
" is_used: true
\n
"
" }
\n
"
" slots {
\n
"
" name:
\"
float_sparse_slot
\"\n
"
" type:
\"
float
\"\n
"
" is_dense: false
\n
"
" is_used: true
\n
"
" }
\n
"
" slots {
\n
"
" name:
\"
uint64_dense_slot
\"\n
"
" type:
\"
uint64
\"\n
"
" is_dense: true
\n
"
" is_used: true
\n
"
" }
\n
"
" slots {
\n
"
" name:
\"
float_dense_slot
\"\n
"
" type:
\"
float
\"\n
"
" is_dense: true
\n
"
" is_used: true
\n
"
" }
\n
"
" slots {
\n
"
" name:
\"
not_used_slot
\"\n
"
" type:
\"
uint64
\"\n
"
" is_dense: false
\n
"
" is_used: false
\n
"
" }
\n
"
"}"
;
w_protofile
.
close
();
std
::
ofstream
w_filelist
(
filelist
);
int
total_file
=
4
;
for
(
int
i
=
0
;
i
<
total_file
;
++
i
)
{
std
::
string
filename
=
"TestMultiSlotDataFeed.data."
+
std
::
to_string
(
i
);
w_filelist
<<
filename
;
if
(
i
+
1
!=
total_file
)
{
w_filelist
<<
std
::
endl
;
}
std
::
ofstream
w_datafile
(
filename
.
c_str
());
w_datafile
<<
"3 3978 620 82 1 1926.08 1 1926 1 6.02 1 1996
\n
"
"2 1300 2983353 1 985.211 1 8 1 0.618 1 12
\n
"
"1 19260827 2 3.14 2.718 1 27 1 2.236 1 28
\n
"
;
w_datafile
.
close
();
}
w_filelist
.
close
();
}
class
MultiTypeSet
{
public:
MultiTypeSet
()
{
uint64_set_
.
clear
();
float_set_
.
clear
();
}
~
MultiTypeSet
()
{}
void
AddValue
(
uint64_t
v
)
{
uint64_set_
.
insert
(
v
);
}
void
AddValue
(
float
v
)
{
float_set_
.
insert
(
v
);
}
const
std
::
set
<
uint64_t
>&
GetUint64Set
()
const
{
return
uint64_set_
;
}
const
std
::
set
<
float
>&
GetFloatSet
()
const
{
return
float_set_
;
}
private:
std
::
set
<
uint64_t
>
uint64_set_
;
std
::
set
<
float
>
float_set_
;
};
void
GetElemSetFromReader
(
std
::
vector
<
MultiTypeSet
>*
reader_elem_set
,
const
paddle
::
framework
::
DataFeedDesc
&
data_feed_desc
,
const
std
::
vector
<
std
::
string
>&
filelist
,
const
int
thread_num
)
{
int
used_slot_num
=
0
;
for
(
auto
i
=
0
;
i
<
data_feed_desc
.
multi_slot_desc
().
slots_size
();
++
i
)
{
if
(
data_feed_desc
.
multi_slot_desc
().
slots
(
i
).
is_used
())
{
++
used_slot_num
;
}
}
reader_elem_set
->
resize
(
used_slot_num
);
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
std
::
shared_ptr
<
paddle
::
framework
::
DataFeed
>>
readers
;
readers
.
resize
(
thread_num
);
for
(
int
i
=
0
;
i
<
thread_num
;
++
i
)
{
readers
[
i
]
=
paddle
::
framework
::
DataFeedFactory
::
CreateDataFeed
(
data_feed_desc
.
name
());
readers
[
i
]
->
Init
(
data_feed_desc
);
}
readers
[
0
]
->
SetFileList
(
filelist
);
std
::
mutex
mu
;
for
(
int
idx
=
0
;
idx
<
thread_num
;
++
idx
)
{
threads
.
emplace_back
(
std
::
thread
([
&
,
idx
]
{
std
::
unique_ptr
<
paddle
::
framework
::
Scope
>
scope
(
new
paddle
::
framework
::
Scope
());
const
auto
&
multi_slot_desc
=
data_feed_desc
.
multi_slot_desc
();
std
::
map
<
std
::
string
,
const
paddle
::
framework
::
LoDTensor
*>
lodtensor_targets
;
std
::
map
<
std
::
string
,
const
paddle
::
framework
::
Tensor
*>
tensor_targets
;
for
(
int
i
=
0
;
i
<
multi_slot_desc
.
slots_size
();
++
i
)
{
const
auto
&
slot
=
multi_slot_desc
.
slots
(
i
);
if
(
slot
.
is_used
())
{
const
auto
&
name
=
slot
.
name
();
readers
[
idx
]
->
AddFeedVar
(
scope
->
Var
(
name
),
name
);
if
(
slot
.
is_dense
())
{
tensor_targets
[
name
]
=
&
scope
->
FindVar
(
name
)
->
Get
<
paddle
::
framework
::
Tensor
>
();
}
else
{
lodtensor_targets
[
name
]
=
&
scope
->
FindVar
(
name
)
->
Get
<
paddle
::
framework
::
LoDTensor
>
();
}
}
}
readers
[
idx
]
->
Start
();
while
(
readers
[
idx
]
->
Next
())
{
int
index
=
0
;
for
(
int
k
=
0
;
k
<
multi_slot_desc
.
slots_size
();
++
k
)
{
const
auto
&
slot
=
multi_slot_desc
.
slots
(
k
);
if
(
!
slot
.
is_used
())
{
continue
;
}
if
(
slot
.
is_dense
())
{
// dense branch
const
paddle
::
framework
::
Tensor
*
tens
=
tensor_targets
[
slot
.
name
()];
if
(
slot
.
type
()
==
"uint64"
)
{
const
int64_t
*
data
=
tens
->
data
<
int64_t
>
();
int
batch_size
=
tens
->
dims
()[
0
];
int
dim
=
tens
->
dims
()[
1
];
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
j
=
0
;
j
<
dim
;
++
j
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu
);
(
*
reader_elem_set
)[
index
].
AddValue
(
(
uint64_t
)
data
[
i
*
dim
+
j
]);
}
}
}
else
if
(
slot
.
type
()
==
"float"
)
{
const
float
*
data
=
tens
->
data
<
float
>
();
int
batch_size
=
tens
->
dims
()[
0
];
int
dim
=
tens
->
dims
()[
1
];
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
j
=
0
;
j
<
dim
;
++
j
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu
);
(
*
reader_elem_set
)[
index
].
AddValue
(
data
[
i
*
dim
+
j
]);
}
}
}
else
{
PADDLE_THROW
(
"Error type in proto file."
);
}
}
else
{
// sparse branch
const
paddle
::
framework
::
LoDTensor
*
tens
=
lodtensor_targets
[
slot
.
name
()];
if
(
slot
.
type
()
==
"uint64"
)
{
const
int64_t
*
data
=
tens
->
data
<
int64_t
>
();
for
(
size_t
i
=
0
;
i
<
tens
->
NumElements
();
++
i
)
{
std
::
pair
<
size_t
,
size_t
>
element
=
tens
->
lod_element
(
0
,
i
);
for
(
size_t
j
=
element
.
first
;
j
<
element
.
second
;
++
j
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu
);
(
*
reader_elem_set
)[
index
].
AddValue
((
uint64_t
)
data
[
j
]);
}
}
}
else
if
(
slot
.
type
()
==
"float"
)
{
const
float
*
data
=
tens
->
data
<
float
>
();
for
(
size_t
i
=
0
;
i
<
tens
->
NumElements
();
++
i
)
{
std
::
pair
<
size_t
,
size_t
>
element
=
tens
->
lod_element
(
0
,
i
);
for
(
size_t
j
=
element
.
first
;
j
<
element
.
second
;
++
j
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu
);
(
*
reader_elem_set
)[
index
].
AddValue
(
data
[
j
]);
}
}
}
else
{
PADDLE_THROW
(
"Error type in proto file."
);
}
}
// end sparse branch
++
index
;
}
// end slots loop
}
// end while Next()
}));
// end anonymous function
}
for
(
auto
&
th
:
threads
)
{
th
.
join
();
}
}
void
CheckIsUnorderedSame
(
const
std
::
vector
<
MultiTypeSet
>&
s1
,
const
std
::
vector
<
MultiTypeSet
>&
s2
)
{
EXPECT_EQ
(
s1
.
size
(),
s2
.
size
());
for
(
size_t
i
=
0
;
i
<
s1
.
size
();
++
i
)
{
// check for uint64
const
std
::
set
<
uint64_t
>&
uint64_s1
=
s1
[
i
].
GetUint64Set
();
const
std
::
set
<
uint64_t
>&
uint64_s2
=
s2
[
i
].
GetUint64Set
();
EXPECT_EQ
(
uint64_s1
.
size
(),
uint64_s2
.
size
());
auto
uint64_it1
=
uint64_s1
.
begin
();
auto
uint64_it2
=
uint64_s2
.
begin
();
while
(
uint64_it1
!=
uint64_s1
.
end
())
{
EXPECT_EQ
(
*
uint64_it1
,
*
uint64_it2
);
++
uint64_it1
;
++
uint64_it2
;
}
// check for float
const
std
::
set
<
float
>&
float_s1
=
s1
[
i
].
GetFloatSet
();
const
std
::
set
<
float
>&
float_s2
=
s2
[
i
].
GetFloatSet
();
EXPECT_EQ
(
float_s1
.
size
(),
float_s2
.
size
());
auto
float_it1
=
float_s1
.
begin
();
auto
float_it2
=
float_s2
.
begin
();
while
(
float_it1
!=
float_s1
.
end
())
{
EXPECT_EQ
(
*
float_it1
,
*
float_it2
);
++
float_it1
;
++
float_it2
;
}
}
}
void
GetElemSetFromFile
(
std
::
vector
<
MultiTypeSet
>*
file_elem_set
,
const
paddle
::
framework
::
DataFeedDesc
&
data_feed_desc
,
const
std
::
vector
<
std
::
string
>&
filelist
)
{
int
used_slot_num
=
0
;
for
(
auto
i
=
0
;
i
<
data_feed_desc
.
multi_slot_desc
().
slots_size
();
++
i
)
{
if
(
data_feed_desc
.
multi_slot_desc
().
slots
(
i
).
is_used
())
{
++
used_slot_num
;
}
}
file_elem_set
->
resize
(
used_slot_num
);
for
(
const
auto
&
file
:
filelist
)
{
std
::
ifstream
fin
(
file
.
c_str
());
PADDLE_ENFORCE
(
fin
.
good
(),
"Can not open %s."
,
file
.
c_str
());
while
(
1
)
{
bool
end_flag
=
false
;
int
index
=
0
;
for
(
auto
i
=
0
;
i
<
data_feed_desc
.
multi_slot_desc
().
slots_size
();
++
i
)
{
int
num
;
if
(
fin
>>
num
)
{
auto
slot
=
data_feed_desc
.
multi_slot_desc
().
slots
(
i
);
auto
type
=
slot
.
type
();
if
(
type
==
"uint64"
)
{
while
(
num
--
)
{
uint64_t
feasign
;
fin
>>
feasign
;
if
(
slot
.
is_used
())
{
(
*
file_elem_set
)[
index
].
AddValue
(
feasign
);
}
}
}
else
if
(
type
==
"float"
)
{
while
(
num
--
)
{
float
feasign
;
fin
>>
feasign
;
if
(
slot
.
is_used
())
{
(
*
file_elem_set
)[
index
].
AddValue
(
feasign
);
}
}
}
else
{
PADDLE_THROW
(
"Error type in proto file."
);
}
if
(
slot
.
is_used
())
{
++
index
;
}
}
else
{
end_flag
=
true
;
break
;
}
}
if
(
end_flag
)
{
break
;
}
}
fin
.
close
();
}
}
TEST
(
DataFeed
,
MultiSlotUnitTest
)
{
const
char
*
protofile
=
"data_feed_desc.prototxt"
;
const
char
*
filelist_name
=
"filelist.txt"
;
GenerateFileForTest
(
protofile
,
filelist_name
);
const
std
::
vector
<
std
::
string
>
filelist
=
load_filelist_from_file
(
filelist_name
);
paddle
::
framework
::
DataFeedDesc
data_feed_desc
=
load_datafeed_param_from_file
(
protofile
);
std
::
vector
<
MultiTypeSet
>
reader_elem_set
;
std
::
vector
<
MultiTypeSet
>
file_elem_set
;
GetElemSetFromReader
(
&
reader_elem_set
,
data_feed_desc
,
filelist
,
4
);
GetElemSetFromFile
(
&
file_elem_set
,
data_feed_desc
,
filelist
);
CheckIsUnorderedSame
(
reader_elem_set
,
file_elem_set
);
}
paddle/fluid/framework/details/op_registry.h
浏览文件 @
a6ac4266
...
...
@@ -32,7 +32,9 @@ enum OpInfoFillType {
kOpProtoAndCheckerMaker
=
1
,
kGradOpDescMaker
=
2
,
kVarTypeInference
=
3
,
kShapeInference
=
4
kShapeInference
=
4
,
kEstimateFlops
=
5
,
kUnknown
=
-
1
};
template
<
typename
T
>
...
...
@@ -48,8 +50,10 @@ struct OpInfoFillTypeID {
?
kVarTypeInference
:
(
std
::
is_base_of
<
InferShapeBase
,
T
>::
value
?
kShapeInference
:
static_cast
<
OpInfoFillType
>
(
-
1
)))));
:
(
std
::
is_base_of
<
EstimateFlopsBase
,
T
>::
value
?
kEstimateFlops
:
kUnknown
)))));
}
};
...
...
@@ -139,6 +143,16 @@ struct OpInfoFiller<T, kShapeInference> {
}
};
template
<
typename
T
>
struct
OpInfoFiller
<
T
,
kEstimateFlops
>
{
void
operator
()(
const
char
*
op_tpe
,
OpInfo
*
info
)
const
{
info
->
estimate_flops_
=
[](
InferShapeContext
*
ctx
)
{
T
estimate_flops
;
return
estimate_flops
(
ctx
);
};
}
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
浏览文件 @
a6ac4266
...
...
@@ -16,7 +16,7 @@
#include <stdexcept>
#include <string>
#include <vector>
#include "paddle/fluid/framework/
executo
r.h"
#include "paddle/fluid/framework/
variable_helpe
r.h"
#include "paddle/fluid/platform/profiler.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
a6ac4266
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/transfer_scope_cache.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -114,36 +115,6 @@ void Executor::Close() {
#endif
}
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
)
{
if
(
var_type
==
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
LoDTensor
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
SELECTED_ROWS
)
{
var
->
GetMutable
<
SelectedRows
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
FEED_MINIBATCH
)
{
var
->
GetMutable
<
FeedFetchList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
FETCH_LIST
)
{
var
->
GetMutable
<
FeedFetchList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
STEP_SCOPES
)
{
var
->
GetMutable
<
std
::
vector
<
framework
::
Scope
*>>
();
}
else
if
(
var_type
==
proto
::
VarType
::
LOD_RANK_TABLE
)
{
var
->
GetMutable
<
LoDRankTable
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
{
var
->
GetMutable
<
LoDTensorArray
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
PLACE_LIST
)
{
var
->
GetMutable
<
platform
::
PlaceList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
READER
)
{
var
->
GetMutable
<
ReaderHolder
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
RAW
)
{
// GetMutable will be called in operator
}
else
{
PADDLE_THROW
(
"Variable type %d is not in "
"[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
"LOD_RANK_TABLE, PLACE_LIST, READER, RAW]"
,
var_type
);
}
}
void
Executor
::
CreateVariables
(
const
ProgramDesc
&
pdesc
,
Scope
*
scope
,
int
block_id
)
{
auto
&
global_block
=
pdesc
.
Block
(
block_id
);
...
...
paddle/fluid/framework/executor.h
浏览文件 @
a6ac4266
...
...
@@ -26,7 +26,6 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
extern
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
);
template
<
typename
T
>
std
::
unordered_map
<
std
::
string
,
T
>
GetNonPersistableReferenceCount
(
...
...
paddle/fluid/framework/executor_thread_worker.cc
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
namespace
paddle
{
namespace
framework
{
void
ExecutorThreadWorker
::
CreateThreadOperators
(
const
ProgramDesc
&
program
)
{
auto
&
block
=
program
.
Block
(
0
);
op_names_
.
clear
();
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
std
::
unique_ptr
<
OperatorBase
>
local_op
=
OpRegistry
::
CreateOp
(
*
op_desc
);
op_names_
.
push_back
(
op_desc
->
Type
());
OperatorBase
*
local_op_ptr
=
local_op
.
release
();
ops_
.
push_back
(
local_op_ptr
);
continue
;
}
}
void
ExecutorThreadWorker
::
CreateThreadResource
(
const
framework
::
ProgramDesc
&
program
,
const
paddle
::
platform
::
Place
&
place
)
{
CreateThreadScope
(
program
);
CreateThreadOperators
(
program
);
SetMainProgram
(
program
);
SetPlace
(
place
);
}
void
ExecutorThreadWorker
::
CreateThreadScope
(
const
ProgramDesc
&
program
)
{
auto
&
block
=
program
.
Block
(
0
);
PADDLE_ENFORCE_NOT_NULL
(
root_scope_
,
"root_scope should be set before creating thread scope"
);
thread_scope_
=
&
root_scope_
->
NewScope
();
for
(
auto
&
var
:
block
.
AllVars
())
{
if
(
var
->
Persistable
())
{
auto
*
ptr
=
root_scope_
->
Var
(
var
->
Name
());
InitializeVariable
(
ptr
,
var
->
GetType
());
}
else
{
auto
*
ptr
=
thread_scope_
->
Var
(
var
->
Name
());
InitializeVariable
(
ptr
,
var
->
GetType
());
}
}
}
void
ExecutorThreadWorker
::
SetDataFeed
(
const
std
::
shared_ptr
<
DataFeed
>&
datafeed
)
{
thread_reader_
=
datafeed
;
}
void
ExecutorThreadWorker
::
BindingDataFeedMemory
()
{
const
std
::
vector
<
std
::
string
>&
input_feed
=
thread_reader_
->
GetUseSlotAlias
();
for
(
auto
name
:
input_feed
)
{
thread_reader_
->
AddFeedVar
(
thread_scope_
->
Var
(
name
),
name
);
}
}
void
ExecutorThreadWorker
::
SetFetchVarNames
(
const
std
::
vector
<
std
::
string
>&
fetch_var_names
)
{
fetch_var_names_
.
clear
();
fetch_var_names_
.
insert
(
fetch_var_names_
.
end
(),
fetch_var_names
.
begin
(),
fetch_var_names
.
end
());
}
void
ExecutorThreadWorker
::
SetDevice
()
{
#if defined _WIN32 || defined __APPLE__
return
;
#else
static
unsigned
concurrency_cap
=
std
::
thread
::
hardware_concurrency
();
int
thread_id
=
this
->
thread_id_
;
if
(
thread_id
<
concurrency_cap
)
{
unsigned
proc
=
thread_id
;
cpu_set_t
mask
;
CPU_ZERO
(
&
mask
);
CPU_SET
(
proc
,
&
mask
);
if
(
-
1
==
sched_setaffinity
(
0
,
sizeof
(
mask
),
&
mask
))
{
VLOG
(
1
)
<<
"WARNING: Failed to set thread affinity for thread "
<<
thread_id
;
}
else
{
CPU_ZERO
(
&
mask
);
if
((
0
!=
sched_getaffinity
(
0
,
sizeof
(
mask
),
&
mask
))
||
(
CPU_ISSET
(
proc
,
&
mask
)
==
0
))
{
VLOG
(
3
)
<<
"WARNING: Failed to set thread affinity for thread "
<<
thread_id
;
}
}
}
else
{
VLOG
(
1
)
<<
"WARNING: Failed to set thread affinity for thread "
<<
thread_id
;
}
#endif
}
template
<
typename
T
>
void
print_lod_tensor
(
std
::
string
var_name
,
const
LoDTensor
&
lod_tensor
)
{
auto
inspect
=
lod_tensor
.
data
<
T
>
();
auto
element_num
=
lod_tensor
.
numel
();
std
::
ostringstream
sstream
;
sstream
<<
var_name
<<
" (element num "
<<
element_num
<<
"): ["
;
sstream
<<
inspect
[
0
];
for
(
int
j
=
1
;
j
<
element_num
;
++
j
)
{
sstream
<<
" "
<<
inspect
[
j
];
}
sstream
<<
"]"
;
std
::
cout
<<
sstream
.
str
()
<<
std
::
endl
;
}
void
print_fetch_var
(
Scope
*
scope
,
std
::
string
var_name
)
{
const
LoDTensor
&
tensor
=
scope
->
FindVar
(
var_name
)
->
Get
<
LoDTensor
>
();
if
(
std
::
type_index
(
tensor
.
type
())
==
std
::
type_index
(
typeid
(
platform
::
float16
)))
{
print_lod_tensor
<
platform
::
float16
>
(
var_name
,
tensor
);
}
else
if
(
std
::
type_index
(
tensor
.
type
())
==
std
::
type_index
(
typeid
(
float
)))
{
print_lod_tensor
<
float
>
(
var_name
,
tensor
);
}
else
if
(
std
::
type_index
(
tensor
.
type
())
==
std
::
type_index
(
typeid
(
double
)))
{
print_lod_tensor
<
double
>
(
var_name
,
tensor
);
}
else
if
(
std
::
type_index
(
tensor
.
type
())
==
std
::
type_index
(
typeid
(
int
)))
{
print_lod_tensor
<
int
>
(
var_name
,
tensor
);
}
else
if
(
std
::
type_index
(
tensor
.
type
())
==
std
::
type_index
(
typeid
(
int64_t
)))
{
print_lod_tensor
<
int64_t
>
(
var_name
,
tensor
);
}
else
if
(
std
::
type_index
(
tensor
.
type
())
==
std
::
type_index
(
typeid
(
bool
)))
{
print_lod_tensor
<
bool
>
(
var_name
,
tensor
);
}
else
if
(
std
::
type_index
(
tensor
.
type
())
==
std
::
type_index
(
typeid
(
uint8_t
)))
{
print_lod_tensor
<
uint8_t
>
(
var_name
,
tensor
);
}
else
if
(
std
::
type_index
(
tensor
.
type
())
==
std
::
type_index
(
typeid
(
int16_t
)))
{
print_lod_tensor
<
int16_t
>
(
var_name
,
tensor
);
}
else
if
(
std
::
type_index
(
tensor
.
type
())
==
std
::
type_index
(
typeid
(
int8_t
)))
{
print_lod_tensor
<
int8_t
>
(
var_name
,
tensor
);
}
else
{
VLOG
(
1
)
<<
"print_fetch_var: unrecognized data type:"
<<
tensor
.
type
().
name
();
}
return
;
}
void
ExecutorThreadWorker
::
TrainFiles
()
{
// todo: configurable
SetDevice
();
int
fetch_var_num
=
fetch_var_names_
.
size
();
fetch_values_
.
clear
();
fetch_values_
.
resize
(
fetch_var_num
);
thread_reader_
->
Start
();
int
cur_batch
;
int
batch_cnt
=
0
;
while
((
cur_batch
=
thread_reader_
->
Next
())
>
0
)
{
// executor run here
for
(
auto
&
op
:
ops_
)
{
op
->
Run
(
*
thread_scope_
,
place_
);
}
++
batch_cnt
;
thread_scope_
->
DropKids
();
if
(
debug_
==
false
||
thread_id_
!=
0
)
{
continue
;
}
for
(
int
i
=
0
;
i
<
fetch_var_num
;
++
i
)
{
print_fetch_var
(
thread_scope_
,
fetch_var_names_
[
i
]);
}
// end for (int i = 0...)
}
// end while ()
}
void
ExecutorThreadWorker
::
SetThreadId
(
int
tid
)
{
thread_id_
=
tid
;
}
void
ExecutorThreadWorker
::
SetPlace
(
const
platform
::
Place
&
place
)
{
place_
=
place
;
}
void
ExecutorThreadWorker
::
SetMainProgram
(
const
ProgramDesc
&
main_program_desc
)
{
main_program_
.
reset
(
new
ProgramDesc
(
main_program_desc
));
}
void
ExecutorThreadWorker
::
SetRootScope
(
Scope
*
g_scope
)
{
root_scope_
=
g_scope
;
}
}
// einit_modelnd namespace framework
}
// end namespace paddle
paddle/fluid/framework/executor_thread_worker.h
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <mutex> // NOLINT
#include <set>
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
namespace
paddle
{
namespace
framework
{
void
CreateTensor
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
);
class
ExecutorThreadWorker
{
public:
ExecutorThreadWorker
()
:
thread_id_
(
-
1
),
root_scope_
(
NULL
),
thread_scope_
(
NULL
),
debug_
(
false
)
{}
~
ExecutorThreadWorker
()
{}
void
CreateThreadResource
(
const
framework
::
ProgramDesc
&
program
,
const
paddle
::
platform
::
Place
&
place
);
void
SetThreadId
(
int
tid
);
void
SetDebug
(
const
bool
debug
)
{
debug_
=
debug
;
}
void
SetRootScope
(
Scope
*
g_scope
);
// set cpu device in this function
// cpu binding is used by default
void
SetDevice
();
// since we read data into memory that can not be accessed by program
// we need to bind memory of data with corresponding variables in program
// this function should be called after data feed is set
void
BindingDataFeedMemory
();
// set data feed declared in executor
void
SetDataFeed
(
const
std
::
shared_ptr
<
DataFeed
>&
datafeed
);
// A multi-thread training function
void
TrainFiles
();
// set fetch variable names from python interface assigned by users
void
SetFetchVarNames
(
const
std
::
vector
<
std
::
string
>&
fetch_var_names
);
private:
void
CreateThreadScope
(
const
framework
::
ProgramDesc
&
program
);
void
CreateThreadOperators
(
const
framework
::
ProgramDesc
&
program
);
void
SetMainProgram
(
const
ProgramDesc
&
main_program_desc
);
void
SetPlace
(
const
paddle
::
platform
::
Place
&
place
);
protected:
// thread index
std
::
shared_ptr
<
DataFeed
>
thread_reader_
;
// shared queue, thread buffer
int
thread_id_
;
// operator name
std
::
vector
<
std
::
string
>
op_names_
;
// thread level, local operators for forward and backward
std
::
vector
<
OperatorBase
*>
ops_
;
// main program for training
std
::
unique_ptr
<
framework
::
ProgramDesc
>
main_program_
;
// execution place
platform
::
Place
place_
;
// root scope for model parameters
Scope
*
root_scope_
;
// a thread scope, father scope is global score which is shared
Scope
*
thread_scope_
;
private:
std
::
vector
<
std
::
string
>
fetch_var_names_
;
std
::
vector
<
std
::
vector
<
float
>>
fetch_values_
;
bool
debug_
;
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/naive_executor.cc
浏览文件 @
a6ac4266
...
...
@@ -21,42 +21,11 @@
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
framework
{
// These code can be shared with Executor.
static
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
)
{
if
(
var_type
==
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
LoDTensor
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
SELECTED_ROWS
)
{
var
->
GetMutable
<
SelectedRows
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
FEED_MINIBATCH
)
{
var
->
GetMutable
<
FeedFetchList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
FETCH_LIST
)
{
var
->
GetMutable
<
FeedFetchList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
STEP_SCOPES
)
{
var
->
GetMutable
<
std
::
vector
<
framework
::
Scope
*>>
();
}
else
if
(
var_type
==
proto
::
VarType
::
LOD_RANK_TABLE
)
{
var
->
GetMutable
<
LoDRankTable
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
{
var
->
GetMutable
<
LoDTensorArray
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
PLACE_LIST
)
{
var
->
GetMutable
<
platform
::
PlaceList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
READER
)
{
var
->
GetMutable
<
ReaderHolder
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
RAW
)
{
// GetMutable will be called in operator
}
else
{
PADDLE_THROW
(
"Variable type %d is not in "
"[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
"LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]"
,
var_type
);
}
}
void
NaiveExecutor
::
Prepare
(
Scope
*
scope
,
const
ProgramDesc
&
program_desc
,
int
block_id
,
bool
with_feed_fetch_ops
)
{
if
(
!
scope
)
{
...
...
paddle/fluid/framework/op_info.h
浏览文件 @
a6ac4266
...
...
@@ -31,6 +31,12 @@ class InferShapeBase {
virtual
void
operator
()(
InferShapeContext
*
)
const
=
0
;
};
class
EstimateFlopsBase
{
public:
virtual
~
EstimateFlopsBase
()
=
default
;
virtual
size_t
operator
()(
InferShapeContext
*
)
const
=
0
;
};
struct
OpInfo
{
OpCreator
creator_
;
GradOpMakerFN
grad_op_maker_
;
...
...
@@ -38,6 +44,7 @@ struct OpInfo {
OpAttrChecker
*
checker_
{
nullptr
};
InferVarTypeFN
infer_var_type_
;
InferShapeFN
infer_shape_
;
EstimateFlopsFN
estimate_flops_
;
bool
HasOpProtoAndChecker
()
const
{
return
proto_
!=
nullptr
&&
checker_
!=
nullptr
;
...
...
paddle/fluid/framework/type_defs.h
浏览文件 @
a6ac4266
...
...
@@ -54,5 +54,7 @@ using InferVarTypeFN =
using
InferShapeFN
=
std
::
function
<
void
(
InferShapeContext
*
)
>
;
using
EstimateFlopsFN
=
std
::
function
<
void
(
InferShapeContext
*
)
>
;
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/variable_helper.cc
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/variable_helper.h"
#include <vector>
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
)
{
if
(
var_type
==
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
LoDTensor
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
SELECTED_ROWS
)
{
var
->
GetMutable
<
SelectedRows
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
FEED_MINIBATCH
)
{
var
->
GetMutable
<
FeedFetchList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
FETCH_LIST
)
{
var
->
GetMutable
<
FeedFetchList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
STEP_SCOPES
)
{
var
->
GetMutable
<
std
::
vector
<
framework
::
Scope
*>>
();
}
else
if
(
var_type
==
proto
::
VarType
::
LOD_RANK_TABLE
)
{
var
->
GetMutable
<
LoDRankTable
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
{
var
->
GetMutable
<
LoDTensorArray
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
PLACE_LIST
)
{
var
->
GetMutable
<
platform
::
PlaceList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
READER
)
{
var
->
GetMutable
<
ReaderHolder
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
RAW
)
{
// GetMutable will be called in operator
}
else
{
PADDLE_THROW
(
"Variable type %d is not in "
"[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
"LOD_RANK_TABLE, PLACE_LIST, READER, RAW]"
,
var_type
);
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/variable_helper.h
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/variable.h"
namespace
paddle
{
namespace
framework
{
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
);
}
}
paddle/fluid/inference/analysis/analysis_pass.h
浏览文件 @
a6ac4266
...
...
@@ -46,8 +46,6 @@ class AnalysisPass {
protected:
// User should implement these.
virtual
void
RunImpl
(
Argument
*
argument
)
=
0
;
Argument
*
argument_
{
nullptr
};
};
}
// namespace analysis
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
a6ac4266
...
...
@@ -190,9 +190,13 @@ bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
}
VLOG
(
3
)
<<
"predict cost: "
<<
timer
.
toc
()
<<
"ms"
;
// Fix TensorArray reuse not cleaned bug.
tensor_array_batch_cleaner_
.
CollectTensorArrays
(
scope_
.
get
());
tensor_array_batch_cleaner_
.
ResetTensorArray
();
// All the containers in the scope will be hold in inference, but the
// operators assume that the container will be reset after each batch.
// Here is a bugfix, collect all the container variables, and reset then to a
// bool; the next time, the operator will call MutableData and construct a new
// container again, so that the container will be empty for each batch.
tensor_array_batch_cleaner_
.
CollectNoTensorVars
(
sub_scope_
);
tensor_array_batch_cleaner_
.
ResetNoTensorVars
();
return
true
;
}
...
...
@@ -417,7 +421,7 @@ std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
bool
AnalysisPredictor
::
ZeroCopyRun
()
{
executor_
->
Run
();
// Fix TensorArray reuse not cleaned bug.
tensor_array_batch_cleaner_
.
CollectTensorArrays
(
s
cope_
.
get
()
);
tensor_array_batch_cleaner_
.
CollectTensorArrays
(
s
ub_scope_
);
tensor_array_batch_cleaner_
.
ResetTensorArray
();
return
true
;
}
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
a6ac4266
...
...
@@ -154,9 +154,9 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
}
VLOG
(
3
)
<<
"predict cost: "
<<
timer
.
toc
()
<<
"ms"
;
// F
ix TensorArray reuse not cleaned bug
.
tensor_array_batch_cleaner_
.
Collect
TensorArray
s
(
scope_
.
get
());
tensor_array_batch_cleaner_
.
Reset
TensorArray
();
// F
or some other vector like containers not cleaned after each batch
.
tensor_array_batch_cleaner_
.
Collect
NoTensorVar
s
(
scope_
.
get
());
tensor_array_batch_cleaner_
.
Reset
NoTensorVars
();
return
true
;
}
...
...
paddle/fluid/inference/api/details/reset_tensor_array.cc
浏览文件 @
a6ac4266
...
...
@@ -46,5 +46,28 @@ void TensorArrayBatchCleaner::ResetTensorArray() {
}
}
void
TensorArrayBatchCleaner
::
CollectNoTensorVars
(
framework
::
Scope
*
scope
)
{
if
(
no_tensor_flag_
)
{
for
(
auto
&
var_name
:
scope
->
LocalVarNames
())
{
auto
*
var
=
scope
->
FindVar
(
var_name
);
if
(
!
var
->
IsInitialized
())
continue
;
if
(
!
valid_types_
.
count
(
var
->
Type
()))
{
no_tensor_vars_
.
insert
(
var
);
}
}
for
(
auto
*
kid
:
scope
->
kids
())
{
CollectTensorArrays
(
kid
);
}
no_tensor_flag_
=
false
;
// Only collect one time.
}
}
void
TensorArrayBatchCleaner
::
ResetNoTensorVars
()
{
for
(
auto
*
var
:
no_tensor_vars_
)
{
var
->
Clear
();
}
}
}
// namespace details
}
// namespace paddle
paddle/fluid/inference/api/details/reset_tensor_array.h
浏览文件 @
a6ac4266
...
...
@@ -14,9 +14,11 @@
#pragma once
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
namespace
paddle
{
namespace
details
{
...
...
@@ -24,13 +26,28 @@ namespace details {
// Clean the TensorArray each batch to make the behavior the same with the
// training phase.
struct
TensorArrayBatchCleaner
{
TensorArrayBatchCleaner
()
{
valid_types_
.
insert
(
typeid
(
framework
::
Tensor
));
valid_types_
.
insert
(
typeid
(
framework
::
LoDTensor
));
}
// Collect the variables that are not Tensor or LoDTensor, and reset them to a
// bool(trick), because some of them are containers, and some operators just
// keep inserting new items without clearing the containers first; So the
// memory grow larger and larger in inference service deployed online.
void
CollectNoTensorVars
(
framework
::
Scope
*
scope
);
void
ResetNoTensorVars
();
// Fix the tensor array not clear in the inference scenarios.
void
CollectTensorArrays
(
framework
::
Scope
*
scope
);
void
ResetTensorArray
();
private:
bool
flag_
{
true
};
bool
no_tensor_flag_
{
true
};
std
::
vector
<
framework
::
LoDTensorArray
*>
arrays_
;
std
::
unordered_set
<
std
::
type_index
>
valid_types_
;
std
::
unordered_set
<
framework
::
Variable
*>
no_tensor_vars_
;
};
}
// namespace details
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
a6ac4266
...
...
@@ -46,11 +46,18 @@ set(RNN2_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn2")
download_model_and_data
(
${
RNN2_INSTALL_DIR
}
"rnn2_model.tar.gz"
"rnn2_data.txt.tar.gz"
)
inference_analysis_api_test
(
test_analyzer_rnn2
${
RNN2_INSTALL_DIR
}
analyzer_rnn2_tester.cc
)
# DAM
#
normal
DAM
set
(
DAM_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/dam"
)
download_model_and_data
(
${
DAM_INSTALL_DIR
}
"DAM_model.tar.gz"
"DAM_data.txt.tar.gz"
)
inference_analysis_api_test
(
test_analyzer_dam
${
DAM_INSTALL_DIR
}
analyzer_dam_tester.cc
)
# small DAM
set
(
DAM_SMALL_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/small_dam"
)
download_model_and_data
(
${
DAM_SMALL_INSTALL_DIR
}
"dam_small_model.tar.gz"
"dam_small_data.txt.tar.gz"
)
inference_analysis_test
(
test_analyzer_small_dam SRCS analyzer_dam_tester.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
DAM_SMALL_INSTALL_DIR
}
/model --infer_data=
${
DAM_SMALL_INSTALL_DIR
}
/data.txt --max_turn_num=1
)
# chinese_ner
set
(
CHINESE_NER_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/chinese_ner"
)
download_model_and_data
(
${
CHINESE_NER_INSTALL_DIR
}
"chinese_ner_model.tar.gz"
"chinese_ner-data.txt.tar.gz"
)
...
...
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
浏览文件 @
a6ac4266
...
...
@@ -14,38 +14,54 @@
#include "paddle/fluid/inference/tests/api/tester_helper.h"
DEFINE_int32
(
max_turn_num
,
9
,
"The max turn number: 1 for the small and 9 for the normal."
);
namespace
paddle
{
namespace
inference
{
using
contrib
::
AnalysisConfig
;
#define MAX_TURN_NUM 9
#define MAX_TURN_LEN 50
constexpr
int32_t
kMaxTurnLen
=
50
;
static
std
::
vector
<
float
>
result_data
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
turns
[
MAX_TURN_NUM
];
// turns data : MAX_TURN_NUM
std
::
vector
<
std
::
vector
<
float
>>
turns_mask
[
MAX_TURN_NUM
];
// turns mask data : MAX_TURN_NUM
std
::
vector
<
std
::
vector
<
int64_t
>>
response
;
// response data : 1
std
::
vector
<
std
::
vector
<
int64_t
>>
*
turns
;
std
::
vector
<
std
::
vector
<
float
>>
*
turns_mask
;
std
::
vector
<
std
::
vector
<
int64_t
>>
response
;
// response data : 1
std
::
vector
<
std
::
vector
<
float
>>
response_mask
;
// response mask data : 1
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
DataRecord
()
=
default
;
DataRecord
()
{
turns
=
new
std
::
vector
<
std
::
vector
<
int64_t
>>
[
FLAGS_max_turn_num
];
// turns data : FLAGS_max_turn_num
turns_mask
=
new
std
::
vector
<
std
::
vector
<
float
>>
[
FLAGS_max_turn_num
];
// turns mask data : FLAGS_max_turn_num
}
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
:
DataRecord
()
{
this
->
batch_size
=
batch_size
;
Load
(
path
);
}
~
DataRecord
()
{
delete
[]
turns
;
delete
[]
turns_mask
;
}
DataRecord
NextBatch
()
{
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
response
.
size
())
{
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
data
.
turns
[
i
].
assign
(
turns
[
i
].
begin
()
+
batch_iter
,
turns
[
i
].
begin
()
+
batch_end
);
}
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
data
.
turns_mask
[
i
].
assign
(
turns_mask
[
i
].
begin
()
+
batch_iter
,
turns_mask
[
i
].
begin
()
+
batch_end
);
}
...
...
@@ -60,6 +76,7 @@ struct DataRecord {
batch_iter
+=
batch_size
;
return
data
;
}
void
Load
(
const
std
::
string
&
path
)
{
std
::
ifstream
file
(
path
);
std
::
string
line
;
...
...
@@ -69,30 +86,30 @@ struct DataRecord {
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
split
(
line
,
','
,
&
data
);
CHECK_EQ
(
data
.
size
(),
(
size_t
)(
2
*
MAX_TURN_NUM
+
3
));
CHECK_EQ
(
data
.
size
(),
(
size_t
)(
2
*
FLAGS_max_turn_num
+
3
));
// load turn data
std
::
vector
<
int64_t
>
turns_tmp
[
MAX_TURN_NUM
];
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
std
::
vector
<
int64_t
>
turns_tmp
[
FLAGS_max_turn_num
];
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
split_to_int64
(
data
[
i
],
' '
,
&
turns_tmp
[
i
]);
turns
[
i
].
push_back
(
std
::
move
(
turns_tmp
[
i
]));
}
// load turn_mask data
std
::
vector
<
float
>
turns_mask_tmp
[
MAX_TURN_NUM
];
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
split_to_float
(
data
[
MAX_TURN_NUM
+
i
],
' '
,
&
turns_mask_tmp
[
i
]);
std
::
vector
<
float
>
turns_mask_tmp
[
FLAGS_max_turn_num
];
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
split_to_float
(
data
[
FLAGS_max_turn_num
+
i
],
' '
,
&
turns_mask_tmp
[
i
]);
turns_mask
[
i
].
push_back
(
std
::
move
(
turns_mask_tmp
[
i
]));
}
// load response data
std
::
vector
<
int64_t
>
response_tmp
;
split_to_int64
(
data
[
2
*
MAX_TURN_NUM
],
' '
,
&
response_tmp
);
split_to_int64
(
data
[
2
*
FLAGS_max_turn_num
],
' '
,
&
response_tmp
);
response
.
push_back
(
std
::
move
(
response_tmp
));
// load response_mask data
std
::
vector
<
float
>
response_mask_tmp
;
split_to_float
(
data
[
2
*
MAX_TURN_NUM
+
1
],
' '
,
&
response_mask_tmp
);
split_to_float
(
data
[
2
*
FLAGS_max_turn_num
+
1
],
' '
,
&
response_mask_tmp
);
response_mask
.
push_back
(
std
::
move
(
response_mask_tmp
));
// load result data
float
result_tmp
;
result_tmp
=
std
::
stof
(
data
[
2
*
MAX_TURN_NUM
+
2
]);
result_tmp
=
std
::
stof
(
data
[
2
*
FLAGS_max_turn_num
+
2
]);
result_data
.
push_back
(
result_tmp
);
}
num_samples
=
num_lines
;
...
...
@@ -101,8 +118,8 @@ struct DataRecord {
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
PaddleTensor
turns_tensor
[
MAX_TURN_NUM
];
PaddleTensor
turns_mask_tensor
[
MAX_TURN_NUM
];
PaddleTensor
turns_tensor
[
FLAGS_max_turn_num
];
PaddleTensor
turns_mask_tensor
[
FLAGS_max_turn_num
];
PaddleTensor
response_tensor
;
PaddleTensor
response_mask_tensor
;
std
::
string
turn_pre
=
"turn_"
;
...
...
@@ -110,16 +127,16 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
auto
one_batch
=
data
->
NextBatch
();
int
size
=
one_batch
.
response
[
0
].
size
();
CHECK_EQ
(
size
,
MAX_TURN_LEN
);
CHECK_EQ
(
size
,
kMaxTurnLen
);
// turn tensor assignment
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
turns_tensor
[
i
].
name
=
turn_pre
+
std
::
to_string
(
i
);
turns_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_tensor
[
i
].
dtype
=
PaddleDType
::
INT64
;
TensorAssignData
<
int64_t
>
(
&
turns_tensor
[
i
],
one_batch
.
turns
[
i
]);
}
// turn mask tensor assignment
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
turns_mask_tensor
[
i
].
name
=
turn_mask_pre
+
std
::
to_string
(
i
);
turns_mask_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_mask_tensor
[
i
].
dtype
=
PaddleDType
::
FLOAT32
;
...
...
@@ -137,10 +154,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
TensorAssignData
<
float
>
(
&
response_mask_tensor
,
one_batch
.
response_mask
);
// Set inputs.
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
input_slots
->
push_back
(
std
::
move
(
turns_tensor
[
i
]));
}
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
input_slots
->
push_back
(
std
::
move
(
turns_mask_tensor
[
i
]));
}
input_slots
->
push_back
(
std
::
move
(
response_tensor
));
...
...
@@ -202,8 +219,6 @@ TEST(Analyzer_dam, fuse_statis) {
auto
fuse_statis
=
GetFuseStatis
(
static_cast
<
AnalysisPredictor
*>
(
predictor
.
get
()),
&
num_ops
);
ASSERT_TRUE
(
fuse_statis
.
count
(
"fc_fuse"
));
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_fuse"
),
317
);
EXPECT_EQ
(
num_ops
,
2020
);
}
// Compare result of NativeConfig and AnalysisConfig
...
...
paddle/fluid/operators/cudnn_lstm_op.cc
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
class
CudnnLSTMOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(Weight) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"InitH"
),
"Input(init_h) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"InitC"
),
"Input(init_c) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Cache"
),
"Input(Cache) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"last_h"
),
"Output(last_h) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"last_c"
),
"Output(last_c) of LSTM should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
3
,
"Input(X)'s rank must be 3."
);
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"Input"
));
ctx
->
SetOutputDim
(
"last_h"
,
ctx
->
GetInputDim
(
"InitH"
));
ctx
->
SetOutputDim
(
"last_c"
,
ctx
->
GetInputDim
(
"InitC"
));
}
};
class
CudnnLSTMOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Input"
,
"(Tensor) RNN input tensor, which support variable-time length input "
"sequence."
"The shape of the Tensor MUST be ( seq_len * batch_size * input_size)"
"seq_len is the total time step in this mini-batch (CAN be change in "
"different batch)"
"batch_size is the instance number of this batch"
"input_size is the hidden size of the input."
"input_hidden_size and the hidden_size in the next may not be same"
);
AddInput
(
"InitH"
,
"(Tensor) the initial hidden state of the LSTM"
"input. This is a tensor with shape (num_layers x batch_size x "
"hidden_size)"
"and When is_bidirec is True, the shape will be (num_layers*2 x "
"batch_size x hidden_size)"
);
AddInput
(
"InitC"
,
"(Tensor) the initial cell state of the LSTm "
"input. This is a tensor with shape (num_layers x batch_size x "
"hidden_size)"
"and When is_bidirec is True, the shape will be (num_layers*2 x "
"batch_size x hidden_size)"
);
AddInput
(
"W"
,
"(Tensor) the learnable hidden-hidden weights."
" The shape is (N), where N is total weight size of the LSTM. "
" cudnn concatenate all the weight to one Tensor"
);
AddInput
(
"Cache"
,
"The cache of dropout op, a RAW type variable including random "
"number generator states and some descriptors, which is used in "
"cudnn kernel."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"(Tensor) the hidden state of LSTM operator. "
"The shape is ( seq_len x batch_size x hidden_size) if "
"is_bidirec is False"
"and When is_bidirec is True, the shape will be ( seq_len x "
"batch_size x hidden_size * 2) "
);
AddOutput
(
"last_h"
,
"(Tensor) the hidden state of the last step. "
"The shape is ( num_layers x batch_size x hidden_size) if "
"is_bidirec is False"
"and When is_bidirec is True, the shape will be (num_layers*2 x "
"batch_size x hidden_size)"
);
AddOutput
(
"last_c"
,
"(Tensor) the cell state of the last step"
"The shape is ( num_layers x batch_size x hidden_size) if "
"is_bidirec is False"
"and When is_bidirect is True, the shape will be (num_layers*2 x "
"batch_size x hidden_size*2)"
);
AddAttr
<
int
>
(
"max_len"
,
"max length of the LSTM op"
"the first dim of the Input can NOT be greater than max_len"
)
.
SetDefault
(
20
);
AddAttr
<
float
>
(
"dropout_prob"
,
"dropout prob of the dropout op"
"the dropout ONLY work between lstm layers, not between time steps"
"There is no dropout work on the Out tensor"
)
.
SetDefault
(
0.0
);
AddAttr
<
bool
>
(
"is_bidirec"
,
"is_bidirec"
"if it is bidirection rnn"
"The will affect the shape of the Out, last_h, and last_c"
)
.
SetDefault
(
false
);
AddAttr
<
int
>
(
"input_size"
,
"input size ot the Input Tensor"
).
SetDefault
(
10
);
AddAttr
<
int
>
(
"hidden_size"
,
"hidden size of the LSTM"
).
SetDefault
(
100
);
AddAttr
<
int
>
(
"num_layers"
,
"the total layer number of the LSTM"
)
.
SetDefault
(
1
);
AddAttr
<
bool
>
(
"is_test"
,
"True if in test phase."
).
SetDefault
(
false
);
AddAttr
<
int
>
(
"seed"
,
"seed to used if fix_seed is True"
).
SetDefault
(
-
1
);
AddComment
(
R"DOC(
CUDNN LSTM implementation
A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
$$ i_t = sigmoid(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
$$ f_t = sigmoid(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$
$$ o_t = sigmoid(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$
$$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$
$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$
$$ h_t = o_t \\odot tanh(c_t) $$
- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $\tilde{c_t}$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
X represensts a matrix multiplication
)DOC"
);
}
};
class
CudnnLSTMGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"last_h"
),
"Input(last_h) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"last_c"
),
"Input(last_c) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Cache"
),
"Input(last_c) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"InitH"
),
"Input(init_h) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"InitC"
),
"Input(init_c) of LSTM should not be null."
);
auto
SetOutGradDim
=
[
&
ctx
](
const
std
::
string
&
name
)
{
auto
g_name
=
framework
::
GradVarName
(
name
);
if
(
ctx
->
HasOutput
(
g_name
))
{
ctx
->
SetOutputDim
(
g_name
,
ctx
->
GetInputDim
(
name
));
}
};
SetOutGradDim
(
"Input"
);
SetOutGradDim
(
"W"
);
SetOutGradDim
(
"InitH"
);
SetOutGradDim
(
"InitC"
);
}
};
template
<
typename
T
>
class
NotImpleKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_THROW
(
"CPU is not support for this kernel now. Will be add in the future"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
cudnn_lstm
,
ops
::
CudnnLSTMOp
,
ops
::
CudnnLSTMOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
cudnn_lstm_grad
,
ops
::
CudnnLSTMGradOp
);
REGISTER_OP_CPU_KERNEL
(
cudnn_lstm
,
ops
::
NotImpleKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
cudnn_lstm_grad
,
ops
::
NotImpleKernel
<
float
>
);
paddle/fluid/operators/cudnn_lstm_op.cu.cc
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
struct
CudnnRNNCache
{
CudnnRNNCache
()
{
x_desc_
=
NULL
;
y_desc_
=
NULL
;
dx_desc_
=
NULL
;
dy_desc_
=
NULL
;
}
~
CudnnRNNCache
()
{
release
();
}
cudnnRNNDescriptor_t
rnn_desc_
;
cudnnTensorDescriptor_t
*
x_desc_
;
cudnnTensorDescriptor_t
*
y_desc_
;
cudnnTensorDescriptor_t
*
dx_desc_
;
cudnnTensorDescriptor_t
*
dy_desc_
;
cudnnTensorDescriptor_t
hx_desc_
;
cudnnTensorDescriptor_t
cx_desc_
;
cudnnTensorDescriptor_t
hy_desc_
;
cudnnTensorDescriptor_t
cy_desc_
;
cudnnTensorDescriptor_t
dhx_desc_
;
cudnnTensorDescriptor_t
dcx_desc_
;
cudnnTensorDescriptor_t
dhy_desc_
;
cudnnTensorDescriptor_t
dcy_desc_
;
cudnnTensorDescriptor_t
output_x_desc_
;
cudnnTensorDescriptor_t
output_y_desc_
;
cudnnDropoutDescriptor_t
dropout_desc_
;
size_t
weights_size_
;
cudnnFilterDescriptor_t
w_desc_
;
cudnnFilterDescriptor_t
dw_desc_
;
size_t
workspace_size_
;
size_t
reserve_size_
;
Tensor
reserve_data_
;
Tensor
workspace_data_
;
Tensor
dropout_state_
;
size_t
max_length_
;
float
dropout_prob_
;
bool
is_bidirec_
;
int
batch_size_
;
int
input_size_
;
int
hidden_size_
;
int
num_layers_
;
int
seed_
;
void
init
(
cudnnHandle_t
handle
,
const
framework
::
ExecutionContext
&
ctx
,
size_t
max_len
,
int
batch_size
,
int
input_size
,
int
hidden_size
,
int
num_layers
,
float
dropout_prob
,
bool
is_bidirec
,
int
seed
,
int
weight_numel
)
{
max_length_
=
max_len
;
batch_size_
=
batch_size
;
input_size_
=
input_size
;
hidden_size_
=
hidden_size
;
num_layers_
=
num_layers
;
dropout_prob_
=
dropout_prob
;
is_bidirec_
=
is_bidirec
;
seed_
=
seed
;
x_desc_
=
new
cudnnTensorDescriptor_t
[
max_length_
];
y_desc_
=
new
cudnnTensorDescriptor_t
[
max_length_
];
dx_desc_
=
new
cudnnTensorDescriptor_t
[
max_length_
];
dy_desc_
=
new
cudnnTensorDescriptor_t
[
max_length_
];
int
dim_a
[
3
];
int
stride_a
[
3
];
for
(
size_t
i
=
0
;
i
<
max_length_
;
++
i
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
x_desc_
[
i
]));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
y_desc_
[
i
]));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
dx_desc_
[
i
]));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
dy_desc_
[
i
]));
dim_a
[
0
]
=
batch_size_
;
dim_a
[
1
]
=
input_size_
;
dim_a
[
2
]
=
1
;
stride_a
[
0
]
=
dim_a
[
2
]
*
dim_a
[
1
];
stride_a
[
1
]
=
dim_a
[
2
];
stride_a
[
2
]
=
1
;
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
x_desc_
[
i
],
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
dx_desc_
[
i
],
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
dim_a
[
0
]
=
batch_size_
;
dim_a
[
1
]
=
is_bidirec_
?
hidden_size_
*
2
:
hidden_size_
;
dim_a
[
2
]
=
1
;
stride_a
[
0
]
=
dim_a
[
2
]
*
dim_a
[
1
];
stride_a
[
1
]
=
dim_a
[
2
];
stride_a
[
2
]
=
1
;
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
y_desc_
[
i
],
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
dy_desc_
[
i
],
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
}
dim_a
[
0
]
=
num_layers_
*
(
is_bidirec_
?
2
:
1
);
dim_a
[
1
]
=
batch_size_
;
dim_a
[
2
]
=
hidden_size_
;
stride_a
[
0
]
=
dim_a
[
2
]
*
dim_a
[
1
];
stride_a
[
1
]
=
dim_a
[
2
];
stride_a
[
2
]
=
1
;
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
hx_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
cx_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
hy_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
cy_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
dhx_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
dcx_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
dhy_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateTensorDescriptor
(
&
dcy_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
hx_desc_
,
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
cx_desc_
,
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
hy_desc_
,
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
cy_desc_
,
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
dhx_desc_
,
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
dcx_desc_
,
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
dhy_desc_
,
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetTensorNdDescriptor
(
dcy_desc_
,
CUDNN_DATA_FLOAT
,
3
,
dim_a
,
stride_a
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateDropoutDescriptor
(
&
dropout_desc_
));
size_t
state_size
;
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDropoutGetStatesSize
(
handle
,
&
state_size
);
dropout_state_
.
Resize
({
static_cast
<
int64_t
>
(
state_size
)}));
auto
*
dropout_state_data
=
dropout_state_
.
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetDropoutDescriptor
(
dropout_desc_
,
handle
,
dropout_prob_
,
dropout_state_data
,
state_size
,
seed_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateRNNDescriptor
(
&
rnn_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetRNNDescriptor_v6
(
handle
,
rnn_desc_
,
hidden_size_
,
num_layers_
,
dropout_desc_
,
CUDNN_LINEAR_INPUT
,
is_bidirec_
?
CUDNN_BIDIRECTIONAL
:
CUDNN_UNIDIRECTIONAL
,
CUDNN_LSTM
,
CUDNN_RNN_ALGO_STANDARD
,
CUDNN_DATA_FLOAT
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateFilterDescriptor
(
&
w_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateFilterDescriptor
(
&
dw_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnGetRNNParamsSize
(
handle
,
rnn_desc_
,
x_desc_
[
0
],
&
weights_size_
,
CUDNN_DATA_FLOAT
));
PADDLE_ENFORCE_EQ
(
weights_size_
,
sizeof
(
float
)
*
weight_numel
,
"cudnn lstm weight size should be SAME"
);
int
dim_w
[
3
];
dim_w
[
0
]
=
weights_size_
/
sizeof
(
float
);
dim_w
[
1
]
=
1
;
dim_w
[
2
]
=
1
;
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetFilterNdDescriptor
(
w_desc_
,
CUDNN_DATA_FLOAT
,
CUDNN_TENSOR_NCHW
,
3
,
dim_w
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetFilterNdDescriptor
(
dw_desc_
,
CUDNN_DATA_FLOAT
,
CUDNN_TENSOR_NCHW
,
3
,
dim_w
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnGetRNNWorkspaceSize
(
handle
,
rnn_desc_
,
max_length_
,
x_desc_
,
&
workspace_size_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnGetRNNTrainingReserveSize
(
handle
,
rnn_desc_
,
max_length_
,
x_desc_
,
&
reserve_size_
));
reserve_data_
.
Resize
({
static_cast
<
int64_t
>
(
reserve_size_
)});
reserve_data_
.
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
workspace_data_
.
Resize
({
static_cast
<
int64_t
>
(
workspace_size_
)});
workspace_data_
.
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
}
void
release
()
{
for
(
size_t
i
=
0
;
i
<
max_length_
;
++
i
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
x_desc_
[
i
]));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
y_desc_
[
i
]));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
dx_desc_
[
i
]));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
dy_desc_
[
i
]));
}
delete
[]
x_desc_
;
delete
[]
y_desc_
;
delete
[]
dx_desc_
;
delete
[]
dy_desc_
;
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
hx_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
cx_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
hy_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
cy_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
dhx_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
dcx_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
dhy_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
dcy_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyDropoutDescriptor
(
dropout_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyRNNDescriptor
(
rnn_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyFilterDescriptor
(
w_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyFilterDescriptor
(
dw_desc_
));
}
};
template
<
typename
T
>
class
CudnnLSTMGPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
init_h
=
ctx
.
Input
<
Tensor
>
(
"InitH"
);
const
Tensor
*
init_c
=
ctx
.
Input
<
Tensor
>
(
"InitC"
);
auto
w
=
ctx
.
Input
<
Tensor
>
(
"W"
);
Tensor
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
Tensor
*
last_h
=
ctx
.
Output
<
Tensor
>
(
"last_h"
);
Tensor
*
last_c
=
ctx
.
Output
<
Tensor
>
(
"last_c"
);
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
init_h_data
=
init_h
->
data
<
T
>
();
const
T
*
init_c_data
=
init_c
->
data
<
T
>
();
const
T
*
w_data
=
w
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
last_h_data
=
last_h
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
last_c_data
=
last_c
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
size_t
max_len
=
ctx
.
Attr
<
int
>
(
"max_len"
);
float
dropout_prob
=
ctx
.
Attr
<
float
>
(
"dropout_prob"
);
bool
is_bidirec
=
ctx
.
Attr
<
bool
>
(
"is_bidirec"
);
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
int
hidden_size
=
ctx
.
Attr
<
int
>
(
"hidden_size"
);
int
num_layers
=
ctx
.
Attr
<
int
>
(
"num_layers"
);
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
cache_var
=
ctx
.
InputVar
(
"Cache"
);
if
(
!
cache_var
)
{
// The RAW type cache variable wouldn't be created and broadcasted on
// multi-devices before the first running.
// use parent scope to make cache persistable
auto
*
scope
=
const_cast
<
framework
::
Scope
*>
(
ctx
.
scope
().
parent
());
auto
cache_var_name
=
ctx
.
Inputs
(
"Cache"
)[
0
];
cache_var
=
scope
->
Var
(
cache_var_name
);
}
CudnnRNNCache
*
cudnn_rnn_cache
=
nullptr
;
if
(
cache_var
->
IsInitialized
())
{
cudnn_rnn_cache
=
const_cast
<
framework
::
Variable
*>
(
cache_var
)
->
GetMutable
<
CudnnRNNCache
>
();
}
else
{
cudnn_rnn_cache
=
const_cast
<
framework
::
Variable
*>
(
cache_var
)
->
GetMutable
<
CudnnRNNCache
>
();
std
::
random_device
rnd
;
int
seed
=
ctx
.
Attr
<
int
>
(
"seed"
);
if
(
seed
==
-
1
)
{
seed
=
rnd
();
}
auto
input_w_numel
=
w
->
numel
();
auto
batch_size
=
x
->
dims
()[
1
];
cudnn_rnn_cache
->
init
(
handle
,
ctx
,
max_len
,
batch_size
,
input_size
,
hidden_size
,
num_layers
,
dropout_prob
,
is_bidirec
,
seed
,
input_w_numel
);
}
auto
run_seq_len
=
x
->
dims
()[
0
];
if
(
is_test
)
{
// for inference
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnRNNForwardInference
(
handle
,
cudnn_rnn_cache
->
rnn_desc_
,
run_seq_len
,
cudnn_rnn_cache
->
x_desc_
,
x_data
,
cudnn_rnn_cache
->
hx_desc_
,
init_h_data
,
cudnn_rnn_cache
->
cx_desc_
,
init_c_data
,
cudnn_rnn_cache
->
w_desc_
,
w_data
,
cudnn_rnn_cache
->
y_desc_
,
out_data
,
cudnn_rnn_cache
->
hy_desc_
,
last_h_data
,
cudnn_rnn_cache
->
cy_desc_
,
last_c_data
,
cudnn_rnn_cache
->
workspace_data_
.
data
<
uint8_t
>
(),
cudnn_rnn_cache
->
workspace_size_
));
}
else
{
// for train
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnRNNForwardTraining
(
handle
,
cudnn_rnn_cache
->
rnn_desc_
,
run_seq_len
,
cudnn_rnn_cache
->
x_desc_
,
x_data
,
cudnn_rnn_cache
->
hx_desc_
,
init_h_data
,
cudnn_rnn_cache
->
cx_desc_
,
init_c_data
,
cudnn_rnn_cache
->
w_desc_
,
w_data
,
cudnn_rnn_cache
->
y_desc_
,
out_data
,
cudnn_rnn_cache
->
hy_desc_
,
last_h_data
,
cudnn_rnn_cache
->
cy_desc_
,
last_c_data
,
cudnn_rnn_cache
->
workspace_data_
.
data
<
uint8_t
>
(),
cudnn_rnn_cache
->
workspace_size_
,
cudnn_rnn_cache
->
reserve_data_
.
data
<
uint8_t
>
(),
cudnn_rnn_cache
->
reserve_size_
));
}
}
};
template
<
typename
T
>
class
CudnnLSTMGPUGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"W"
);
auto
*
init_h
=
ctx
.
Input
<
Tensor
>
(
"InitH"
);
auto
*
init_c
=
ctx
.
Input
<
Tensor
>
(
"InitC"
);
// auto * last_h = ctx.Input<Tensor>("last_h");
// auto * last_c = ctx.Input<Tensor>("last_c");
auto
*
out
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
last_h_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"last_h"
));
auto
*
last_c_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"last_c"
));
// auto* init_h = ctx.Input<Tensor>("init_h");
// auto* init_c = ctx.Input<Tensor>("init_c");
auto
*
in_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
*
weight_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"W"
));
auto
*
init_h_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"InitH"
));
auto
*
init_c_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"InitC"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
cache_var
=
ctx
.
InputVar
(
"Cache"
);
PADDLE_ENFORCE
(
cache_var
->
IsInitialized
());
CudnnRNNCache
*
cudnn_rnn_cache
=
const_cast
<
framework
::
Variable
*>
(
cache_var
)
->
GetMutable
<
CudnnRNNCache
>
();
auto
input_dims
=
input
->
dims
();
auto
weight_dims
=
weight
->
dims
();
auto
init_h_dims
=
init_h
->
dims
();
auto
init_c_dims
=
init_c
->
dims
();
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
weight_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
paddle
::
platform
::
CUDADeviceContext
,
T
>
zero
;
zero
(
dev_ctx
,
in_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
weight_grad
,
static_cast
<
T
>
(
0.0
));
T
*
init_h_grad_data
=
NULL
;
if
(
init_h_grad
==
nullptr
)
{
Tensor
init_h_grad_temp
;
init_h_grad_temp
.
mutable_data
<
T
>
(
init_h_dims
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
&
init_h_grad_temp
,
static_cast
<
T
>
(
0.0
));
init_h_grad_data
=
init_h_grad_temp
.
data
<
T
>
();
}
else
{
init_h_grad
->
mutable_data
<
T
>
(
init_h_dims
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
init_h_grad
,
static_cast
<
T
>
(
0.0
));
init_h_grad_data
=
init_h_grad
->
data
<
T
>
();
}
T
*
init_c_grad_data
=
NULL
;
if
(
init_c_grad
==
nullptr
)
{
Tensor
init_c_grad_temp
;
init_c_grad_temp
.
mutable_data
<
T
>
(
init_c_dims
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
&
init_c_grad_temp
,
static_cast
<
T
>
(
0.0
));
init_c_grad_data
=
init_c_grad_temp
.
data
<
T
>
();
}
else
{
init_c_grad
->
mutable_data
<
T
>
(
init_c_dims
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
init_c_grad
,
static_cast
<
T
>
(
0.0
));
init_c_grad_data
=
init_c_grad
->
data
<
T
>
();
}
const
T
*
last_h_grad_data
=
NULL
;
if
(
last_h_grad
==
nullptr
)
{
Tensor
last_h_grad_temp
;
last_h_grad_temp
.
mutable_data
<
T
>
(
init_h_dims
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
&
last_h_grad_temp
,
static_cast
<
T
>
(
0.0
));
last_h_grad_data
=
(
const
T
*
)
last_h_grad_temp
.
data
<
T
>
();
}
else
{
last_h_grad_data
=
last_h_grad
->
data
<
T
>
();
}
const
T
*
last_c_grad_data
=
NULL
;
if
(
last_c_grad
==
nullptr
)
{
Tensor
last_c_grad_temp
;
last_c_grad_temp
.
mutable_data
<
T
>
(
init_c_dims
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
&
last_c_grad_temp
,
static_cast
<
T
>
(
0.0
));
last_c_grad_data
=
(
const
T
*
)
last_c_grad_temp
.
data
<
T
>
();
}
else
{
last_c_grad_data
=
last_c_grad
->
data
<
T
>
();
}
const
T
*
out_grad_data
=
NULL
;
if
(
out_grad
==
nullptr
)
{
Tensor
out_grad_temp
;
out_grad_temp
.
mutable_data
<
T
>
(
out
->
dims
(),
ctx
.
GetPlace
());
zero
(
dev_ctx
,
&
out_grad_temp
,
static_cast
<
T
>
(
0.0
));
out_grad_data
=
(
const
T
*
)
out_grad_temp
.
data
<
T
>
();
}
else
{
out_grad_data
=
out_grad
->
data
<
T
>
();
}
// zero( dev_ctx, last_h_grad, static_cast<T>(0.0));
// zero( dev_ctx, last_c_grad, static_cast<T>(0.0));
auto
out_data
=
out
->
data
<
T
>
();
// auto out_grad_data = out_grad->data<T>();
auto
weight_data
=
weight
->
data
<
T
>
();
auto
init_h_data
=
init_h
->
data
<
T
>
();
auto
init_c_data
=
init_c
->
data
<
T
>
();
auto
in_grad_data
=
in_grad
->
data
<
T
>
();
auto
work_data
=
cudnn_rnn_cache
->
workspace_data_
.
data
<
uint8_t
>
();
auto
reserve_data
=
cudnn_rnn_cache
->
reserve_data_
.
data
<
uint8_t
>
();
auto
run_seq_len
=
input_dims
[
0
];
PADDLE_ENFORCE_LE
((
size_t
)
run_seq_len
,
cudnn_rnn_cache
->
max_length_
,
"cudnn running seq_len CAN not greater max_lengh"
);
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnRNNBackwardData
(
handle
,
cudnn_rnn_cache
->
rnn_desc_
,
run_seq_len
,
cudnn_rnn_cache
->
y_desc_
,
out_data
,
cudnn_rnn_cache
->
dy_desc_
,
out_grad_data
,
cudnn_rnn_cache
->
dhy_desc_
,
last_h_grad_data
,
cudnn_rnn_cache
->
dcy_desc_
,
last_c_grad_data
,
cudnn_rnn_cache
->
w_desc_
,
weight_data
,
cudnn_rnn_cache
->
hx_desc_
,
init_h_data
,
cudnn_rnn_cache
->
cx_desc_
,
init_c_data
,
cudnn_rnn_cache
->
dx_desc_
,
in_grad_data
,
cudnn_rnn_cache
->
dhx_desc_
,
init_h_grad_data
,
cudnn_rnn_cache
->
dcx_desc_
,
init_c_grad_data
,
work_data
,
cudnn_rnn_cache
->
workspace_size_
,
reserve_data
,
cudnn_rnn_cache
->
reserve_size_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnRNNBackwardWeights
(
handle
,
cudnn_rnn_cache
->
rnn_desc_
,
run_seq_len
,
cudnn_rnn_cache
->
x_desc_
,
input
->
data
<
T
>
(),
cudnn_rnn_cache
->
hx_desc_
,
init_h
->
data
<
T
>
(),
cudnn_rnn_cache
->
y_desc_
,
out
->
data
<
T
>
(),
cudnn_rnn_cache
->
workspace_data_
.
data
<
uint8_t
>
(),
cudnn_rnn_cache
->
workspace_size_
,
cudnn_rnn_cache
->
dw_desc_
,
weight_grad
->
data
<
T
>
(),
cudnn_rnn_cache
->
reserve_data_
.
data
<
uint8_t
>
(),
cudnn_rnn_cache
->
reserve_size_
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
cudnn_lstm
,
ops
::
CudnnLSTMGPUKernel
<
float
>
);
REGISTER_OP_CUDA_KERNEL
(
cudnn_lstm_grad
,
ops
::
CudnnLSTMGPUGradKernel
<
float
>
);
paddle/fluid/operators/detection/box_coder_op.h
浏览文件 @
a6ac4266
...
...
@@ -43,6 +43,9 @@ class BoxCoderKernel : public framework::OpKernel<T> {
const
T
*
prior_box_var_data
=
nullptr
;
if
(
prior_box_var
)
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
...
...
@@ -96,6 +99,9 @@ class BoxCoderKernel : public framework::OpKernel<T> {
const
T
*
prior_box_var_data
=
nullptr
;
if
(
prior_box_var
)
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
...
...
paddle/fluid/operators/distributed/request_handler_impl.cc
浏览文件 @
a6ac4266
...
...
@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/distributed/request_handler_impl.h"
#include <iostream>
#include <string>
#include <vector>
...
...
@@ -20,7 +21,7 @@
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/
operators/distributed/request_handler_impl
.h"
#include "paddle/fluid/
framework/variable_helper
.h"
#include "paddle/fluid/operators/distributed/rpc_server.h"
#include "paddle/fluid/string/printf.h"
...
...
paddle/fluid/operators/lookup_table_op.cu
浏览文件 @
a6ac4266
...
...
@@ -31,8 +31,8 @@ __global__ void LookupTable(T *output, const T *table, const int64_t *ids,
while
(
idy
<
K
)
{
int64_t
id
=
ids
[
idy
];
PADDLE_ASSERT
(
id
>=
0
);
PADDLE_ASSERT
(
id
<
N
);
PADDLE_ASSERT
_MSG_CODE
(
id
>=
0
,
"received id:"
,
id
);
PADDLE_ASSERT
_MSG_CODE
(
id
<
N
,
"received id:"
,
id
);
T
*
out
=
output
+
idy
*
D
;
const
T
*
tab
=
table
+
id
*
D
;
for
(
int
i
=
idx
;
i
<
D
;
i
+=
BlockDimX
)
{
...
...
@@ -57,9 +57,9 @@ __global__ void LookupTableGrad(T *table, const T *output, const int64_t *ids,
int
idy
=
blockIdx
.
x
+
threadIdx
.
y
*
GridDimX
;
while
(
idy
<
K
)
{
int
id
=
ids
[
idy
];
PADDLE_ASSERT
(
id
>=
0
);
PADDLE_ASSERT
(
id
<
N
);
int
64_t
id
=
ids
[
idy
];
PADDLE_ASSERT
_MSG_CODE
(
id
>=
0
,
"received id:"
,
id
);
PADDLE_ASSERT
_MSG_CODE
(
id
<
N
,
"received id:"
,
id
);
const
T
*
out
=
output
+
idy
*
D
;
T
*
tab
=
table
+
id
*
D
;
for
(
int
i
=
idx
;
i
<
D
;
i
+=
BlockDimX
)
{
...
...
paddle/fluid/operators/metrics/auc_op.h
浏览文件 @
a6ac4266
...
...
@@ -75,8 +75,13 @@ class AucKernel : public framework::OpKernel<T> {
const
auto
*
label_data
=
label
->
data
<
int64_t
>
();
for
(
size_t
i
=
0
;
i
<
batch_size
;
i
++
)
{
uint32_t
binIdx
=
static_cast
<
uint32_t
>
(
inference_data
[
i
*
inference_width
+
1
]
*
num_thresholds
);
auto
predict_data
=
inference_data
[
i
*
inference_width
+
1
];
PADDLE_ENFORCE_LE
(
predict_data
,
1
,
"The predict data must less or equal 1."
);
PADDLE_ENFORCE_GE
(
predict_data
,
0
,
"The predict data must gather or equal 0."
);
uint32_t
binIdx
=
static_cast
<
uint32_t
>
(
predict_data
*
num_thresholds
);
if
(
label_data
[
i
])
{
(
*
stat_pos
)[
binIdx
]
+=
1.0
;
}
else
{
...
...
paddle/fluid/operators/pad2d_op.cc
浏览文件 @
a6ac4266
...
...
@@ -319,20 +319,46 @@ void Pad2DGradEdgeNHWC(T* d_in_data, const int num, const int channels,
}
}
static
inline
void
GetPaddings
(
int
*
paddings
,
const
framework
::
ExecutionContext
&
context
)
{
auto
*
paddings_t
=
context
.
Input
<
Tensor
>
(
"Paddings"
);
if
(
paddings_t
)
{
auto
paddings_data
=
paddings_t
->
data
<
int
>
();
paddings
[
0
]
=
paddings_data
[
0
];
paddings
[
1
]
=
paddings_data
[
1
];
paddings
[
2
]
=
paddings_data
[
2
];
paddings
[
3
]
=
paddings_data
[
3
];
}
else
{
auto
pads
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
copy
(
pads
.
begin
(),
pads
.
end
(),
paddings
);
}
}
template
<
typename
T
>
class
Pad2dCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
pads
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
int
pads
[
4
];
GetPaddings
(
pads
,
context
);
auto
mode
=
context
.
Attr
<
std
::
string
>
(
"mode"
);
auto
data_format
=
context
.
Attr
<
std
::
string
>
(
"data_format"
);
T
value
=
context
.
Attr
<
T
>
(
"pad_value"
);
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
in_dims
=
x
->
dims
();
auto
out_dims
=
out
->
dims
();
const
T
*
in_data
=
x
->
data
<
T
>
();
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
if
(
data_format
==
"NCHW"
)
{
out
->
Resize
({
in_dims
[
0
],
in_dims
[
1
],
in_dims
[
2
]
+
pads
[
0
]
+
pads
[
1
],
in_dims
[
3
]
+
pads
[
2
]
+
pads
[
3
]});
}
else
{
out
->
Resize
({
in_dims
[
0
],
in_dims
[
1
]
+
pads
[
0
]
+
pads
[
1
],
in_dims
[
2
]
+
pads
[
2
]
+
pads
[
3
],
in_dims
[
3
]});
}
auto
out_dims
=
out
->
dims
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
pad_top
=
pads
[
0
];
const
int
pad_left
=
pads
[
2
];
const
int
num
=
in_dims
[
0
];
...
...
@@ -376,7 +402,8 @@ template <typename T>
class
Pad2dGradCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
pads
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
int
pads
[
4
];
GetPaddings
(
pads
,
context
);
auto
mode
=
context
.
Attr
<
std
::
string
>
(
"mode"
);
auto
data_format
=
context
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
*
d_out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
...
...
@@ -442,21 +469,35 @@ class Pad2dOp : public framework::OperatorWithKernel {
"Output(Out) of Pad2dOp should not be null."
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
PADDLE_ENFORCE_EQ
(
x_dim
.
size
(),
4
,
"Size of paddings should be equal to 4."
);
std
::
vector
<
int64_t
>
out_dims
(
x_dim
.
size
());
"The size of input(X)'s dimension should be equal to 4."
);
std
::
vector
<
int64_t
>
out_dims
(
x_dim
.
size
());
auto
data_format
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"data_format"
);
out_dims
[
0
]
=
x_dim
[
0
];
if
(
data_format
==
"NCHW"
)
{
if
(
ctx
->
HasInput
(
"Paddings"
))
{
auto
paddings_dim
=
ctx
->
GetInputDim
(
"Paddings"
);
PADDLE_ENFORCE_EQ
(
paddings_dim
.
size
(),
1
,
"Size of Input(Paddings)'s dimension should be equal to 1."
);
PADDLE_ENFORCE_EQ
(
paddings_dim
[
0
],
4
,
"Shape of Input(Paddings) should be equal to [4]."
);
out_dims
[
1
]
=
x_dim
[
1
];
out_dims
[
2
]
=
x_dim
[
2
]
+
paddings
[
0
]
+
paddings
[
1
];
// height
out_dims
[
3
]
=
x_dim
[
3
]
+
paddings
[
2
]
+
paddings
[
3
];
// width
}
else
{
// NHWC
out_dims
[
2
]
=
x_dim
[
2
];
out_dims
[
3
]
=
x_dim
[
3
];
out_dims
[
1
]
=
x_dim
[
1
]
+
paddings
[
0
]
+
paddings
[
1
];
out_dims
[
2
]
=
x_dim
[
2
]
+
paddings
[
2
]
+
paddings
[
3
];
}
else
{
auto
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
4
,
"Size of paddings should be equal to 4."
);
if
(
data_format
==
"NCHW"
)
{
out_dims
[
1
]
=
x_dim
[
1
];
out_dims
[
2
]
=
x_dim
[
2
]
+
paddings
[
0
]
+
paddings
[
1
];
// height
out_dims
[
3
]
=
x_dim
[
3
]
+
paddings
[
2
]
+
paddings
[
3
];
// width
}
else
{
// NHWC
out_dims
[
3
]
=
x_dim
[
3
];
out_dims
[
1
]
=
x_dim
[
1
]
+
paddings
[
0
]
+
paddings
[
1
];
out_dims
[
2
]
=
x_dim
[
2
]
+
paddings
[
2
]
+
paddings
[
3
];
}
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dims
));
...
...
@@ -466,6 +507,13 @@ class Pad2dOp : public framework::OperatorWithKernel {
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
class
Pad2dOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -477,6 +525,12 @@ class Pad2dOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"The output of pad2d op. "
"A tensor with the same shape as X."
);
AddInput
(
"Paddings"
,
"A 1-D tensor to describe the padding rules."
"paddings=[0, 1, 2, 3] means "
"padding 0 row to top, 1 row to bottom, 2 columns to left "
"and 3 columns to right. Size of paddings must be 4."
)
.
AsDispensable
();
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector<int>) "
...
...
@@ -554,6 +608,13 @@ class Pad2dOpGrad : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
class
Pad2dOpGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
...
...
@@ -564,6 +625,7 @@ class Pad2dOpGradMaker : public framework::SingleGradOpDescMaker {
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
bind
=
new
framework
::
OpDesc
();
bind
->
SetInput
(
"X"
,
Input
(
"X"
));
bind
->
SetInput
(
"Paddings"
,
Input
(
"Paddings"
));
bind
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
bind
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
bind
->
SetAttrMap
(
Attrs
());
...
...
paddle/fluid/operators/pad2d_op.cu
浏览文件 @
a6ac4266
...
...
@@ -287,20 +287,50 @@ __global__ void Pad2DGradEdgeNHWC(const int out_size, T* d_in_data,
}
}
static
inline
void
GetPaddings
(
int
*
paddings
,
const
framework
::
ExecutionContext
&
context
)
{
auto
*
paddings_t
=
context
.
Input
<
Tensor
>
(
"Paddings"
);
if
(
paddings_t
)
{
Tensor
pads
;
framework
::
TensorCopySync
(
*
paddings_t
,
platform
::
CPUPlace
(),
&
pads
);
auto
pads_data
=
pads
.
data
<
int
>
();
paddings
[
0
]
=
pads_data
[
0
];
paddings
[
1
]
=
pads_data
[
1
];
paddings
[
2
]
=
pads_data
[
2
];
paddings
[
3
]
=
pads_data
[
3
];
}
else
{
auto
pads
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
copy
(
pads
.
begin
(),
pads
.
end
(),
paddings
);
}
}
template
<
typename
T
>
class
Pad2dCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
pads
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
int
pads
[
4
];
GetPaddings
(
pads
,
context
);
auto
mode
=
context
.
Attr
<
std
::
string
>
(
"mode"
);
auto
data_format
=
context
.
Attr
<
std
::
string
>
(
"data_format"
);
T
value
=
context
.
Attr
<
T
>
(
"pad_value"
);
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
in_dims
=
x
->
dims
();
auto
out_dims
=
out
->
dims
();
const
T
*
in_data
=
x
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
out_dims
=
out
->
dims
();
if
(
data_format
==
"NCHW"
)
{
out_dims
[
0
]
=
in_dims
[
0
];
out_dims
[
1
]
=
in_dims
[
1
];
out_dims
[
2
]
=
in_dims
[
2
]
+
pads
[
0
]
+
pads
[
1
];
out_dims
[
3
]
=
in_dims
[
3
]
+
pads
[
2
]
+
pads
[
3
];
}
else
{
out_dims
[
0
]
=
in_dims
[
0
];
out_dims
[
1
]
=
in_dims
[
1
]
+
pads
[
0
]
+
pads
[
1
];
out_dims
[
2
]
=
in_dims
[
2
]
+
pads
[
2
]
+
pads
[
3
];
out_dims
[
3
]
=
in_dims
[
3
];
}
T
*
out_data
=
out
->
mutable_data
<
T
>
(
out_dims
,
context
.
GetPlace
());
const
int
pad_top
=
pads
[
0
];
const
int
pad_left
=
pads
[
2
];
const
int
num
=
in_dims
[
0
];
...
...
@@ -356,7 +386,8 @@ template <typename T>
class
Pad2dGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
pads
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
int
pads
[
4
];
GetPaddings
(
pads
,
context
);
auto
mode
=
context
.
Attr
<
std
::
string
>
(
"mode"
);
auto
data_format
=
context
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
*
d_out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
...
...
paddle/fluid/platform/assert.h
浏览文件 @
a6ac4266
...
...
@@ -36,6 +36,15 @@ limitations under the License. */
asm("trap;"); \
} \
} while (0)
#define PADDLE_ASSERT_MSG_CODE(e, m, c) \
do { \
if (!(e)) { \
printf("%s:%d Assertion `%s` failed (%s %d).\n", __FILE__, __LINE__, \
TOSTRING(e), m, c); \
asm("trap;"); \
} \
} while (0)
#else
#include <assert.h>
// For cuda, the assertions can affect performance and it is therefore
...
...
@@ -43,4 +52,5 @@ limitations under the License. */
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#assertion
#define PADDLE_ASSERT(e) assert((e))
#define PADDLE_ASSERT_MSG(e, m) assert((e) && (m))
#define PADDLE_ASSERT_MSG_CODE(e, m, c) assert((e) && (m) && (c || 1))
#endif
paddle/fluid/platform/dynload/cudnn.h
浏览文件 @
a6ac4266
...
...
@@ -111,7 +111,23 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
__macro(cudnnFindConvolutionForwardAlgorithmEx); \
__macro(cudnnFindConvolutionBackwardFilterAlgorithmEx); \
__macro(cudnnFindConvolutionBackwardDataAlgorithmEx); \
__macro(cudnnGetErrorString);
__macro(cudnnGetErrorString); \
__macro(cudnnCreateDropoutDescriptor); \
__macro(cudnnDropoutGetStatesSize); \
__macro(cudnnSetDropoutDescriptor); \
__macro(cudnnCreateRNNDescriptor); \
__macro(cudnnSetRNNDescriptor); \
__macro(cudnnGetRNNParamsSize); \
__macro(cudnnGetRNNWorkspaceSize); \
__macro(cudnnGetRNNTrainingReserveSize); \
__macro(cudnnRNNForwardTraining); \
__macro(cudnnRNNBackwardData); \
__macro(cudnnRNNBackwardWeights); \
__macro(cudnnRNNForwardInference); \
__macro(cudnnDestroyDropoutDescriptor); \
__macro(cudnnDestroyRNNDescriptor); \
__macro(cudnnSetRNNDescriptor_v6);
CUDNN_DNN_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
#define CUDNN_DNN_ROUTINE_EACH_R2(__macro) \
...
...
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
a6ac4266
set
(
PYBIND_DEPS pybind python proto_desc memory executor prune feed_fetch_method pass_builder parallel_executor profiler
)
set
(
PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc
)
set
(
PYBIND_DEPS pybind python proto_desc memory executor
async_executor
prune feed_fetch_method pass_builder parallel_executor profiler
)
set
(
PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc
async_executor_py.cc
)
if
(
WITH_PYTHON
)
if
(
WITH_AMD_GPU
)
hip_library
(
paddle_pybind SHARED
...
...
paddle/fluid/pybind/async_executor_py.cc
0 → 100644
浏览文件 @
a6ac4266
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fcntl.h>
// To avoid conflicting definition in gcc-4.8.2 headers and pyconfig.h (2.7.3)
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif
#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif
#include <string>
#include <vector>
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/text_format.h"
#include "paddle/fluid/framework/async_executor.h"
#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/data_feed.pb.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/variant.h"
#include "paddle/fluid/pybind/async_executor_py.h"
namespace
py
=
pybind11
;
namespace
pd
=
paddle
::
framework
;
namespace
paddle
{
namespace
pybind
{
using
set_name_func
=
void
(
pd
::
DataFeedDesc
::*
)(
const
std
::
string
&
);
void
BindAsyncExecutor
(
py
::
module
*
m
)
{
py
::
class_
<
framework
::
AsyncExecutor
>
(
*
m
,
"AsyncExecutor"
)
.
def
(
py
::
init
([](
framework
::
Scope
*
scope
,
const
platform
::
Place
&
place
)
{
return
std
::
unique_ptr
<
framework
::
AsyncExecutor
>
(
new
framework
::
AsyncExecutor
(
scope
,
place
));
}))
.
def
(
"run_from_files"
,
&
framework
::
AsyncExecutor
::
RunFromFile
);
}
// end BindAsyncExecutor
}
// end namespace pybind
}
// end namespace paddle
paddle/fluid/pybind/async_executor_py.h
0 → 100644
浏览文件 @
a6ac4266
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
namespace
py
=
pybind11
;
namespace
paddle
{
namespace
pybind
{
void
BindAsyncExecutor
(
py
::
module
*
m
);
}
// namespace pybind
}
// namespace paddle
paddle/fluid/pybind/pybind.cc
浏览文件 @
a6ac4266
...
...
@@ -42,6 +42,7 @@ limitations under the License. */
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/async_executor_py.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/fluid/pybind/protobuf.h"
...
...
@@ -932,6 +933,7 @@ All parameter, weight, gradient are variables in Paddle.
});
BindRecordIOWriter
(
&
m
);
BindAsyncExecutor
(
&
m
);
}
}
// namespace pybind
}
// namespace paddle
python/paddle/fluid/__init__.py
浏览文件 @
a6ac4266
...
...
@@ -20,6 +20,13 @@ from .framework import *
# import all class inside executor into fluid module
from
.
import
executor
from
.executor
import
*
from
.
import
data_feed_desc
from
.data_feed_desc
import
*
from
.
import
async_executor
from
.async_executor
import
*
from
.
import
trainer
from
.
import
inferencer
...
...
@@ -54,7 +61,8 @@ Tensor = LoDTensor
__all__
=
framework
.
__all__
+
executor
.
__all__
+
\
trainer
.
__all__
+
inferencer
.
__all__
+
transpiler
.
__all__
+
\
parallel_executor
.
__all__
+
lod_tensor
.
__all__
+
[
parallel_executor
.
__all__
+
lod_tensor
.
__all__
+
\
data_feed_desc
.
__all__
+
async_executor
.
__all__
+
[
'io'
,
'initializer'
,
'layers'
,
...
...
python/paddle/fluid/async_executor.py
0 → 100644
浏览文件 @
a6ac4266
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
contextlib
import
six
from
.framework
import
Program
,
default_main_program
,
Variable
from
.
import
core
from
.executor
import
global_scope
,
Executor
from
paddle.fluid.proto
import
data_feed_pb2
from
google.protobuf
import
text_format
from
.
import
io
from
.data_feed_desc
import
DataFeedDesc
__all__
=
[
'AsyncExecutor'
]
class
AsyncExecutor
(
object
):
"""
An asynchronous Executor in Python. Through exploiting the power of
multi-core processor and data queueing, AsyncExecutor makes data reading
and cosuming decoupled, each run in multiple threads in parallel.
Instead of reading data in python side, AsyncExecutor accepts a training
file list, which will be retrieved in C++, then training inputs will be
read, parsed and fed to training network within C++ code.
AsyncExecutor is in active development and the API might change in the near
future.
Example:
>>> data_feed = fluid.DataFeedDesc('data.proto')
>>> startup_program = fluid.default_startup_program()
>>> main_program = fluid.default_main_program()
>>> filelist = ["train_data/part-%d" % i for i in range(100)]
>>> thread_num = len(filelist) / 4
>>>
>>> place = fluid.CPUPlace()
>>> async_executor = fluid.AsyncExecutor(place)
>>>
>>> async_executor.run_startup_program(startup_program)
>>>
>>> epoch = 10
>>> for i in range(epoch):
>>> async_executor.run(main_program,
>>> data_feed,
>>> filelist,
>>> thread_num,
>>> [acc],
>>> debug=False)
Args:
place(fluid.CPUPlace|None): indicate the executor run on which device.
Only CPUPlace supported
Note:
For debugging complicated network in parallel-GPUs, you can test it
on the executor. They has the exactly same arguments, and expected
the same results.
Note: Only running on CPUPlace supported.
"""
def
__init__
(
self
,
place
=
None
):
if
place
is
None
:
place
=
core
.
CPUPlace
()
if
not
isinstance
(
place
,
core
.
CPUPlace
):
raise
ValueError
(
"AsyncExecutor only supports CPU device"
)
p
=
core
.
Place
()
p
.
set_place
(
place
)
scope
=
global_scope
()
self
.
executor
=
core
.
AsyncExecutor
(
scope
,
p
)
def
run
(
self
,
program
,
data_feed
,
filelist
,
thread_num
,
fetch
,
debug
=
False
):
"""
Run program by this AsyncExecutor. Training dataset will be in filelist.
Users can also inspect certain variables by naming them in parameter
:code:`fetch`, like in fluid.Executor. Unlike fluid.Executor, however,
AsyncExecutor doesn't return fetched variables, instead, it will dump
the values of each fetched variable to stdandard output.
Running the dataset will be on multiple threads, within each a thread
local scope will be created, then all OPs also created in that scope.
Parameters are updated by all the OPs simultaneously.
Args:
program(Program): the program that need to run, if not provied,
then default_main_program will be used.
data_feed(DataFeedDesc): A DataFeedDesc object
filelist(str): a file containing the training dataset file list
thread_num(int): number of concurrent training threads. See
:code:`Note` for how to set this properly
fetch(str|list): the var name or a list of var names to inspect
debug(bool): When set to True, fetch vars will be printed to
standard output after each minibatch
Note:
the executor will run all operators in the program but not only
the operators dependent by the fetch_list.
Note:
Running AsyncExecutor will be on multiple threads, each bound to a
CPU core. To achieve best performance, it's suggested to set thread
num to be equal or slightly less than that of CPU cores.
"""
if
program
is
None
:
program
=
default_main_program
()
program_desc
=
program
.
desc
if
data_feed
is
None
:
raise
ValueError
(
'ValueError: data_feed should be provided'
)
if
filelist
is
None
:
raise
ValueError
(
'ValueError: filelist should be provided'
)
if
isinstance
(
filelist
,
str
):
filelist
=
[
filelist
]
if
not
isinstance
(
thread_num
,
int
):
raise
TypeError
(
'TypeError: thread_num should be a positive number'
)
if
fetch
is
not
None
:
if
isinstance
(
fetch
,
Variable
):
fetch
=
[
fetch
]
fetch_var_names
=
[
var
.
name
for
var
in
fetch
]
for
fetch_var
in
fetch
:
shape
=
fetch_var
.
shape
if
shape
[
len
(
shape
)
-
1
]
!=
1
:
raise
AssertionError
(
"%s: Fetch variable has wrong shape. Only varibles "
"with the last dimension size 1 supported."
%
(
fetch_var
.
name
))
self
.
executor
.
run_from_files
(
program_desc
,
data_feed
.
desc
(),
filelist
,
thread_num
,
fetch_var_names
,
debug
)
python/paddle/fluid/data_feed_desc.py
0 → 100644
浏览文件 @
a6ac4266
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.fluid.proto
import
data_feed_pb2
from
google.protobuf
import
text_format
__all__
=
[
'DataFeedDesc'
]
class
DataFeedDesc
(
object
):
"""
Datafeed descriptor, describing input training data format. This class is
currently only used for AsyncExecutor (See comments for class AsyncExecutor
for a brief introduction)
DataFeedDesc shall be initialized from a valid protobuf message from disk:
>>> data_feed = fluid.DataFeedDesc('data.proto')
See :code:`paddle/fluid/framework/data_feed.proto` for message definition.
A typical message might look like:
>>> name: "MultiSlotDataFeed"
>>> batch_size: 2
>>> multi_slot_desc {
>>> slots {
>>> name: "words"
>>> type: "uint64"
>>> is_dense: false
>>> is_used: true
>>> }
>>> slots {
>>> name: "label"
>>> type: "uint64"
>>> is_dense: false
>>> is_used: true
>>> }
>>> }
However, users usually shouldn't care about the message format; instead,
they are encouragd to use :code:`Data Generator` as a tool to generate a
valid data description, in the process of converting their raw log files to
training files acceptable to AsyncExecutor.
DataFeedDesc can also be changed during runtime. Once you got familiar with
what each field mean, you can modify it to better suit your need. E.g.:
>>> data_feed.set_batch_size(128)
>>> data_feed.set_dense_slots('wd') # The slot named 'wd' will be dense
>>> data_feed.set_use_slots('wd') # The slot named 'wd' will be used
Finally, the content can be dumped out for debugging purpose:
>>> print(data_feed.desc())
Args:
proto_file(string): Disk file containing a data feed description.
"""
def
__init__
(
self
,
proto_file
):
self
.
proto_desc
=
data_feed_pb2
.
DataFeedDesc
()
with
open
(
proto_file
,
'r'
)
as
f
:
text_format
.
Parse
(
f
.
read
(),
self
.
proto_desc
)
if
self
.
proto_desc
.
name
==
"MultiSlotDataFeed"
:
self
.
__name_to_index
=
{
slot
.
name
:
i
for
i
,
slot
in
enumerate
(
self
.
proto_desc
.
multi_slot_desc
.
slots
)
}
def
set_batch_size
(
self
,
batch_size
):
"""
Set batch size. Will be effective during training
Example:
>>> data_feed = fluid.DataFeedDesc('data.proto')
>>> data_feed.set_batch_size(128)
Args:
batch_size: batch size
"""
self
.
proto_desc
.
batch_size
=
batch_size
def
set_dense_slots
(
self
,
dense_slots_name
):
"""
Set if a specific slot will be dense. Will be effective during training.
features for a dense slot will be fed into a Tensor, while those for a
sparse slot will be fed into a LoDTensor
Example:
>>> data_feed = fluid.DataFeedDesc('data.proto')
>>> data_feed.set_dense_slots(['words'])
Args:
dense_slots_name: a list of slot names which will be set dense
Note:
Default is sparse for all slots
"""
if
self
.
proto_desc
.
name
!=
"MultiSlotDataFeed"
:
raise
ValueError
(
"Only MultiSlotDataFeed need set_dense_slots, pls check your datafeed.proto"
)
for
name
in
dense_slots_name
:
self
.
proto_desc
.
multi_slot_desc
.
slots
[
self
.
__name_to_index
[
name
]].
is_dense
=
True
def
set_use_slots
(
self
,
use_slots_name
):
"""
Set if a specific slot will be used for training. A dataset shall
contain a lot of features, through this function one can select which
ones will be used for a specific model.
Example:
>>> data_feed = fluid.DataFeedDesc('data.proto')
>>> data_feed.set_use_slots(['words'])
Args:
use_slots_name: a list of slot names which will be used in training
Note:
Default is not used for all slots
"""
if
self
.
proto_desc
.
name
!=
"MultiSlotDataFeed"
:
raise
ValueError
(
"Only MultiSlotDataFeed need set_use_slots, pls check your datafeed.proto"
)
for
name
in
use_slots_name
:
self
.
proto_desc
.
multi_slot_desc
.
slots
[
self
.
__name_to_index
[
name
]].
is_used
=
True
def
desc
(
self
):
"""
Returns a protobuf message for this DataFeedDesc
Example:
>>> data_feed = fluid.DataFeedDesc('data.proto')
>>> print(data_feed.desc())
Returns:
A string message
"""
return
text_format
.
MessageToString
(
self
.
proto_desc
)
python/paddle/fluid/executor.py
浏览文件 @
a6ac4266
...
...
@@ -278,6 +278,7 @@ class Executor(object):
p
=
core
.
Place
()
p
.
set_place
(
place
)
self
.
executor
=
core
.
Executor
(
p
)
self
.
program_caches
=
dict
()
self
.
_closed
=
False
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
a6ac4266
...
...
@@ -169,6 +169,7 @@ __all__ = [
'log_loss'
,
'add_position_encoding'
,
'bilinear_tensor_product'
,
'lstm'
,
]
...
...
@@ -472,6 +473,168 @@ def dynamic_lstm(input,
return
hidden
,
cell
def
lstm
(
input
,
init_h
,
init_c
,
max_len
,
hidden_size
,
num_layers
,
dropout_prob
=
0.0
,
is_bidirec
=
False
,
is_test
=
False
,
name
=
None
,
default_initializer
=
None
,
seed
=-
1
):
"""
If Device is GPU, This op will use cudnn LSTM implementation
A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
$$ i_t =
\\
sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
$$ f_t =
\\
sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$
$$ o_t =
\\
sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$
$$
\\
tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$
$$ c_t = f_t
\\
odot c_{t-1} + i_t
\\
odot
\\
tilde{c_t} $$
$$ h_t = o_t
\\
odot tanh(c_t) $$
- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $
\t
ilde{c_t}$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
X represensts a matrix multiplication
Args:
input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
init_h(Variable): The initial hidden state of the LSTM
This is a tensor with shape ( num_layers x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
init_c(Variable): The initial cell state of the LSTM.
This is a tensor with shape ( num_layers x batch_size x hidden_size )
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
hidden_size (int): hidden size of the LSTM
num_layers (int): total layers number of the LSTM
dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
There is NO dropout work on rnn output of the last RNN layers
is_bidirec (bool): If it is bidirectional
is_test (bool): If it is in test phrase
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
default_initializer(Initialize|None): Where use initializer to initialize the Weight
If set None, defaule initializer will be used
seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
Returns:
rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
last_h(Tensor): the hidden state of the last step of LSTM
shape is ( num_layers x batch_size x hidden_size )
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
last_c(Tensor): the cell state of the last step of LSTM
shape is ( num_layers x batch_size x hidden_size )
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
Examples:
.. code-block:: python
input = embedding
batch_size = 20
max_len = 100
dropout_prob = 0.2
input_size = 100
hidden_size = 150
num_layers = 1
init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c,
\
max_len, dropout_prob, input_size, hidden_size,
\
num_layers)
"""
helper
=
LayerHelper
(
'cudnn_lstm'
,
**
locals
())
dtype
=
input
.
dtype
input_shape
=
list
(
input
.
shape
)
input_size
=
input_shape
[
-
1
]
weight_size
=
0
for
i
in
range
(
num_layers
):
if
i
==
0
:
input_weight_size
=
(
input_size
*
hidden_size
)
*
4
else
:
if
is_bidirec
:
input_weight_size
=
(
hidden_size
*
2
*
hidden_size
)
*
4
else
:
input_weight_size
=
(
hidden_size
*
hidden_size
)
*
4
hidden_weight_size
=
(
hidden_size
*
hidden_size
)
*
4
if
is_bidirec
:
weight_size
+=
(
input_weight_size
+
hidden_weight_size
)
*
2
weight_size
+=
hidden_size
*
8
*
2
else
:
weight_size
+=
input_weight_size
+
hidden_weight_size
weight_size
+=
hidden_size
*
8
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
weight_size
],
dtype
=
dtype
,
default_initializer
=
default_initializer
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
last_h
=
helper
.
create_variable_for_type_inference
(
dtype
)
last_c
=
helper
.
create_variable_for_type_inference
(
dtype
)
cache
=
helper
.
create_variable
(
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
,
stop_gradient
=
True
)
helper
.
append_op
(
type
=
'cudnn_lstm'
,
inputs
=
{
'Input'
:
input
,
'InitH'
:
init_h
,
'InitC'
:
init_c
,
'W'
:
weight
,
'Cache'
:
cache
,
},
outputs
=
{
'Out'
:
out
,
'last_h'
:
last_h
,
'last_c'
:
last_c
,
},
attrs
=
{
'max_len'
:
max_len
,
'is_bidirec'
:
is_bidirec
,
'input_size'
:
input_size
,
'hidden_size'
:
hidden_size
,
'num_layers'
:
num_layers
,
'is_test'
:
is_test
,
'dropout_prob'
:
dropout_prob
,
'seed'
:
seed
,
})
return
out
,
last_h
,
last_c
def
dynamic_lstmp
(
input
,
size
,
proj_size
,
...
...
@@ -4250,8 +4413,15 @@ def ctc_greedy_decoder(input, blank, name=None):
[0.5, 0.1, 0.3, 0.1]]
input.lod = [[4, 4]]
Computation:
Then:
step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
[[0], [2], [1], [0]]
step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
[[2], [1]]
Finally:
output.data = [[2],
[1],
...
...
@@ -4259,6 +4429,7 @@ def ctc_greedy_decoder(input, blank, name=None):
output.lod = [[2, 1]]
Args:
input(Variable): (LoDTensor<float>), the probabilities of
...
...
@@ -4273,8 +4444,10 @@ def ctc_greedy_decoder(input, blank, name=None):
name (str): The name of this layer. It is optional.
Returns:
Variable: CTC greedy decode result. If all the sequences in result were
empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
'Lp' is the sum if all output sequences' length. If all the sequences
in result were empty, the result LoDTensor will be [-1] with
LoD [[]] and dims [1, 1].
Examples:
.. code-block:: python
...
...
@@ -6924,7 +7097,7 @@ def pad2d(input,
Args:
input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
paddings (tuple|list): The padding size. If padding is a tuple, it must
paddings (tuple|list
|Variable
): The padding size. If padding is a tuple, it must
contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
Default: padding = [0, 0, 0, 0].
mode (str): Three modes: constant(default), reflect, edge. Default: constant
...
...
@@ -6949,16 +7122,17 @@ def pad2d(input,
helper
=
LayerHelper
(
'pad2d'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'input'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
inputs
=
{
'X'
:
input
}
attrs
=
{
'mode'
:
mode
,
'pad_value'
:
pad_value
,
'data_format'
:
data_format
}
if
isinstance
(
paddings
,
Variable
):
inputs
[
'Paddings'
]
=
paddings
attrs
[
'paddings'
]
=
[]
else
:
attrs
[
'paddings'
]
=
paddings
helper
.
append_op
(
type
=
'pad2d'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
'paddings'
:
paddings
,
'mode'
:
mode
,
'pad_value'
:
pad_value
,
'data_frmat'
:
data_format
})
type
=
'pad2d'
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
attrs
=
attrs
)
return
out
...
...
@@ -7606,6 +7780,11 @@ def uniform_random_batch_size_like(input,
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
input = layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.uniform_random_batch_size_like(input, [-1, 11])
"""
helper
=
LayerHelper
(
'uniform_random_batch_size_like'
,
**
locals
())
...
...
@@ -7643,6 +7822,10 @@ def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
out = layers.gaussian_random(shape=[20, 30])
"""
helper
=
LayerHelper
(
'gaussian_random'
,
**
locals
())
...
...
@@ -7678,6 +7861,16 @@ def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
x = layers.data(
name="X",
shape=[13, 11],
dtype='float32',
append_batch_size=False)
out = layers.sampling_id(x)
"""
helper
=
LayerHelper
(
'sampling_id'
,
**
locals
())
...
...
@@ -7717,6 +7910,14 @@ def gaussian_random_batch_size_like(input,
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
input = layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.gaussian_random_batch_size_like(
input, shape=[-1, 11], mean=1.0, std=2.0)
"""
helper
=
LayerHelper
(
'gaussian_random_batch_size_like'
,
**
locals
())
...
...
@@ -7749,6 +7950,12 @@ def sum(x):
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
input = layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.sum(input)
"""
helper
=
LayerHelper
(
'sum'
,
**
locals
())
...
...
@@ -7777,6 +7984,17 @@ def slice(input, axes, starts, ends):
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
starts = [1, 0, 2]
ends = [3, 3, 4]
axes = [0, 1, 2]
input = layers.data(
name="input", shape=[3, 4, 5, 6], dtype='float32')
out = layers.slice(input, axes=axes, starts=starts, ends=ends)
"""
helper
=
LayerHelper
(
'slice'
,
**
locals
())
...
...
@@ -7804,6 +8022,12 @@ def shape(input):
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
input = layers.data(
name="input", shape=[3, 100, 100], dtype="float32")
out = layers.shape(input)
"""
helper
=
LayerHelper
(
'shape'
,
**
locals
())
...
...
python/paddle/fluid/tests/demo/async_executor.py
0 → 100644
浏览文件 @
a6ac4266
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
tarfile
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid
import
core
URL
=
'http://paddle-unittest-data.gz.bcebos.com/python_paddle_fluid_tests_demo_async-executor/train_data.tar.gz'
MD5
=
'2a405a31508969b3ab823f42c0f522ca'
def
bow_net
(
data
,
label
,
dict_dim
=
89528
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
models/fluid/PaddleNLP/text_classification/nets.py
"""
# embedding
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
is_sparse
=
True
)
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
bowh
=
fluid
.
layers
.
tanh
(
bow
)
# fc layer after conv
fc_1
=
fluid
.
layers
.
fc
(
input
=
bowh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
# probability of each class
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
# cross entropy loss
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
# mean loss
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
train
():
# Download data
with
tarfile
.
open
(
paddle
.
dataset
.
common
.
download
(
URL
,
"imdb"
,
MD5
))
as
tarf
:
tarf
.
extractall
(
path
=
'./'
)
tarf
.
close
()
# Initialize dataset description
dataset
=
fluid
.
DataFeedDesc
(
'train_data/data.prototxt'
)
dataset
.
set_batch_size
(
128
)
# See API doc for how to change other fields
print
dataset
.
desc
()
# Debug purpose: see what we get
# define network
# input text data
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# label data
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
avg_cost
,
acc
,
prediction
=
bow_net
(
data
,
label
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.002
)
opt_ops
,
weight_and_grad
=
sgd_optimizer
.
minimize
(
avg_cost
)
# Run startup program
startup_program
=
fluid
.
default_startup_program
()
place
=
fluid
.
CPUPlace
()
executor
=
fluid
.
Executor
(
place
)
executor
.
run
(
startup_program
)
async_executor
=
fluid
.
AsyncExecutor
(
place
)
main_program
=
fluid
.
default_main_program
()
epochs
=
10
filelist
=
[
"train_data/part-%d"
%
i
for
i
in
range
(
12
)]
for
i
in
range
(
epochs
):
thread_num
=
4
async_executor
.
run
(
main_program
,
# This can be changed during iteration
dataset
,
# This can be changed during iteration
filelist
,
# This can be changed during iteration
thread_num
,
# This can be changed during iteration
[
data
,
acc
],
# Multiple fetch targets can be specified
debug
=
False
)
fluid
.
io
.
save_inference_model
(
'imdb/epoch%d.model'
%
i
,
[
data
.
name
,
label
.
name
],
[
acc
],
executor
)
if
__name__
==
"__main__"
:
train
()
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
a6ac4266
...
...
@@ -216,6 +216,15 @@ class OpTest(unittest.TestCase):
self
.
dtype
)
outputs
=
append_input_output
(
block
,
op_proto
,
self
.
outputs
,
False
,
self
.
dtype
)
if
hasattr
(
self
,
"cache_name_list"
):
for
name
in
self
.
cache_name_list
:
inputs
[
name
]
=
block
.
create_var
(
name
=
name
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
,
stop_gradient
=
True
)
op
=
block
.
append_op
(
type
=
self
.
op_type
,
inputs
=
inputs
,
...
...
@@ -428,8 +437,17 @@ class OpTest(unittest.TestCase):
op_inputs
=
self
.
inputs
if
hasattr
(
self
,
"inputs"
)
else
dict
()
op_outputs
=
self
.
outputs
if
hasattr
(
self
,
"outputs"
)
else
dict
()
op_attrs
=
self
.
attrs
if
hasattr
(
self
,
"attrs"
)
else
dict
()
self
.
op
=
create_op
(
self
.
scope
,
self
.
op_type
,
op_inputs
,
op_outputs
,
op_attrs
)
cache_list
=
None
if
hasattr
(
self
,
"cache_name_list"
):
cache_list
=
self
.
cache_name_list
self
.
op
=
create_op
(
self
.
scope
,
self
.
op_type
,
op_inputs
,
op_outputs
,
op_attrs
,
cache_list
=
cache_list
)
if
no_grad_set
is
None
:
no_grad_set
=
set
()
...
...
python/paddle/fluid/tests/unittests/test_async_executor.py
0 → 100644
浏览文件 @
a6ac4266
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle
import
unittest
import
tarfile
import
os
import
shutil
proto_str
=
(
'name: "MultiSlotDataFeed"
\n
'
'batch_size: 2
\n
'
'multi_slot_desc {
\n
'
' slots {
\n
'
' name: "words"
\n
'
' type: "uint64"
\n
'
' is_dense: false
\n
'
' is_used: true
\n
'
' }
\n
'
' slots {
\n
'
' name: "label"
\n
'
' type: "uint64"
\n
'
' is_dense: false
\n
'
' is_used: true
\n
'
' }
\n
'
'}'
)
URL
=
'http://paddle-unittest-data.gz.bcebos.com/python_paddle_fluid_tests_demo_async-executor/train_data.tar.gz'
MD5
=
'2a405a31508969b3ab823f42c0f522ca'
def
bow_net
(
data
,
label
,
dict_dim
=
89528
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
models/fluid/PaddleNLP/text_classification/nets.py
"""
# embedding
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
is_sparse
=
True
)
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
bowh
=
fluid
.
layers
.
tanh
(
bow
)
# fc layer after conv
fc_1
=
fluid
.
layers
.
fc
(
input
=
bowh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
# probability of each class
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
# cross entropy loss
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
# mean loss
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
class
TestAsyncExecutor
(
unittest
.
TestCase
):
def
setUp
(
self
):
with
open
(
'./data.prototxt'
,
'w+'
)
as
f
:
f
.
write
(
proto_str
)
f
.
close
()
with
tarfile
.
open
(
paddle
.
dataset
.
common
.
download
(
URL
,
"imdb"
,
MD5
))
as
tarf
:
tarf
.
extractall
(
path
=
'./'
)
tarf
.
close
()
def
test_data_feed_desc
(
self
):
data_feed
=
fluid
.
DataFeedDesc
(
'./data.prototxt'
)
# assertEqueal(data_feed.proto_desc.batch, 2)
# assertEqual(len(data_feed.proto_desc.multi_slot_desc), 2)
self
.
assertEqual
(
" "
.
join
(
data_feed
.
desc
().
split
()),
" "
.
join
(
proto_str
.
split
()))
def
test_run
(
self
):
# Initialize dataset description
data_feed
=
fluid
.
DataFeedDesc
(
'train_data/data.prototxt'
)
data_feed
.
set_batch_size
(
128
)
# See API doc for how to change other fields
# define network
# input text data
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# label data
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
avg_cost
,
acc
,
prediction
=
bow_net
(
data
,
label
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.002
)
opt_ops
,
weight_and_grad
=
sgd_optimizer
.
minimize
(
avg_cost
)
# Run startup program
startup_program
=
fluid
.
default_startup_program
()
place
=
fluid
.
CPUPlace
()
executor
=
fluid
.
Executor
(
place
)
executor
.
run
(
startup_program
)
main_program
=
fluid
.
default_main_program
()
async_executor
=
fluid
.
AsyncExecutor
(
place
)
self
.
assertRaises
(
TypeError
,
async_executor
.
run
)
self
.
assertRaises
(
TypeError
,
async_executor
.
run
,
main_program
)
self
.
assertRaises
(
TypeError
,
async_executor
.
run
,
main_program
,
data_feed
)
filelist
=
[
'train_data/part-%d'
%
i
for
i
in
range
(
10
)]
self
.
assertRaises
(
TypeError
,
async_executor
.
run
,
main_program
,
data_feed
,
filelist
)
thread_num
=
4
self
.
assertRaises
(
TypeError
,
async_executor
.
run
,
main_program
,
data_feed
,
filelist
,
thread_num
)
async_executor
.
run
(
main_program
,
data_feed
,
filelist
,
thread_num
,
[
acc
])
fluid
.
io
.
save_inference_model
(
"imdb.model"
,
[
data
.
name
,
label
.
name
],
[
acc
],
executor
)
statinfo
=
os
.
stat
(
'imdb.model/__model__'
)
self
.
assertGreater
(
statinfo
.
st_size
,
0
)
os
.
remove
(
'./data.prototxt'
)
shutil
.
rmtree
(
'./train_data'
)
shutil
.
rmtree
(
'./imdb.model'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
a6ac4266
...
...
@@ -636,13 +636,21 @@ class TestBook(unittest.TestCase):
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
3
,
100
,
100
],
dtype
=
"float32"
)
paddings
=
layers
.
fill_constant
(
shape
=
[
4
],
dtype
=
'int32'
,
value
=
1
)
out
=
layers
.
pad2d
(
input
,
paddings
=
[
1
,
2
,
3
,
4
],
mode
=
'reflect'
,
data_format
=
'NCHW'
,
name
=
"shape"
)
out_1
=
layers
.
pad2d
(
input
,
paddings
=
paddings
,
mode
=
'reflect'
,
data_format
=
'NCHW'
,
name
=
"shape"
)
self
.
assertIsNotNone
(
out
)
self
.
assertIsNotNone
(
out_1
)
print
(
str
(
program
))
def
test_prelu
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py
0 → 100644
浏览文件 @
a6ac4266
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
SIGMOID_THRESHOLD_MIN
=
-
40.0
SIGMOID_THRESHOLD_MAX
=
13.0
EXP_MAX_INPUT
=
40.0
def
lstm_naive
(
input
,
w
,
):
seq_len
,
batch_size
,
hidden_size
=
input
.
shape
offset
=
0
wi
=
w
[
offset
:
offset
+
hidden_size
*
hidden_size
].
reshape
(
(
hidden_size
,
hidden_size
)).
transpose
()
offset
+=
hidden_size
*
hidden_size
wf
=
w
[
offset
:
offset
+
hidden_size
*
hidden_size
].
reshape
(
(
hidden_size
,
hidden_size
)).
transpose
()
offset
+=
hidden_size
*
hidden_size
wc
=
w
[
offset
:
offset
+
hidden_size
*
hidden_size
].
reshape
(
(
hidden_size
,
hidden_size
)).
transpose
()
offset
+=
hidden_size
*
hidden_size
wo
=
w
[
offset
:
offset
+
hidden_size
*
hidden_size
].
reshape
(
(
hidden_size
,
hidden_size
)).
transpose
()
offset
+=
hidden_size
*
hidden_size
ri
=
w
[
offset
:
offset
+
hidden_size
*
hidden_size
].
reshape
(
(
hidden_size
,
hidden_size
)).
transpose
()
offset
+=
hidden_size
*
hidden_size
rf
=
w
[
offset
:
offset
+
hidden_size
*
hidden_size
].
reshape
(
(
hidden_size
,
hidden_size
)).
transpose
()
offset
+=
hidden_size
*
hidden_size
rc
=
w
[
offset
:
offset
+
hidden_size
*
hidden_size
].
reshape
(
(
hidden_size
,
hidden_size
)).
transpose
()
offset
+=
hidden_size
*
hidden_size
ro
=
w
[
offset
:
offset
+
hidden_size
*
hidden_size
].
reshape
(
(
hidden_size
,
hidden_size
)).
transpose
()
offset
+=
hidden_size
*
hidden_size
bi_1
=
w
[
offset
:
offset
+
hidden_size
]
offset
+=
hidden_size
bf_1
=
w
[
offset
:
offset
+
hidden_size
]
offset
+=
hidden_size
bc_1
=
w
[
offset
:
offset
+
hidden_size
]
offset
+=
hidden_size
bo_1
=
w
[
offset
:
offset
+
hidden_size
]
offset
+=
hidden_size
bi_2
=
w
[
offset
:
offset
+
hidden_size
]
offset
+=
hidden_size
bf_2
=
w
[
offset
:
offset
+
hidden_size
]
offset
+=
hidden_size
bc_2
=
w
[
offset
:
offset
+
hidden_size
]
offset
+=
hidden_size
bo_2
=
w
[
offset
:
offset
+
hidden_size
]
def
sigmoid
(
x
):
y
=
np
.
copy
(
x
)
y
[
x
<
SIGMOID_THRESHOLD_MIN
]
=
SIGMOID_THRESHOLD_MIN
y
[
x
>
SIGMOID_THRESHOLD_MAX
]
=
SIGMOID_THRESHOLD_MAX
return
1.
/
(
1.
+
np
.
exp
(
-
y
))
def
tanh
(
x
):
y
=
-
2.
*
x
y
[
y
>
EXP_MAX_INPUT
]
=
EXP_MAX_INPUT
return
(
2.
/
(
1.
+
np
.
exp
(
y
)))
-
1.
output
=
[]
pre_h
=
np
.
zeros
((
batch_size
,
hidden_size
),
dtype
=
input
.
dtype
)
pre_c
=
np
.
zeros
((
batch_size
,
hidden_size
),
dtype
=
input
.
dtype
)
for
i
in
range
(
seq_len
):
emb_1
=
input
[
i
]
input_gate
=
sigmoid
(
np
.
matmul
(
emb_1
,
wi
)
+
np
.
matmul
(
pre_h
,
ri
)
+
bi_1
+
bi_2
)
forget_gate
=
sigmoid
(
np
.
matmul
(
emb_1
,
wf
)
+
np
.
matmul
(
pre_h
,
rf
)
+
bf_1
+
bf_2
)
output_gate
=
sigmoid
(
np
.
matmul
(
emb_1
,
wo
)
+
np
.
matmul
(
pre_h
,
ro
)
+
bo_1
+
bo_2
)
c_t_temp
=
tanh
(
np
.
matmul
(
emb_1
,
wc
)
+
np
.
matmul
(
pre_h
,
rc
)
+
bc_1
+
bc_2
)
new_c
=
input_gate
*
c_t_temp
+
forget_gate
*
pre_c
new_h
=
output_gate
*
tanh
(
new_c
)
pre_h
=
new_h
pre_c
=
new_c
output
.
append
(
new_h
)
output
=
np
.
concatenate
(
output
,
-
1
)
output
=
output
.
reshape
((
batch_size
,
-
1
,
hidden_size
))
output
=
output
.
transpose
((
1
,
0
,
2
))
return
output
,
pre_h
,
pre_c
class
TestCUDNNLstmOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"cudnn_lstm"
self
.
dtype
=
np
.
float32
num_steps
=
20
batch_size
=
5
hidden_size
=
20
input_weight_size
=
(
hidden_size
*
hidden_size
)
*
4
hidden_weight_size
=
(
hidden_size
*
hidden_size
)
*
4
weight_size
=
input_weight_size
+
hidden_weight_size
weight_size
+=
hidden_size
*
8
input
=
np
.
random
.
uniform
(
low
=-
0.1
,
high
=
0.1
,
size
=
(
num_steps
,
batch_size
,
hidden_size
)).
astype
(
self
.
dtype
)
flat_w
=
np
.
random
.
uniform
(
low
=-
0.1
,
high
=
0.1
,
size
=
(
weight_size
)).
astype
(
self
.
dtype
)
output
,
last_hidden
,
last_cell
=
lstm_naive
(
input
,
flat_w
)
init_h
=
np
.
zeros
((
batch_size
,
hidden_size
),
dtype
=
np
.
float32
)
init_c
=
np
.
zeros
((
batch_size
,
hidden_size
),
dtype
=
np
.
float32
)
scope
=
core
.
Scope
()
program
=
fluid
.
Program
()
block
=
program
.
global_block
()
cache_temp
=
block
.
create_var
(
name
=
"Cache"
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
,
stop_gradient
=
True
)
self
.
inputs
=
{
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'W'
:
OpTest
.
np_dtype_to_fluid_dtype
(
flat_w
),
'InitH'
:
OpTest
.
np_dtype_to_fluid_dtype
(
init_h
),
'InitC'
:
OpTest
.
np_dtype_to_fluid_dtype
(
init_c
),
}
self
.
cache_name_list
=
[
'Cache'
]
self
.
attrs
=
{
'max_len'
:
num_steps
,
'dropout_prob'
:
0.0
,
'is_bidirec'
:
False
,
'input_size'
:
hidden_size
,
'hidden_size'
:
hidden_size
,
'num_layers'
:
1
,
}
self
.
outputs
=
{
'Out'
:
output
,
"last_h"
:
last_hidden
,
'last_c'
:
last_cell
}
def
test_output_with_place
(
self
):
if
self
.
testcuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
def
test_grad_with_place
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'Input'
,
'W'
,
'InitH'
,
'InitC'
]),
[
'Out'
,
'last_h'
,
'last_c'
],
max_relative_error
=
0.02
)
def
testcuda
(
self
):
return
core
.
is_compiled_with_cuda
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_pad2d_op.py
浏览文件 @
a6ac4266
...
...
@@ -20,11 +20,17 @@ from op_test import OpTest
class
TestPad2dOp
(
OpTest
):
def
setUp
(
self
):
self
.
pad_value
=
0.0
self
.
variable_paddings
=
False
self
.
initTestCase
()
self
.
op_type
=
"pad2d"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
),
}
self
.
attrs
=
{}
self
.
attrs
[
'paddings'
]
=
np
.
array
(
self
.
paddings
).
flatten
()
if
self
.
variable_paddings
:
self
.
attrs
[
'paddings'
]
=
[]
self
.
inputs
[
'Paddings'
]
=
np
.
array
(
self
.
paddings
).
flatten
().
astype
(
"int32"
)
else
:
self
.
attrs
[
'paddings'
]
=
np
.
array
(
self
.
paddings
).
flatten
()
self
.
attrs
[
'pad_value'
]
=
self
.
pad_value
self
.
attrs
[
'mode'
]
=
self
.
mode
self
.
attrs
[
'data_format'
]
=
self
.
data_format
...
...
@@ -98,5 +104,24 @@ class TestCase5(TestPad2dOp):
self
.
data_format
=
"NHWC"
class
TestCase6
(
TestPad2dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
4
,
4
,
2
)
self
.
paddings
=
[
0
,
1
,
2
,
3
]
self
.
mode
=
"constant"
self
.
pad_value
=
1.2
self
.
data_format
=
"NHWC"
self
.
variable_paddings
=
True
class
TestCase7
(
TestPad2dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
4
)
self
.
paddings
=
[
0
,
1
,
2
,
3
]
self
.
mode
=
"reflect"
self
.
data_format
=
"NCHW"
self
.
variable_paddings
=
True
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/testsuite.py
浏览文件 @
a6ac4266
...
...
@@ -20,7 +20,7 @@ import paddle.fluid.core as core
from
paddle.fluid.op
import
Operator
def
create_op
(
scope
,
op_type
,
inputs
,
outputs
,
attrs
):
def
create_op
(
scope
,
op_type
,
inputs
,
outputs
,
attrs
,
cache_list
=
None
):
kwargs
=
dict
()
op_maker
=
core
.
op_proto_and_checker_maker
...
...
@@ -43,6 +43,11 @@ def create_op(scope, op_type, inputs, outputs, attrs):
__create_var__
(
in_name
,
sub_in_name
)
else
:
__create_var__
(
in_name
,
in_name
)
if
cache_list
!=
None
and
isinstance
(
cache_list
,
list
):
for
name
in
cache_list
:
kwargs
[
name
]
=
[]
scope
.
var
(
name
)
kwargs
[
name
].
append
(
name
)
for
out_name
,
out_dup
in
Operator
.
get_op_outputs
(
op_type
):
if
out_name
in
outputs
:
...
...
python/paddle/reader/tests/decorator_test.py
浏览文件 @
a6ac4266
...
...
@@ -62,10 +62,10 @@ class TestBuffered(unittest.TestCase):
for
idx
,
i
in
enumerate
(
b
()):
elapsed_time
=
time
.
time
()
-
last_time
if
i
==
0
:
time
.
sleep
(
0.3
)
time
.
sleep
(
1
)
else
:
# read time should be short, meaning already buffered.
self
.
assertLess
(
elapsed_time
,
0.0
5
)
self
.
assertLess
(
elapsed_time
,
0.0
8
)
last_time
=
time
.
time
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录