Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a5f1e6d6
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a5f1e6d6
编写于
9月 06, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update cos_sim operator by following reviewer's comments.
上级
91215bce
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
76 addition
and
63 deletion
+76
-63
paddle/operators/cos_sim_op.cc
paddle/operators/cos_sim_op.cc
+2
-2
paddle/operators/cos_sim_op.h
paddle/operators/cos_sim_op.h
+50
-47
python/paddle/v2/framework/tests/test_cos_sim_op.py
python/paddle/v2/framework/tests/test_cos_sim_op.py
+24
-14
未找到文件。
paddle/operators/cos_sim_op.cc
浏览文件 @
a5f1e6d6
...
...
@@ -90,8 +90,8 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
x_grad
->
Resize
(
x_dims
);
y_grad
->
Resize
(
y_dims
);
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
if
(
y_grad
)
y_grad
->
Resize
(
y_dims
);
}
};
...
...
paddle/operators/cos_sim_op.h
浏览文件 @
a5f1e6d6
...
...
@@ -28,30 +28,30 @@ template <typename Place, typename T>
class
CosSimKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
x_norm
=
context
.
Output
<
Tensor
>
(
"XNorm"
);
auto
*
y_norm
=
context
.
Output
<
Tensor
>
(
"YNorm"
);
auto
*
input_
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input_
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
output_
z
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
output_
x_norm
=
context
.
Output
<
Tensor
>
(
"XNorm"
);
auto
*
output_
y_norm
=
context
.
Output
<
Tensor
>
(
"YNorm"
);
z
->
mutable_data
<
T
>
(
context
.
GetPlace
());
x_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
y_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output_
z
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output_
x_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output_
y_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
x
->
dims
();
auto
dims
=
input_
x
->
dims
();
int
size
=
static_cast
<
int
>
(
framework
::
product
(
dims
));
auto
new_dims
=
framework
::
make_ddim
({
dims
[
0
],
size
/
dims
[
0
]});
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
,
new_dims
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
,
new_dims
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
z
);
auto
XNorm
=
EigenMatrix
<
T
>::
From
(
*
x_norm
);
auto
YNorm
=
EigenMatrix
<
T
>::
From
(
*
y_norm
);
auto
x
=
EigenMatrix
<
T
>::
From
(
*
input_
x
,
new_dims
);
auto
y
=
EigenMatrix
<
T
>::
From
(
*
input_
y
,
new_dims
);
auto
z
=
EigenMatrix
<
T
>::
From
(
*
output_
z
);
auto
x_norm
=
EigenMatrix
<
T
>::
From
(
*
output_
x_norm
);
auto
y_norm
=
EigenMatrix
<
T
>::
From
(
*
output_
y_norm
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
XY
=
(
X
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
XNorm
.
device
(
place
)
=
(
X
*
X
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
YNorm
.
device
(
place
)
=
(
Y
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
Z
.
device
(
place
)
=
XY
/
XNorm
/
YN
orm
;
auto
xy
=
(
x
*
y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
x_norm
.
device
(
place
)
=
x
.
square
(
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
y_norm
.
device
(
place
)
=
y
.
square
(
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
z
.
device
(
place
)
=
xy
/
x_norm
/
y_n
orm
;
}
};
...
...
@@ -59,41 +59,44 @@ template <typename Place, typename T>
class
CosSimGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
x_norm
=
context
.
Input
<
Tensor
>
(
"XNorm"
);
auto
*
y_norm
=
context
.
Input
<
Tensor
>
(
"YNorm"
);
auto
*
grad_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
grad_y
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
grad_z
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
input_
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input_
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
input_
z
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
input_
x_norm
=
context
.
Input
<
Tensor
>
(
"XNorm"
);
auto
*
input_
y_norm
=
context
.
Input
<
Tensor
>
(
"YNorm"
);
auto
*
output_
grad_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_
grad_y
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
input_
grad_z
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
x
->
dims
();
auto
dims
=
input_x
->
dims
();
int
size
=
static_cast
<
int
>
(
framework
::
product
(
dims
));
auto
new_dims
=
framework
::
make_ddim
({
dims
[
0
],
size
/
dims
[
0
]});
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
,
new_dims
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
,
new_dims
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
z
);
auto
X_norm
=
EigenMatrix
<
T
>::
From
(
*
x_norm
);
auto
Y_norm
=
EigenMatrix
<
T
>::
From
(
*
y_norm
);
auto
dX
=
EigenMatrix
<
T
>::
From
(
*
grad_x
,
new_dims
);
auto
dY
=
EigenMatrix
<
T
>::
From
(
*
grad_y
,
new_dims
);
auto
dZ
=
EigenMatrix
<
T
>::
From
(
*
grad_z
);
auto
x
=
EigenMatrix
<
T
>::
From
(
*
input_x
,
new_dims
);
auto
y
=
EigenMatrix
<
T
>::
From
(
*
input_y
,
new_dims
);
auto
z
=
EigenMatrix
<
T
>::
From
(
*
input_z
);
auto
x_norm
=
EigenMatrix
<
T
>::
From
(
*
input_x_norm
);
auto
y_norm
=
EigenMatrix
<
T
>::
From
(
*
input_y_norm
);
auto
dz
=
EigenMatrix
<
T
>::
From
(
*
input_grad_z
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
new_dims
[
1
]);
auto
Z_bcast
=
Z
.
broadcast
(
bcast
);
auto
d
Z_bcast
=
dZ
.
broadcast
(
bcast
);
auto
z_bcast
=
z
.
broadcast
(
bcast
);
auto
d
z_bcast
=
dz
.
broadcast
(
bcast
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
X_snorm_bcast
=
X_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
Y_snorm_bcast
=
Y_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
norm_prod_bcast
=
(
X_norm
*
Y_norm
).
eval
().
broadcast
(
bcast
);
dX
.
device
(
place
)
=
dZ_bcast
*
(
Y
/
norm_prod_bcast
-
Z_bcast
*
X
/
X_snorm_bcast
);
dY
.
device
(
place
)
=
dZ_bcast
*
(
X
/
norm_prod_bcast
-
Z_bcast
*
Y
/
Y_snorm_bcast
);
auto
x_snorm_bcast
=
x_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
y_snorm_bcast
=
y_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
norm_prod_bcast
=
(
x_norm
*
y_norm
).
eval
().
broadcast
(
bcast
);
if
(
output_grad_x
)
{
output_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dx
=
EigenMatrix
<
T
>::
From
(
*
output_grad_x
,
new_dims
);
dx
.
device
(
place
)
=
dz_bcast
*
(
y
/
norm_prod_bcast
-
z_bcast
*
x
/
x_snorm_bcast
);
}
if
(
output_grad_y
)
{
output_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
EigenMatrix
<
T
>::
From
(
*
output_grad_y
,
new_dims
);
dy
.
device
(
place
)
=
dz_bcast
*
(
x
/
norm_prod_bcast
-
z_bcast
*
y
/
y_snorm_bcast
);
}
}
};
...
...
python/paddle/v2/framework/tests/test_cos_sim_op.py
浏览文件 @
a5f1e6d6
...
...
@@ -24,26 +24,36 @@ class TestCosSimOp(unittest.TestCase):
}
class
CosSimGradOpTest
(
GradientChecker
):
def
test_cos_sim_2d
(
self
):
op
=
create_op
(
"cos_sim"
)
inputs
=
{
class
TestCosSimGradOp
(
GradientChecker
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"cos_sim"
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
)
}
self
.
compare_grad
(
op
,
inputs
)
def
test_cpu_gpu_compare
(
self
):
self
.
compare_grad
(
self
.
op
,
self
.
inputs
)
def
test_normal
(
self
):
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
])
,
"Out"
,
max_relative_error
=
0.05
)
self
.
op
,
self
.
inputs
,
[
"X"
,
"Y"
]
,
"Out"
,
max_relative_error
=
0.05
)
def
test_cos_sim_3d
(
self
):
op
=
create_op
(
"cos_sim"
)
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
5
,
2
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
10
,
5
,
2
)).
astype
(
"float32"
)
}
self
.
compare_grad
(
op
,
inputs
)
def
test_ignore_x
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"Y"
],
"Out"
,
max_relative_error
=
0.05
,
no_grad_set
=
{
"X"
})
def
test_ignore_y
(
self
):
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
,
max_relative_error
=
0.05
)
self
.
op
,
self
.
inputs
,
[
"X"
],
"Out"
,
max_relative_error
=
0.05
,
no_grad_set
=
{
"Y"
})
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录