Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a61e7d0f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a61e7d0f
编写于
1月 15, 2019
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
dy gan mostly working
test=develop
上级
03fe3109
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
101 addition
and
44 deletion
+101
-44
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+6
-3
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+23
-8
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+72
-33
未找到文件。
python/paddle/fluid/imperative/layers.py
浏览文件 @
a61e7d0f
...
@@ -27,18 +27,21 @@ class Layer(core.Layer):
...
@@ -27,18 +27,21 @@ class Layer(core.Layer):
"""Layers composed of operators."""
"""Layers composed of operators."""
def
__init__
(
self
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
name
=
None
):
def
__init__
(
self
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
name
=
None
):
self
.
_
once_
built
=
False
self
.
_built
=
False
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
def
parameters
(
self
):
return
[]
def
_build_once
(
self
,
inputs
):
def
_build_once
(
self
,
inputs
):
pass
pass
def
__call__
(
self
,
*
inputs
):
def
__call__
(
self
,
*
inputs
):
if
not
self
.
_
once_
built
:
if
not
self
.
_built
:
self
.
_build_once
(
*
inputs
)
self
.
_build_once
(
*
inputs
)
self
.
_once_built
=
True
outputs
=
self
.
forward
(
*
inputs
)
outputs
=
self
.
forward
(
*
inputs
)
self
.
_built
=
True
return
outputs
return
outputs
def
forward
(
self
,
*
inputs
):
def
forward
(
self
,
*
inputs
):
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
a61e7d0f
...
@@ -220,11 +220,14 @@ class FC(layers.Layer):
...
@@ -220,11 +220,14 @@ class FC(layers.Layer):
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
self
.
_helper
=
LayerHelper
(
'FC'
,
'FC'
,
param_attr
=
param_attr
,
act
=
act
,
name
=
name
)
param_attr
=
param_attr
,
self
.
_bias_attr
=
bias_attr
bias_attr
=
bias_attr
,
act
=
act
,
def
parameters
(
self
):
name
=
name
)
if
self
.
_bias_attr
:
return
[
self
.
_w
,
self
.
_b
]
else
:
return
[
self
.
_w
]
def
_build_once
(
self
,
input
):
def
_build_once
(
self
,
input
):
input_shape
=
input
.
shape
input_shape
=
input
.
shape
...
@@ -255,8 +258,20 @@ class FC(layers.Layer):
...
@@ -255,8 +258,20 @@ class FC(layers.Layer):
inputs
=
{
"X"
:
[
tmp
]},
inputs
=
{
"X"
:
[
tmp
]},
outputs
=
{
"Out"
:
out
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"use_mkldnn"
:
False
})
attrs
=
{
"use_mkldnn"
:
False
})
if
not
self
.
_bias_attr
:
return
out
# add bias
# add bias
pre_activation
=
self
.
_helper
.
append_bias_op
(
size
=
list
(
out
.
shape
[
1
:])
out
,
dim_start
=
self
.
_num_flatten_dims
)
if
not
self
.
_built
:
self
.
_b
=
self
.
_layer
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
size
,
dtype
=
out
.
dtype
,
is_bias
=
True
)
bias_out
=
self
.
create_variable_for_type_inference
(
dtype
=
out
.
dtype
)
self
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
out
],
'Y'
:
[
self
.
_b
]},
outputs
=
{
'Out'
:
[
bias_out
]},
attrs
=
{
'axis'
:
1
})
# add activation
# add activation
return
self
.
_helper
.
append_activation
(
pre_activation
)
return
self
.
_helper
.
append_activation
(
bias_out
)
python/paddle/fluid/tests/unittests/test_imperative_gan.py
浏览文件 @
a61e7d0f
...
@@ -23,6 +23,7 @@ import paddle.fluid as fluid
...
@@ -23,6 +23,7 @@ import paddle.fluid as fluid
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
test_imperative_base
import
new_program_scope
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.imperative.base
import
to_variable
class
Discriminator
(
fluid
.
imperative
.
Layer
):
class
Discriminator
(
fluid
.
imperative
.
Layer
):
...
@@ -31,6 +32,9 @@ class Discriminator(fluid.imperative.Layer):
...
@@ -31,6 +32,9 @@ class Discriminator(fluid.imperative.Layer):
self
.
_fc1
=
FC
(
size
=
32
,
act
=
'elu'
,
name
=
"d_fc1"
)
self
.
_fc1
=
FC
(
size
=
32
,
act
=
'elu'
,
name
=
"d_fc1"
)
self
.
_fc2
=
FC
(
size
=
1
,
name
=
"d_fc2"
)
self
.
_fc2
=
FC
(
size
=
1
,
name
=
"d_fc2"
)
def
parameters
(
self
):
return
self
.
_fc1
.
parameters
()
+
self
.
_fc2
.
parameters
()
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc1
(
inputs
)
return
self
.
_fc2
(
x
)
return
self
.
_fc2
(
x
)
...
@@ -43,6 +47,10 @@ class Generator(fluid.imperative.Layer):
...
@@ -43,6 +47,10 @@ class Generator(fluid.imperative.Layer):
self
.
_fc2
=
FC
(
size
=
64
,
act
=
'elu'
,
name
=
"g_fc2"
)
self
.
_fc2
=
FC
(
size
=
64
,
act
=
'elu'
,
name
=
"g_fc2"
)
self
.
_fc3
=
FC
(
size
=
1
,
name
=
"g_fc3"
)
self
.
_fc3
=
FC
(
size
=
1
,
name
=
"g_fc3"
)
def
parameters
(
self
):
return
self
.
_fc1
.
parameters
()
+
self
.
_fc2
.
parameters
(
)
+
self
.
_fc3
.
parameters
()
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc2
(
x
)
x
=
self
.
_fc2
(
x
)
...
@@ -56,12 +64,15 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -56,12 +64,15 @@ class TestImperativeMnist(unittest.TestCase):
startup
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
startup
.
random_seed
=
seed
startup
.
random_seed
=
seed
discriminate_p
=
fluid
.
Program
()
discriminate_p
=
fluid
.
Program
()
generate_p
=
fluid
.
Program
()
discriminate_p
.
random_seed
=
seed
generate_p
.
random_seed
=
seed
scope
=
fluid
.
core
.
Scope
()
scope
=
fluid
.
core
.
Scope
()
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
sys
.
stderr
.
write
(
'1111
\n
'
)
with
new_program_scope
(
with
new_program_scope
(
main
=
discriminate_p
,
startup
=
startup
,
scope
=
scope
):
main
=
discriminate_p
,
startup
=
startup
,
scope
=
scope
):
fluid
.
default_main_program
().
random_seed
=
seed
discriminator
=
Discriminator
()
discriminator
=
Discriminator
()
generator
=
Generator
()
generator
=
Generator
()
...
@@ -70,64 +81,92 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -70,64 +81,92 @@ class TestImperativeMnist(unittest.TestCase):
noise
=
fluid
.
layers
.
data
(
noise
=
fluid
.
layers
.
data
(
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
2
,
1
],
dtype
=
'float32'
,
append_batch_size
=
False
)
d_real
=
discriminator
(
img
)
d_real
=
discriminator
(
img
)
d_loss_real
=
fluid
.
layers
.
reduce_mean
(
d_loss_real
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_real
,
label
=
label
))
x
=
d_real
,
label
=
fluid
.
layers
.
fill_constant
(
shape
=
[
2
,
1
],
dtype
=
'float32'
,
value
=
1.0
)))
d_fake
=
discriminator
(
generator
(
noise
))
d_fake
=
discriminator
(
generator
(
noise
))
d_loss_fake
=
fluid
.
layers
.
reduce_mean
(
d_loss_fake
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
label
))
x
=
d_fake
,
label
=
fluid
.
layers
.
fill_constant
(
shape
=
[
2
,
1
],
dtype
=
'float32'
,
value
=
0.0
)))
d_loss
=
d_loss_real
+
d_loss_fake
d_loss
=
d_loss_real
+
d_loss_fake
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
.
minimize
(
d_loss
)
sgd
.
minimize
(
d_loss
)
generate_p
=
fluid
.
Program
()
with
new_program_scope
(
main
=
generate_p
,
startup
=
startup
,
scope
=
scope
):
with
new_program_scope
(
main
=
generate_p
,
startup
=
startup
,
scope
=
scope
):
fluid
.
default_main_program
().
random_seed
=
seed
discriminator
=
Discriminator
()
discriminator
=
Discriminator
()
generator
=
Generator
()
generator
=
Generator
()
noise
=
fluid
.
layers
.
data
(
noise
=
fluid
.
layers
.
data
(
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
2
,
1
],
dtype
=
'float32'
,
append_batch_size
=
False
)
d_fake
=
discriminator
(
generator
(
noise
))
d_fake
=
discriminator
(
generator
(
noise
))
g_loss
=
fluid
.
layers
.
reduce_mean
(
g_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
label
))
x
=
d_fake
,
label
=
fluid
.
layers
.
fill_constant
(
shape
=
[
2
,
1
],
dtype
=
'float32'
,
value
=
1.0
)))
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
.
minimize
(
g_loss
)
sgd
.
minimize
(
g_loss
)
img
=
np
.
ones
([
2
,
1
],
np
.
float32
)
with
fluid
.
scope_guard
(
scope
):
label
=
np
.
ones
([
2
,
1
],
np
.
float32
)
img
=
np
.
ones
([
2
,
1
],
np
.
float32
)
noise
=
np
.
ones
([
2
,
2
],
np
.
float32
)
noise
=
np
.
ones
([
2
,
2
],
np
.
float32
)
exe
.
run
(
startup
)
exe
.
run
(
startup
)
d_loss_val
=
exe
.
run
(
discriminate_p
,
d_loss_val
=
exe
.
run
(
discriminate_p
,
feed
=
{
'img'
:
img
,
feed
=
{
'img'
:
img
,
'noise'
:
noise
,
'noise'
:
noise
},
'label'
:
label
},
fetch_list
=
[
d_loss
])[
0
]
fetch_list
=
[
d_loss
])[
0
]
g_loss_val
=
exe
.
run
(
generate_p
,
g_loss_val
=
exe
.
run
(
generate_p
,
feed
=
{
'noise'
:
noise
},
feed
=
{
'noise'
:
noise
,
fetch_list
=
[
g_loss
])[
0
]
'label'
:
label
},
sys
.
stderr
.
write
(
'd_loss %s, g_loss: %s
\n
'
%
fetch_list
=
[
g_loss
])[
0
]
(
d_loss_val
,
g_loss_val
))
sys
.
stderr
.
write
(
'd_loss %s, g_loss: %s
\n
'
%
(
d_loss_val
,
g_loss_val
))
static_params
=
dict
()
for
param
in
discriminate_p
.
global_block
().
all_parameters
():
sys
.
stderr
.
write
(
'%s
\n
'
%
param
.
name
)
static_params
[
param
.
name
]
=
np
.
array
(
scope
.
find_var
(
param
.
name
).
get_tensor
())
dy_params
=
dict
()
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
discriminator
=
Discriminator
()
generator
=
Generator
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
d_real
=
discriminator
(
to_variable
(
np
.
ones
([
2
,
1
],
np
.
float32
)))
d_loss_real
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_real
,
label
=
to_variable
(
np
.
ones
([
2
,
1
],
np
.
float32
))))
d_fake
=
discriminator
(
generator
(
to_variable
(
np
.
ones
([
2
,
2
],
np
.
float32
))))
d_loss_fake
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
to_variable
(
np
.
zeros
([
2
,
1
],
np
.
float32
))))
d_loss
=
d_loss_real
+
d_loss_fake
sys
.
stderr
.
write
(
'dy_d_loss: %s
\n
'
%
d_loss
.
_numpy
())
d_loss
.
_backward
()
sgd
.
minimize
(
d_loss
)
for
p
in
discriminator
.
parameters
():
dy_params
[
p
.
name
]
=
p
.
_numpy
()
for
k
,
v
in
six
.
iteritems
(
dy_params
):
sys
.
stderr
.
write
(
'dy_param_loss: %s: %s
\n
'
%
(
k
,
np
.
sum
(
v
)))
sys
.
stderr
.
write
(
'static_param_loss: %s: %s
\n
'
%
(
k
,
np
.
sum
(
v
)))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录